Bunny 3—RKY—F 4 >4 diary (0.9.0 hR)
2021-01-19 (Tue)

Kind Inference

Haskell 2010 @ Section 4.6 b %A LFHATHE D,

AREITIE Kind OfEE, DFN, GRA5NZT0T T MIHETIHEE TPV I ADTNZ DN Tl
Y7 Kind 2#HE T2 72DIHCS N AN DN TR AR B,

Kind #EDRYDATY S, T—48, ¥ =h, LU, VI ABHBOEEGE, KEFETNV—TITHH
T5ILTHhd, UL, 4.5 HITRR SN TV D HE BRI & IZIEFERRD HIETEBWETH D, =2
CRE U FROTO T I L/, TABBET D, Y =AS BEU VTACHEENDR, b
TR CH—DIRFEIN—TIZETS

data C a => D a = Foo (S a)
type S a = [D al
class C a where

bar :: a -=> D a -> Bool

BIN—TIZBII LR, MEF, BLU. 77 AD Kind 1%, #HfEH & Kind % £ - 72 [H—{LIZBE 3 5 12
MIRFE2Z Lo TIRETES, &2 EOBNZHE T /857 A =4 ald, bar DIIZE W TEBIERET
-> DFIEB->TEY, UAEA>TEOD Kind I * TRIFIERSLR, X512, D& SOfE * -> * T
BLTEAELT, V72 COA VARV AFNTNE Kind * 2E D,

It is possible that some parts of an inferred kind may not be fully determined by the corresponding
definitions; in such cases, a default of is assumed. For example, we could assume an arbitrary kind &«

for the a parameter in each of the following examples:

A (f a)
Leaf | Fork (Tree a) (Tree a)

data App f a

data Tree a

This would give kinds (¢ =) = & — and « — for App and Tree, respectively, for any kind «, and
would require an extension to allow polymorphic kinds. Instead, using the default binding £ = , the
actual kinds for these two constructors are (—) —— and —, respectively.

Defaults are applied to each dependency group without consideration of the ways in which particular

type constructor constants or classes are used in later dependency groups or elsewhere in the program.

*1 https://www.haskell.org/onlinereport/haskel12010/haskellchd.html#x10-970004.6
*2 MP Jones. A system of constructor classes: overloading and implicit higher-order polymorphism. Journal of
Functional Programming, 5(1):136, January 1995.



For example, adding the following definition to those above does not influence the kind inferred for Tree
(by changing it to (—) —, for instance), and instead generates a static error because the kind of [], —,

does not match the kind that is expected for an argument of Tree:

type FunnyTree = Tree [] -- invalid

This is important because it ensures that each constructor and class are used consistently with the same

kind whenever they are in scope.

kiExpr



