問題 4

X を $\mathbb K$ 上の有限次元ベクトル空間、V をその部分空間とし、かつ $V \neq X$ とする。 (v_1,\cdots,v_r) を V の基底とし、かつ V に属さない元 $x \in X$ を取る。このとき $\{x,v_1,\cdots,v_r\}$ は一次独立である。このことを証明せよ。

解答

 $\{x,v_1,\cdots,v_r\}$ が一次従属であると仮定すると、全てが 0 ではないスカラーの列 $a_0,a_1,\cdots,a_r\in\mathbb{K}$ が存在し、次の式を満たす。

$$a_0 x + \sum_{i=1}^r a_i v_i = 0$$

ここでもし $a_0=0$ だとすると $\sum_{i=1}^r a_i v_i=0$ となってしまい、 (v_1,\cdots,v_r) が V の基底である(したがって一次独立である)ことに反するため、 $a_0\neq 0$ である。そこで、上式を a_0 で割って整理すると、

$$x = \sum_{i=1}^{r} \frac{-a_i}{a_0} v_i$$

となる。x が V の基底ベクトルの線形結合で表現されることは $x \in V$ を意味し、条件に反する。よって、 $\{x,v_1,\cdots,v_r\}$ は一次独立である。

更新履歴

2008-01-24: Web で公開されている「解答と講評」 *1 には具体的な解答例が示されていなかったため、自分で書いてみた。これで大丈夫じゃないかとは思うんだけど.....。

^{*1} http://www-ics.acs.i.kyoto-u.ac.jp/~yy/ExamLinAlg02.pdf