<< 0O 0 0 Formal Verification Memo

gbobbooogobbod

O00OMuwphi 00O0DDOO0OD0O0O0O0O0000000000O0Murphi000000000O0OQOPromela
gboooooooboboboooon

(000000000 promela 0000 0OBasic Spin Manual 00 0000000000000 OOOOO
gooooobooobooboboodoooooooobbobboooooLDb bbb oUU o
0000000000000 000000000000000000000000uwDiary 0000000
gbooooooooogoodm

00 00O dek0.m

cobobOooooOoocoOobOoocOooobocOoobOoOoOoOooOoOoOooon

@ want[p]:=T

turn !=p }ﬂ[l-&i
& @ ®--
\/@n[l-p]:T
turn =p

@ want[p] :=F

00000000 promela 000000000000 DO0O0O0OOO0OOOOOODOOOODOO0OODOO
muphi 000000000000

-- Filename: dekO.m

-- Version: Murphi 3.1

—-- Content: Bad Example for mutual exclusion.
type

proc_idx_t: 0..1;
want_t: enum {T, F};
state_t: enum {SO, S1, S2, S3, C};

*1 http://uhideyuki.sakura.ne.jp/uDiary/?date=20080312#p01

var turn: proc_idx_t;
var want: Array [proc_idx_t] of want_t;

var stat: Array [proc_idx_t] of state_t;

procedure goto(p: proc_idx_t; s: state_t);
begin
stat[p] := s;

end;

ruleset p: proc_idx_t do

rule "SO -> S1 always"
stat[p] = S0

==>

begin
want [p] := T;
goto(p, S1);

end;

rule "S1 -> S2 if other’s turn"
stat[p] = S1 & turn != p

==>

begin
goto(p, S2);

end;

rule "S2 -> 83 if another is not wanting"
stat[p] = S2 & want[1-p] = F

==>

begin
goto(p, S3);

end;

rule "S2 -> S1 if another is wanting"
stat[p] = S2 & want[1-p] = T

==>

begin
goto(p, S1);

end;

rule "S3 -> S1 always"
stat[p] = S3

==>

begin
turn := p;
goto(p, S1);

end;

rule "S1 -> C (Critical) if its turn"
stat[p] = S1 & turn = p

==>

begin
goto(p, C);

end;

rule "Critical Session"
stat[p] = C

==>

begin
want [p] := F;
goto(p, S0);

end;

end;

startstate
begin
for p : proc_idx_t do
goto(p, S0);
want [p] := F;
end;
turn := 0;

end;

invariant

I (stat[0] = C & stat[1] = C);

goodoooooon

muphi 0000000000000 muO murphi 000 (000000000 dek0.m) 0000000
00000000 C++ 000000 (g++000)0000000O0OO

% mu dekO.m
% g++ -I ${Murphi3.1lpath}/include -o dekO dek0.C
% ./dekO

This program should be regarded as a DEBUGGING aid, not as a
certifier of correctness.

Call with the -1 flag or read the license file for terms

and conditions of use.

Run this program with "-h" for the list of options.

Bugs, questions, and comments should be directed to

"murphi@verify.stanford.edu".

Murphi compiler last modified date: Jan 29 1999
Include files last modified date: Jan 29 1999

Murphi Release 3.1

Finite-state Concurrent System Verifier.

Copyright (C) 1992 - 1999 by the Board of Trustees of

Leland Stanford Junior University.

Protocol: dekO

Algorithm:
Verification by breadth first search.
with symmetry algorithm 3 -- Heuristic Small Memory Normalization

with permutation trial limit 10.

Memory usage:

* The size of each state is 40 bits (rounded up to 8 bytes).
* The memory allocated for the hash table and state queue is
8 Mbytes.
With two words of overhead per state, the maximum size of
the state space is 476219 states.
* Use option "-k" or "-m" to increase this, if necessary.
* Capacity in queue for breadth-first search: 47621 states.
* Change the constant gPercentActiveStates in mu_prolog.inc

to increase this, if necessary.

Warning: No trace will not be printed in the case of protocol errors!

Check the options if you want to have error traces.

Result:

Invariant "Invariant 0" failed.

State Space Explored:

203 states, 202 rules fired in 0.10s.

Analysis of State Space:

There are rules that are never fired.
If you are running with symmetry, this may be why. Otherwise,

please run this program with "-pr" for the rules information.

O00OO0Invariant (00000)000000O0O0ODOODO
gobodobboobddtwobbooboobbooboobboobo

% ./dek0 -tv
qup)
Startstate Startstate O fired.
turn:0
want [0] :F
want[1]:F
stat[0]:S0
stat[1]:S0

Rule SO -> S1 always, p:1 fired.
want [1]:T
stat[1]:S1

Rule S1 -> 82 if other’s turn, p:1 fired.
stat[1]:S2

Rule S2 -> S3 if another is not wanting, p:1 fired.
stat[1]:S3

Rule SO -> S1 always, p:0 fired.
want [0]:T
stat[0] :S1

Rule S1 -> C (Critical) if its turn, p:0 fired.
stat[0]:C

Rule S3 -> S1 always, p:1 fired.
turn:1

stat[1]:S1

Rule S1 -> C (Critical) if its turn, p:1 fired.
The last state of the trace (in full) is:
turn:1

want [0] : T

want [1]:T

stat[0]:C

stat[1]:C

End of the error trace.

qup)

0000000000000 D00O0 (Dekker0 by Spin) 0000000000000 OODOOOO turn !=
p& want[l-p) =T ODO0O000O0O0Otun:=p00000000000000OOO0OO0DOOOOODOOO
gooboocoobooocoobooooooo

