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-- Filename: dekO.m

-- Version: Murphi 3.1

—-- Content: Bad Example for mutual exclusion.
type

proc_idx_t: 0..1;
want_t: enum {T, F};
state_t: enum {SO, S1, S2, S3, C};

*1 http://uhideyuki.sakura.ne.jp/uDiary/?date=20080312#p01



var turn: proc_idx_t;
var want: Array [ proc_idx_t ] of want_t;

var stat: Array [ proc_idx_t ] of state_t;

procedure goto(p: proc_idx_t; s: state_t);
begin
stat[p] := s;

end;

ruleset p: proc_idx_t do

rule "SO -> S1 always"
stat[p] = S0

==>

begin
want [p] := T;
goto(p, S1);

end;

rule "S1 -> S2 if other’s turn"
stat[p] = S1 & turn != p

==>

begin
goto(p, S2);

end;

rule "S2 -> 83 if another is not wanting"
stat[p] = S2 & want[1-p] = F

==>

begin
goto(p, S3);

end;

rule "S2 -> S1 if another is wanting"
stat[p] = S2 & want[1-p] = T

==>

begin
goto(p, S1);

end;



rule "S3 -> S1 always"
stat[p] = S3

==>

begin
turn := p;
goto(p, S1);

end;

rule "S1 -> C (Critical) if its turn"
stat[p] = S1 & turn = p

==>

begin
goto(p, C);

end;

rule "Critical Session"
stat[p] = C

==>

begin
want [p] := F;
goto(p, S0);

end;

end;

startstate
begin
for p : proc_idx_t do
goto(p, S0);
want [p] := F;
end;
turn := 0;

end;

invariant

I (stat[0] = C & stat[1] = C);



goodoooooon
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% mu dekO.m
% g++ -I ${Murphi3.1lpath}/include -o dekO dek0.C
% ./dekO

This program should be regarded as a DEBUGGING aid, not as a
certifier of correctness.

Call with the -1 flag or read the license file for terms

and conditions of use.

Run this program with "-h" for the list of options.

Bugs, questions, and comments should be directed to

"murphi@verify.stanford.edu".

Murphi compiler last modified date: Jan 29 1999
Include files last modified date: Jan 29 1999

Murphi Release 3.1

Finite-state Concurrent System Verifier.

Copyright (C) 1992 - 1999 by the Board of Trustees of

Leland Stanford Junior University.

Protocol: dekO

Algorithm:
Verification by breadth first search.
with symmetry algorithm 3 -- Heuristic Small Memory Normalization

with permutation trial limit 10.

Memory usage:



* The size of each state is 40 bits (rounded up to 8 bytes).
* The memory allocated for the hash table and state queue is
8 Mbytes.
With two words of overhead per state, the maximum size of
the state space is 476219 states.
* Use option "-k" or "-m" to increase this, if necessary.
* Capacity in queue for breadth-first search: 47621 states.
* Change the constant gPercentActiveStates in mu_prolog.inc

to increase this, if necessary.

Warning: No trace will not be printed in the case of protocol errors!

Check the options if you want to have error traces.

Result:

Invariant "Invariant 0" failed.

State Space Explored:

203 states, 202 rules fired in 0.10s.

Analysis of State Space:

There are rules that are never fired.
If you are running with symmetry, this may be why. Otherwise,

please run this program with "-pr" for the rules information.
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% ./dek0 -tv
qup)
Startstate Startstate O fired.
turn:0
want [0] :F
want[1]:F
stat[0]:S0
stat[1]:S0



Rule SO -> S1 always, p:1 fired.
want [1]:T
stat[1]:S1

Rule S1 -> 82 if other’s turn, p:1 fired.
stat[1]:S2

Rule S2 -> S3 if another is not wanting, p:1 fired.
stat[1]:S3

Rule SO -> S1 always, p:0 fired.
want [0]:T
stat[0] :S1

Rule S1 -> C (Critical) if its turn, p:0 fired.
stat[0]:C

Rule S3 -> S1 always, p:1 fired.
turn:1

stat[1]:S1

Rule S1 -> C (Critical) if its turn, p:1 fired.
The last state of the trace (in full) is:
turn:1

want [0] : T

want [1]:T

stat[0]:C

stat[1]:C

End of the error trace.

qup)
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