
Copyright © 2003 by the Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA
All rights reserved.

All rights reserved.This document is an unapproved draft of a proposed IEEE Standard. As such,
this document is subject to change. USE AT YOUR OWN RISK! Because this is an unapproved
draft, this document must not be utilized for any conformance/compliance purposes. Permission is
hereby granted for IEEE Standards Committee participants to reproduce this document for pur-
poses of IEEE standardization activities only. Prior to submitting this document to another stan-
dards development organization for standardization activities, permission must first be obtained
from the Manager, Standards Licensing and Contracts, IEEE Standards Activities Department.
Other entities seeking permission to reproduce this document, in whole or in part, must obtain
permission from the Manager, Standards Licensing and Contracts, IEEE Standards Activities
Department.

IEEE Standards Department
Copyright and Permissions
445 Hoes Lane, P.O. Box 1331
Piscataway, NJ 08855-1331, USA

IEEE P1364-2005/D2
(Revision of

IEEE Std 1364-2001)

Draft Standard for Verilog® Hardware
Description Language

Sponsor

Design Automation Standards Committee
of the
IEEE Computer Society

Abstract: The Verilog® Hardware Description Language (HDL) is defined in this standard. Verilog
HDL is a formal notation intended for use in all phases of the creation of electronic systems. Be-
cause it is both machine readable and human readable, it supports the development, verification,
synthesis, and testing of hardware designs; the communication of hardware design data; and the
maintenance, modification, and procurement of hardware. The primary audiences for this standard
are the implementors of tools supporting the language and advanced users of the language.
Keywords:

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change ii

Introduction (unchanged)

(This introduction is not part of IEEE P1364-2005, Draft Standard for Verilog® Hardware Description Langauge.)

The Verilog® Hardware Description Language (Verilog HDL) became an IEEE standard in 1995 as IEEE

Std 1364-1995. It was designed to be simple, intuitive, and effective at multiple levels of abstraction in a

standard textual format for a variety of design tools, including verification simulation, timing analysis, test

analysis, and synthesis. It is because of these rich features that Verilog has been accepted to be the language

of choice by an overwhelming number of IC designers.

Verilog contains a rich set of built-in primitives, including logic gates, user-definable primitives, switches,

and wired logic. It also has device pin-to-pin delays and timing checks. The mixing of abstract levels is

essentially provided by the semantics of two data types: nets and variables. Continuous assignments, in

which expressions of both variables and nets can continuously drive values onto nets, provide the basic

structural construct. Procedural assignments, in which the results of calculations involving variable and net

values can be stored into variables, provide the basic behavioral construct. A design consists of a set of mod-

ules, each of which has an I/O interface, and a description of its function, which can be structural, behav-

ioral, or a mix. These modules are formed into a hierarchy and are interconnected with nets.

The Verilog language is extensible via the Programming Language Interface (PLI) and the Verilog Proce-

dural Interface (VPI) routines. The PLI/VPI is a collection of routines that allows foreign functions to access

information contained in a Verilog HDL description of the design and facilitates dynamic interaction with

simulation. Applications of PLI/VPI include connecting to a Verilog HDL simulator with other simulation

and CAD systems, customized debugging tasks, delay calculators, and annotators.

The language that influenced Verilog HDL the most was HILO-2, which was developed at Brunel University

in England under a contract to produce a test generation system for the British Ministry of Defense. HILO-2

successfully combined the gate and register transfer levels of abstraction and supported verification simula-

tion, timing analysis, fault simulation, and test generation.

In 1990, Cadence Design Systems placed the Verilog HDL into the public domain and the independent Open

Verilog International (OVI) was formed to manage and promote Verilog HDL. In 1992, the Board of Direc-

tors of OVI began an effort to establish Verilog HDL as an IEEE standard. In 1993, the first IEEE Working

Group was formed and after 18 months of focused efforts Verilog became an IEEE standard as IEEE Std

1364-1995.

After the standardization process was complete the 1364 Working Group started looking for feedback from

1364 users worldwide so the standard could be enhanced and modified accordingly. This led to a five year

effort to get a much better Verilog standard in IEEE Std 1364-2001.

Objective of the IEEE Std 1364-2001 effort

The starting point for the IEEE 1364 Working Group for this standard was the feedback received from the

IEEE Std 1364-1995 users worldwide. It was clear from the feedback that users wanted improvements in all

aspects of the language. Users at the higher levels wanted to expand and improve the language at the RTL

and behavioral levels, while users at the lower levels wanted improved capability for ASIC designs and

signoff. It was for this reason that the 1364 Working Group was organized into three task forces: Behavioral,

ASIC, and PLI.

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

iii

The clear directive from the users for these three task forces was to start by solving some of the following

problems:

— Consolidate existing IEEE Std 1364-1995

— Verilog Generate statement

— Multi-dimensional arrays

— Enhanced Verilog file I/O

— Re-entrant tasks

— Standardize Verilog configurations

— Enhance timing representation

— Enhance the VPI routines

Achievements

Over a period of four years the 1364 Verilog Standards Group (VSG) has produced five drafts of the LRM.

The three task forces went through the IEEE Std 1364-1995 LRM very thoroughly and in the process of con-

solidating the existing LRM have been able to provide nearly three hundred clarifications and errata for the

Behavioral, ASIC, and PLI sections. In addition, the VSG has also been able to agree on all the enhance-

ments that were requested (including the ones stated above).

Three new sections have been added. Clause 13, “Configuring the contents of a design,” deals with configu-

ration management and has been added to facilitate both the sharing of Verilog designs between designers

and/or design groups and the repeatability of the exact contents of a given simulation session. Clause 15,

“Timing checks,” has been broken out of Clause 17, “System tasks and functions,” and details more fully

how timing checks are used in specify blocks. Clause 16, “Backannotation using the Standard Delay Format

(SDF),” addresses using back annotation (IEEE Std 1497-1999) within IEEE Std 1364-2001.

Extreme care has been taken to enhance the VPI routines to handle all the enhancements in the Behavioral

and other areas of the LRM. Minimum work has been done on the PLI routines and most of the work has

been concentrated on the VPI routines. Some of the enhancements in the VPI are the save and restart, simu-

lation control, work area access, error handling, assign/deassign and support for array of instances, generate,

and file I/O.

Work on this standard would not have been possible without funding from the CAS society of the IEEE and

Open Verilog International.

The IEEE Std 1364-2001 Verilog Standards Group organization

Many individuals from many different organizations participated directly or indirectly in the standardization

process. The main body of the IEEE Std 1364-2001 working group is located in the United States, with a

subgroup in Japan (EIAJ/1364HDL).

The members of the IEEE Std 1364-2001 working group had voting privileges and all motions had to be

approved by this group to be implemented. The three task forces focused on their specific areas and their

recommendations were eventually voted on by the IEEE Std 1364-2001 working group.

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

iv

Contents

IEEE P1364-2004/D2
HARDWARE DESCRIPTION LANGUAGE (5/26/03)
1. Overview.. 1

1.1 Objectives of this standard... 1
1.2 Conventions used in this standard.. 1
1.3 Syntactic description.. 2
1.4 Contents of this standard.. 2
1.5 Header file listings ... 4
1.6 Examples.. 5
1.7 Prerequisites... 5

2. Lexical conventions ... 6

2.1 Lexical tokens .. 6
2.2 White space.. 6
2.3 Comments .. 6
2.4 Operators.. 6
2.5 Numbers... 6

2.5.1 Integer constants ... 7
2.5.2 Real constants ... 10
2.5.3 Conversion .. 10

2.6 Strings .. 10
2.6.1 String variable declaration .. 11
2.6.2 String manipulation... 11
2.6.3 Special characters in strings.. 11

2.7 Identifiers, keywords, and system names .. 12
2.7.1 Escaped identifiers .. 12
2.7.2 Generated identifiers... 13
2.7.3 Keywords .. 13
2.7.4 System tasks and functions ... 13
2.7.5 Compiler directives... 14

2.8 Attributes.. 14
2.8.1 Examples... 15
2.8.2 Syntax ... 16

3. Data types... 20

3.1 Value set... 20
3.2 Nets and variables .. 20

3.2.1 Net declarations .. 20
3.2.2 Variable declarations .. 22

3.3 Vectors ... 23
3.3.1 Specifying vectors... 23
3.3.2 Vector net accessibility ... 24

3.4 Strengths .. 24
3.4.1 Charge strength ... 24
3.4.2 Drive strength.. 24

3.5 Implicit declarations... 25
3.6 Net initialization... 25
3.7 Net types .. 25

3.7.1 Wire and tri nets.. 25
3.7.2 Wired nets ... 26
3.7.3 Trireg net... 26
3.7.4 Tri0 and tri1 nets... 30
3.7.5 Supply nets.. 31
Copyright © 2003 IEEE. All rights reserved. 0

IEEE P1364-2004/D2
HARDWARE DESCRIPTION LANGUAGE (5/26/03)
3.8 regs... 31
3.9 Integers, reals, times, and realtimes ... 31

3.9.1 Operators and real numbers .. 32
3.9.2 Conversion .. 32

3.10 Arrays... 33
3.10.1 Net arrays .. 33
3.10.2 reg and variable arrays .. 33
3.10.3 Memories .. 33

3.11 Parameters.. 34
3.11.1 Module parameters.. 35
3.11.2 Local parameters - localparam.. 36
3.11.3 Specify parameters.. 37

3.12 Name spaces... 38

4. Expressions .. 40

4.1 Operators.. 40
4.1.1 Operators with real operands .. 41
4.1.2 Binary operator precedence .. 42
4.1.3 Using integer numbers in expressions .. 43
4.1.4 Expression evaluation order.. 43
4.1.5 Arithmetic operators ... 44
4.1.6 Arithmetic expressions with regs and integers ... 45
4.1.7 Relational operators .. 46
4.1.8 Equality operators ... 46
4.1.9 Logical operators .. 47
4.1.10 Bit-wise operators ... 47
4.1.11 Reduction operators .. 48
4.1.12 Shift operators... 49
4.1.13 Conditional operator ... 50
4.1.14 Concatenations.. 51
4.1.15 Event or... 52

4.2 Operands .. 52
4.2.1 Vector bit-select and part-select addressing ... 52
4.2.2 Array and memory addressing .. 54
4.2.3 Strings ... 55

4.3 Minimum, typical, and maximum delay expressions .. 57
4.4 Expression bit lengths .. 59

4.4.1 Rules for expression bit lengths.. 59
4.4.2 An example of an expression bit-length problem... 60
4.4.3 Example of self-determined expressions .. 61

4.5 Signed expressions... 62
4.5.1 Rules for expression types .. 62
4.5.2 Steps for evaluating an expression.. 62
4.5.3 Steps for evaluating an assignment... 63
4.5.4 Handling X and Z in signed expressions .. 63

5. Scheduling semantics... 64

5.1 Execution of a model ... 64
5.2 Event simulation .. 64
5.3 The stratified event queue.. 64
5.4 The Verilog simulation reference model ... 65

5.4.1 Determinism.. 66
Copyright © 2003 IEEE. All rights reserved. 1

IEEE P1364-2004/D2
HARDWARE DESCRIPTION LANGUAGE (5/26/03)
5.4.2 Nondeterminism.. 66
5.5 Race conditions.. 66
5.6 Scheduling implication of assignments ... 66

5.6.1 Continuous assignment ... 67
5.6.2 Procedural continuous assignment.. 67
5.6.3 Blocking assignment... 67
5.6.4 Nonblocking assignment... 67
5.6.5 Switch (transistor) processing... 67
5.6.6 Port connections.. 68
5.6.7 Functions and tasks ... 68

6. Assignments... 69

6.1 Continuous assignments .. 69
6.1.1 The net declaration assignment... 70
6.1.2 The continuous assignment statement .. 70
6.1.3 Delays ... 72
6.1.4 Strength ... 72

6.2 Procedural assignments.. 73
6.2.1 Variable declaration assignment ... 73
6.2.2 Variable declaration syntax... 74

7. Gate and switch level modeling... 75

7.1 Gate and switch declaration syntax.. 75
7.1.1 The gate type specification ... 77
7.1.2 The drive strength specification.. 77
7.1.3 The delay specification ... 78
7.1.4 The primitive instance identifier... 78
7.1.5 The range specification ... 78
7.1.6 Primitive instance connection list ... 79

7.2 and, nand, nor, or, xor, and xnor gates... 81
7.3 buf and not gates .. 82
7.4 bufif1, bufif0, notif1, and notif0 gates... 83
7.5 MOS switches .. 84
7.6 Bidirectional pass switches .. 86
7.7 CMOS switches ... 86
7.8 pullup and pulldown sources ... 87
7.9 Logic strength modeling .. 88
7.10 Strengths and values of combined signals ... 89

7.10.1 Combined signals of unambiguous strength ... 89
7.10.2 Ambiguous strengths: sources and combinations ... 90
7.10.3 Ambiguous strength signals and unambiguous signals .. 95
7.10.4 Wired logic net types .. 99

7.11 Strength reduction by nonresistive devices.. 102
7.12 Strength reduction by resistive devices.. 102
7.13 Strengths of net types... 102

7.13.1 tri0 and tri1 net strengths .. 102
7.13.2 trireg strength .. 102
7.13.3 supply0 and supply1 net strengths .. 102

7.14 Gate and net delays .. 103
7.14.1 min:typ:max delays... 104
7.14.2 trireg net charge decay .. 105
Copyright © 2003 IEEE. All rights reserved. 2

IEEE P1364-2004/D2
HARDWARE DESCRIPTION LANGUAGE (5/26/03)
8. User-defined primitives (UDPs) .. 107

8.1 UDP definition ... 107
8.1.1 UDP header... 109
8.1.2 UDP port declarations... 109
8.1.3 Sequential UDP initial statement .. 109
8.1.4 UDP state table ... 109
8.1.5 Z values in UDP.. 110
8.1.6 Summary of symbols .. 110

8.2 Combinational UDPs ... 111
8.3 Level-sensitive sequential UDPs ... 112
8.4 Edge-sensitive sequential UDPs .. 112
8.5 Sequential UDP initialization .. 113
8.6 UDP instances.. 115
8.7 Mixing level-sensitive and edge-sensitive descriptions... 116
8.8 Level-sensitive dominance... 117

9. Behavioral modeling.. 118

9.1 Behavioral model overview ... 118
9.2 Procedural assignments.. 119

9.2.1 Blocking procedural assignments ... 119
9.2.2 The nonblocking procedural assignment .. 121

9.3 Procedural continuous assignments ... 125
9.3.1 The assign and deassign procedural statements.. 125
9.3.2 The force and release procedural statements .. 126

9.4 Conditional statement .. 127
9.4.1 If-else-if construct... 128

9.5 Case statement ... 130
9.5.1 Case statement with don’t-cares ... 133
9.5.2 Constant expression in case statement.. 133

9.6 Looping statements .. 134
9.7 Procedural timing controls... 136

9.7.1 Delay control... 137
9.7.2 Event control... 138
9.7.3 Named events.. 138
9.7.4 Event or operator... 139
9.7.5 Implicit event_expression list ... 140
9.7.6 Level-sensitive event control .. 141
9.7.7 Intra-assignment timing controls .. 142

9.8 Block statements .. 146
9.8.1 Sequential blocks .. 146
9.8.2 Parallel blocks... 147
9.8.3 Block names.. 148
9.8.4 Start and finish times .. 148

9.9 Structured procedures .. 149
9.9.1 Initial construct ... 150
9.9.2 Always construct... 150

10. Tasks and functions.. 152

10.1 Distinctions between tasks and functions .. 152
10.2 Tasks and task enabling ... 152

10.2.1 Task declarations .. 153
Copyright © 2003 IEEE. All rights reserved. 3

IEEE P1364-2004/D2
HARDWARE DESCRIPTION LANGUAGE (5/26/03)
10.2.2 Task enabling and argument passing .. 154
10.2.3 Task memory usage and concurrent activation... 156

10.3 Functions and function calling... 158
10.3.1 Function declarations .. 158
10.3.2 Returning a value from a function .. 159
10.3.3 Calling a function.. 160
10.3.4 Function rules.. 160
10.3.5 Use of constant functions.. 161

11. Disabling of named blocks and tasks... 163

12. Hierarchical structures ... 166

12.1 Modules.. 166
12.1.1 Top-level modules .. 168
12.1.2 Module instantiation ... 168
12.1.3 Generated instantiation ... 170

12.2 Overriding module parameter values... 180
12.2.1 defparam statement ... 181
12.2.2 Module instance parameter value assignment .. 182
12.2.3 Parameter dependence .. 184

12.3 Ports ... 184
12.3.1 Port definition ... 184
12.3.2 List of ports ... 184
12.3.3 Port declarations.. 185
12.3.4 List of ports declarations... 187
12.3.5 Connecting module instance ports by ordered list .. 187
12.3.6 Connecting module instance ports by name ... 188
12.3.7 Real numbers in port connections... 189
12.3.8 Connecting dissimilar ports .. 190
12.3.9 Port connection rules... 190
12.3.10 Net types resulting from dissimilar port connections ... 191
12.3.11 Connecting signed values via ports... 192

12.4 Hierarchical names .. 192
12.5 Upwards name referencing .. 195
12.6 Scope rules .. 197

13. Configuring the contents of a design ... 199

13.1 Introduction.. 199
13.1.1 Library notation .. 199
13.1.2 Basic configuration elements.. 200

13.2 Libraries ... 200
13.2.1 Specifying libraries - the library map file ... 200
13.2.2 Using multiple library mapping files .. 202
13.2.3 Mapping source files to libraries... 202

13.3 Configurations.. 202
13.3.1 Basic configuration syntax.. 202
13.3.2 Hierarchical configurations... 205

13.4 Using libraries and configs .. 206
13.4.1 Precompiling in a single-pass use-model.. 206
13.4.2 Elaboration-time compiling in a single-pass use-model... 206
13.4.3 Precompiling using a separate compilation tool ... 206
13.4.4 Command line considerations... 206
Copyright © 2003 IEEE. All rights reserved. 4

IEEE P1364-2004/D2
HARDWARE DESCRIPTION LANGUAGE (5/26/03)
13.5 Configuration examples ... 207
13.5.1 Default configuration from library map file ... 207
13.5.2 Using the default clause .. 207
13.5.3 Using the cell clause ... 208
13.5.4 Using the instance clause .. 208
13.5.5 Using a hierarchical config ... 208

13.6 Displaying library binding information ... 209
13.7 Library mapping examples .. 209

13.7.1 Using the command line to control library searching... 209
13.7.2 File path specification examples... 209
13.7.3 Resolving multiple path specifications ... 210

14. Specify blocks.. 211

14.1 Specify block declaration... 211
14.2 Module path declarations... 212

14.2.1 Module path restrictions ... 213
14.2.2 Simple module paths... 213
14.2.3 Edge-sensitive paths.. 214
14.2.4 State-dependent paths ... 215
14.2.5 Full connection and parallel connection paths.. 219
14.2.6 Declaring multiple module paths in a single statement .. 220
14.2.7 Module path polarity... 221

14.3 Assigning delays to module paths.. 222
14.3.1 Specifying transition delays on module paths .. 223
14.3.2 Specifying x transition delays... 224
14.3.3 Delay selection.. 225

14.4 Mixing module path delays and distributed delays.. 226
14.5 Driving wired logic .. 227
14.6 Detailed control of pulse filtering behavior ... 228

14.6.1 Specify block control of pulse limit values... 229
14.6.2 Global control of pulse limit values.. 230
14.6.3 SDF annotation of pulse limit values.. 230
14.6.4 Detailed pulse control capabilities .. 231

15. Timing checks.. 237

15.1 Overview.. 237
15.2 Timing checks using a stability window.. 240

15.2.1 $setup .. 241
15.2.2 $hold ... 242
15.2.3 $setuphold ... 243
15.2.4 $removal ... 245
15.2.5 $recovery... 246
15.2.6 $recrem ... 247

15.3 Timing checks for clock and control signals ... 248
15.3.1 $skew .. 249
15.3.2 $timeskew ... 250
15.3.3 $fullskew... 252
15.3.4 $width ... 254
15.3.5 $period .. 255
15.3.6 $nochange ... 256

15.4 Edge-control specifiers .. 258
15.5 Notifiers: user-defined responses to timing violations .. 259
Copyright © 2003 IEEE. All rights reserved. 5

IEEE P1364-2004/D2
HARDWARE DESCRIPTION LANGUAGE (5/26/03)
15.5.1 Requirements for accurate simulation .. 261
15.5.2 Conditions in negative timing checks ... 263
15.5.3 Notifiers in negative timing checks .. 265
15.5.4 Option behavior .. 265

15.6 Enabling timing checks with conditioned events... 265
15.7 Vector signals in timing checks ... 266
15.8 Negative timing checks.. 267

16. Backannotation using the Standard Delay Format (SDF).. 269

16.1 The SDF annotator... 269
16.2 Mapping of SDF constructs to Verilog.. 269

16.2.1 Mapping of SDF delay constructs to Verilog declarations... 269
16.2.2 Mapping of SDF timing check constructs to Verilog ... 271
16.2.3 SDF annotation of specparams ... 272
16.2.4 SDF annotation of interconnect delays ... 273

16.3 Multiple annotations .. 274
16.4 Multiple SDF files ... 275
16.5 Pulse limit annotation .. 275
16.6 SDF to Verilog delay value mapping... 276

17. System tasks and functions .. 277

17.1 Display system tasks .. 277
17.1.1 The display and write tasks... 278
17.1.2 Strobed monitoring ... 285
17.1.3 Continuous monitoring ... 286

17.2 File input-output system tasks and functions... 286
17.2.1 Opening and closing files.. 286
17.2.2 File output system tasks .. 288
17.2.3 Formatting data to a string .. 289
17.2.4 Reading data from a file.. 290
17.2.5 File positioning ... 294
17.2.6 Flushing output ... 294
17.2.7 I/O error status .. 294
17.2.8 Loading memory data from a file ... 295
17.2.9 Loading timing data from an SDF file.. 296

17.3 Timescale system tasks .. 297
17.3.1 $printtimescale.. 297
17.3.2 $timeformat... 298

17.4 Simulation control system tasks .. 301
17.4.1 $finish ... 301
17.4.2 $stop.. 301

17.5 PLA modeling system tasks... 302
17.5.1 Array types.. 302
17.5.2 Array logic types... 303
17.5.3 Logic array personality declaration and loading... 303
17.5.4 Logic array personality formats .. 303

17.6 Stochastic analysis tasks .. 306
17.6.1 $q_initialize... 306
17.6.2 $q_add... 307
17.6.3 $q_remove... 307
17.6.4 $q_full ... 307
17.6.5 $q_exam.. 307
Copyright © 2003 IEEE. All rights reserved. 6

IEEE P1364-2004/D2
HARDWARE DESCRIPTION LANGUAGE (5/26/03)
17.6.6 Status codes... 308
17.7 Simulation time system functions.. 308

17.7.1 $time ... 308
17.7.2 $stime.. 309
17.7.3 $realtime ... 309

17.8 Conversion functions ... 310
17.9 Probabilistic distribution functions .. 311

17.9.1 $random function .. 311
17.9.2 $dist_ functions... 312
17.9.3 Algorithm for probabilistic distribution functions.. 313

17.10Command line input.. 320
17.10.1 $test$plusargs (string)... 321
17.10.2 $value$plusargs (user_string, variable) .. 321

18. Value change dump (VCD) files.. 324

18.1 Creating the four state value change dump file ... 324
18.1.1 Specifying the name of the dump file ($dumpfile)... 324
18.1.2 Specifying the variables to be dumped ($dumpvars).. 325
18.1.3 Stopping and resuming the dump ($dumpoff/$dumpon).. 326
18.1.4 Generating a checkpoint ($dumpall)... 327
18.1.5 Limiting the size of the dump file ($dumplimit) .. 327
18.1.6 Reading the dump file during simulation ($dumpflush)... 328

18.2 Format of the four state VCD file .. 329
18.2.1 Syntax of the four state VCD file ... 329
18.2.2 Formats of variable values .. 331
18.2.3 Description of keyword commands .. 332
18.2.4 Four state VCD file format example... 338

18.3 Creating the extended value change dump file .. 339
18.3.1 Specifying the dumpfile name and the ports to be dumped ($dumpports) 339
18.3.2 Stopping and resuming the dump ($dumpportsoff/$dumpportson).............................. 340
18.3.3 Generating a checkpoint ($dumpportsall)... 341
18.3.4 Limiting the size of the dump file ($dumpportslimit) .. 341
18.3.5 Reading the dump file during simulation ($dumpportsflush)....................................... 342
18.3.6 Description of keyword commands .. 342
18.3.7 General rules for extended VCD system tasks ... 343

18.4 Format of the extended VCD file... 343
18.4.1 Syntax of the extended VCD file .. 343
18.4.2 Extended VCD node information ... 345
18.4.3 Value changes ... 347
18.4.4 Extended VCD file format example ... 348

19. Compiler directives.. 350

19.1 `celldefine and `endcelldefine.. 350
19.2 `default_nettype ... 350
19.3 `define and `undef .. 351

19.3.1 `define ... 351
19.3.2 `undef .. 353

19.4 `ifdef, `else, `elsif, `endif, `ifndef .. 353
19.5 `include .. 357
19.6 `resetall... 357
19.7 `line .. 357
19.8 `timescale ... 358
Copyright © 2003 IEEE. All rights reserved. 7

IEEE P1364-2004/D2
HARDWARE DESCRIPTION LANGUAGE (5/26/03)
19.9 `unconnected_drive and `nounconnected_drive .. 360

20. PLI overview.. 361

20.1 PLI purpose and history (informative)... 361
20.2 User-defined system task or function names ... 361
20.3 User-defined system task or function types ... 362
20.4 Overriding built-in system task and function names ... 362
20.5 User-supplied PLI applications.. 362
20.6 PLI interface mechanism ... 362
20.7 User-defined system task and function arguments .. 363
20.8 PLI include files... 363
20.9 PLI Memory Restrictions... 363

21. PLI TF and ACC interface mechanism.. 364

21.1 User-supplied PLI applications.. 364
21.1.1 The sizetf class of PLI applications .. 364
21.1.2 The checktf class of PLI applications ... 364
21.1.3 The calltf class of PLI applications... 365
21.1.4 The misctf class of PLI applications... 365
21.1.5 The consumer class of PLI applications ... 365

21.2 Associating PLI applications to a class and system task/function name 365
21.3 PLI application arguments ... 366

21.3.1 The data C argument... 366
21.3.2 The reason C argument ... 366
21.3.3 The paramvc C argument.. 367

22. Using ACC routines... 368

22.1 ACC routine definition .. 368
22.2 The handle data type .. 368
22.3 Using ACC routines... 369

22.3.1 Header files ... 369
22.3.2 Initializing ACC routines.. 369
22.3.3 Exiting ACC routines.. 369

22.4 List of ACC routines by major category.. 369
22.4.1 Fetch routines.. 370
22.4.2 Handle routines ... 371
22.4.3 Next routines... 372
22.4.4 Modify routines... 374
22.4.5 Miscellaneous routines.. 374
22.4.6 VCL routines... 375

22.5 Accessible objects.. 375
22.5.1 ACC routines that operate on module instances .. 377
22.5.2 ACC routines that operate on module ports ... 377
22.5.3 ACC routines that operate on bits of a port ... 378
22.5.4 ACC routines that operate on module paths or data paths ... 378
22.5.5 ACC routines that operate on intermodule paths ... 379
22.5.6 ACC routines that operate on top-level modules.. 379
22.5.7 ACC routines that operate on primitive instances .. 379
22.5.8 ACC routines that operate on primitive terminals .. 380
22.5.9 ACC routines that operate on nets .. 380
22.5.10 ACC routines that operate on reg types .. 381
Copyright © 2003 IEEE. All rights reserved. 8

IEEE P1364-2004/D2
HARDWARE DESCRIPTION LANGUAGE (5/26/03)
22.5.11 ACC routines that operate on integer, real, and time variables 381
22.5.12 ACC routines that operate on named events... 381
22.5.13 ACC routines that operate on parameters and specparams... 382
22.5.14 ACC routines that operate on timing checks .. 382
22.5.15 ACC routines that operate on timing check terminals .. 382
22.5.16 ACC routines that operate on user-defined system task/function arguments 383

22.6 ACC routine types and fulltypes.. 383
22.7 Error handling .. 387

22.7.1 Suppressing error messages .. 387
22.7.2 Enabling warnings .. 387
22.7.3 Testing for errors... 387
22.7.4 Example .. 387
22.7.5 Exception values ... 388

22.8 Reading and writing delay values .. 388
22.8.1 Number of delays for Verilog HDL objects ... 389
22.8.2 ACC routine configuration ... 389
22.8.3 Determining the number of arguments for ACC delay routines................................... 390

22.9 String handling... 394
22.9.1 ACC routines share an internal string buffer .. 394
22.9.2 String buffer reset ... 395
22.9.3 Preserving string values .. 396
22.9.4 Example of preserving string values... 396

22.10Using VCL ACC routines... 396
22.10.1 VCL objects .. 397
22.10.2 The VCL record definition.. 397
22.10.3 Effects of acc_initialize() and acc_close() on VCL consumer routines 400
22.10.4 An example of using VCL ACC routines ... 400

23. ACC routine definitions... 403

24. Using TF routines .. 578

24.1 TF routine definition .. 578
24.2 TF routine system task/function arguments... 578
24.3 Reading and writing system task/function argument values.. 578

24.3.1 Reading and writing 2-state parameter argument values.. 578
24.3.2 Reading and writing 4-state values ... 578
24.3.3 Reading and writing strength values... 579
24.3.4 Reading and writing to memories ... 579
24.3.5 Reading and writing string values... 579
24.3.6 Writing return values of user-defined functions ... 579
24.3.7 Writing the correct C data types ... 579

24.4 Value change detection .. 580
24.5 Simulation time.. 580
24.6 Simulation synchronization ... 580
24.7 Instances of user-defined tasks or functions .. 581
24.8 Module and scope instance names... 581
24.9 Saving information from one system TF call to the next... 581
24.10Displaying output messages.. 581
24.11Stopping and finishing .. 581

25. TF routine definitions .. 582

26. Using VPI routines... 658
Copyright © 2003 IEEE. All rights reserved. 9

IEEE P1364-2004/D2
HARDWARE DESCRIPTION LANGUAGE (5/26/03)
26.1 VPI system tasks and functions ... 658
26.2 The VPI interface... 658

26.2.1 VPI callbacks .. 658
26.2.2 VPI access to Verilog HDL objects and simulation objects ... 659
26.2.3 Error handling ... 659
26.2.4 Function availability ... 659
26.2.5 Traversing expressions.. 659

26.3 VPI object classifications... 660
26.3.1 Accessing object relationships and properties .. 661
26.3.2 Object type properties ... 662
26.3.3 Object file and line properties... 662
26.3.4 Delays and values ... 663

26.4 List of VPI routines by functional category... 663
26.5 Key to data model diagrams .. 665

26.5.1 Diagram key for objects and classes .. 666
26.5.2 Diagram key for accessing properties... 666
26.5.3 Diagram key for traversing relationships ... 667

26.6 Object data model diagrams... 668

27. VPI routine definitions... 699

Annex A .. 760

A.1 Source text ... 760

A.1.1Library source text .. 760
A.1.2Configuration source text.. 760
A.1.3Module and primitive source text ... 761
A.1.4Module parameters and ports.. 761
A.1.5Module items... 761

A.2 Declarations ... 762

A.2.1Declaration types... 762
A.2.2Declaration data types... 764
A.2.3Declaration lists... 764
A.2.4Declaration assignments ... 765
A.2.5Declaration ranges... 765
A.2.6Function declarations .. 765
A.2.7Task declarations... 766
A.2.8Block item declarations... 766

A.3 Primitive instances ... 767

A.3.1Primitive instantiation and instances... 767
A.3.2Primitive strengths .. 767
A.3.3Primitive terminals.. 768
A.3.4Primitive gate and switch types .. 768

A.4 Module and generated instantiation ... 768

A.4.1Module instantiation ... 768
A.4.2Generated instantiation ... 768

A.5 UDP declaration and instantiation ... 769

A.5.1UDP declaration.. 769
A.5.2UDP ports.. 769
Copyright © 2003 IEEE. All rights reserved. 10

IEEE P1364-2004/D2
HARDWARE DESCRIPTION LANGUAGE (5/26/03)
A.5.3UDP body.. 770
A.5.4UDP instantiation.. 770

A.6 Behavioral statements .. 770

A.6.1Continuous assignment statements ... 770
A.6.2Procedural blocks and assignments... 770
A.6.3Parallel and sequential blocks ... 771
A.6.4Statements ... 771
A.6.5Timing control statements... 771
A.6.6Conditional statements.. 772
A.6.7Case statements ... 773
A.6.8Looping statements ... 773
A.6.9Task enable statements.. 773

A.7 Specify section ... 773

A.7.1Specify block declaration.. 773
A.7.2Specify path declarations .. 774
A.7.3Specify block terminals... 774
A.7.4Specify path delays ... 774
A.7.5System timing checks.. 776

A.8 Expressions .. 778

A.8.1Concatenations .. 778
A.8.2Function calls .. 778
A.8.3Expressions ... 778
A.8.4Primaries ... 779
A.8.5Expression left-side values.. 780
A.8.6Operators... 780
A.8.7Numbers .. 780
A.8.8Strings ... 781

A.9 General... 781

A.9.1Attributes... 781
A.9.2Comments ... 782
A.9.3Identifiers .. 782
A.9.4Identifier branches... 783
A.9.5White space ... 783

Annex B .. 784

Annex C .. 786

C.1 $countdrivers.. 786

C.2 $getpattern.. 787

C.3 $input ... 788

C.4 $key and $nokey .. 788

C.5 $list... 789

C.6 $log and $nolog.. 789

C.7 $reset, $reset_count, and $reset_value... 789
Copyright © 2003 IEEE. All rights reserved. 11

IEEE P1364-2004/D2
HARDWARE DESCRIPTION LANGUAGE (5/26/03)
C.8 $save, $restart, and $incsave.. 790

C.9 $scale.. 791

C.10 $scope .. 791

C.11 $showscopes .. 791

C.12 $showvars .. 792

C.13 $sreadmemb and $sreadmemh... 792

Annex D .. 793

D.1 `default_decay_time... 793

D.2 `default_trireg_strength.. 793

D.3 `delay_mode_distributed.. 794

D.4 `delay_mode_path.. 794

D.5 `delay_mode_unit .. 794

D.6 `delay_mode_zero.. 794

Annex E .. 795

Annex F .. 804

Annex G .. 812

Annex H .. 826

Annex I .. 827
Copyright © 2003 IEEE. All rights reserved. 12

Copyright © 2003 IEEE. All rights reserved. 1
This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Draft Standard Verilog® Hardware
Description Language

1. Overview

1.1 Objectives of this standard

The intent of this standard is to serve as a complete specification of the Verilog® Hardware Description Lan-
guage (HDL). This document contains

— The formal syntax and semantics of all Verilog HDL constructs
— The formal syntax and semantics of Standard Delay Format (SDF) constructs
— Simulation system tasks and functions, such as text output display commands
— Compiler directives, such as text substitution macros and simulation time scaling
— The Programming Language Interface (PLI) binding mechanism
— The formal syntax and semantics of access routines, task/function routines, and Verilog procedural

interface routines
— Informative usage examples
— Informative delay model for SDF
— Listings of header files for PLI

1.2 Conventions used in this standard

This standard is organized into clauses, each of which focuses on a specific area of the language. There are
subclauses within each clause to discuss individual constructs and concepts. The discussion begins with an
introduction and an optional rationale for the construct or the concept, followed by syntax and semantic
descriptions, followed by some examples and notes.

The term shall is used throughout this standard to indicate mandatory requirements, whereas the term can is
used to indicate optional features. These terms denote different meanings to different readers of this
standard:

a) To the developers of tools that process the Verilog HDL, the term shall denotes a requirement that
the standard imposes. The resulting implementation is required to enforce the requirements and to
issue an error if the requirement is not met by the input.

b) To the Verilog HDL model developer, the term shall denotes that the characteristics of the Verilog
HDL are natural consequences of the language definition. The model developer is required to adhere
to the constraint implied by the characteristic. The term can denotes optional features that the model

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

2 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

developer can exercise at discretion. If used, however, the model developer is required to follow the
requirements set forth by the language definition.

c) To the Verilog HDL model user, the term shall denotes that the characteristics of the models are nat-
ural consequences of the language definition. The model user can depend on the characteristics of
the model implied by its Verilog HDL source text.

1.3 Syntactic description

The formal syntax of the Verilog HDL is described using Backus-Naur Form (BNF). The following conven-
tions are used:

a) Lowercase words, some containing embedded underscores, are used to denote syntactic categories.

For example:

module_declaration

b) Boldface words are used to denote reserved keywords, operators, and punctuation marks as a

required part of the syntax. These words appear in a larger font for distinction. For example:

module => ;

c) A vertical bar separates alternative items unless it appears in boldface, in which case it stands for

itself. For example:

unary_operator ::=

+ | - | ! | ~ | & | ~& | | | ~| | ^ | ~^ | ^~

d) Square brackets enclose optional items. For example:

input_declaration ::= input [range] list_of_variables ;

e) Braces enclose a repeated item unless it appears in boldface, in which case it stands for itself. The

item may appear zero or more times; the repetitions occur from left to right as with an equivalent

left-recursive rule. Thus, the following two rules are equivalent:

list_of_param_assignments ::= param_assignment { , param_assignment }

list_of_param_assignments ::=

param_assignment

| list_of_param_assignment , param_assignment

f) If the name of any category starts with an italicized part, it is equivalent to the category name

without the italicized part. The italicized part is intended to convey some semantic information. For

example, msb_constant_expression and lsb_constant_expression are equivalent to

constant_expression.

The main text uses italicized font when a term is being defined, and constant-width font for examples,
file names, and while referring to constants, especially 0, 1, x, and z values.

1.4 Contents of this standard

A synopsis of the clauses and annexes is presented as a quick reference. There are 27 clauses and 8 annexes.

All clauses, as well as Annex A, Annex B, Annex E, Annex F, and Annex G, are normative parts of this

standard. Annex C, Annex D, and Annex H are included for informative purposes only.

Clause 1—Overview: This clause discusses the conventions used in this standard and its contents.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 3
This is an unapproved IEEE Standards Draft, subject to change.

Clause 2—Lexical conventions: This clause describes the lexical tokens used in Verilog HDL source text

and their conventions. It describes how to specify and interpret the lexical tokens.

Clause 3—Data types: This clause describes net and variable data types. This clause also discusses the

parameter data type for constant values and describes drive and charge strength of the values on nets.

Clause 4—Expressions: This clause describes the operators and operands that can be used in expressions.

Clause 5—Scheduling semantics: This clause describes the scheduling semantics of the Verilog HDL.

Clause 6—Assignments: This clause compares the two main types of assignment statements in the Verilog

HDL—continuous assignments and procedural assignments. It describes the continuous assignment state-

ment that drives values onto nets.

Clause 7—Gate and switch level modeling: This clause describes the gate and switch level primitives and

logic strength modeling.

Clause 8—User-defined primitives (UDPs): This clause describes how a primitive can be defined in the

Verilog HDL and how these primitives are included in Verilog HDL models.

Clause 9—Behavioral modeling: This clause describes procedural assignments, procedural continuous

assignments, and behavioral language statements.

Clause 10—Tasks and functions: This clause describes tasks and functions—procedures that can be called

from more than one place in a behavioral model. It describes how tasks can be used like subroutines and how

functions can be used to define new operators.

Clause 11—Disabling of named blocks and tasks: This clause describes how to disable the execution of a

task and a block of statements that has a specified name.

Clause 12—Hierarchical structures: This clause describes how hierarchies are created in the Verilog HDL

and how parameter values declared in a module can be overridden. It describes how generated instantiations

can be used to do conditional or multiple instantiations in a design.

Clause 13—Configuring the contents of a design: This clause describes how to configure the contents of a

design.

Clause 14—Specify blocks: This clause describes how to specify timing relationships between input and

output ports of a module.

Clause 15—Timing checks: This clause describes how timing checks are used in specify blocks to deter-

mine if signals obey the timing constraints.

Clause 16—Backannotation using the Standard Delay Format (SDF): This clause describes syntax and

semantics of Standard Delay Format (SDF) constructs.

Clause 17—System tasks and functions: This clause describes the system tasks and functions.

Clause 18—Value change dump (VCD) files: This clause describes the system tasks associated with Value

Change Dump (VCD) file, and the format of the file.

Clause 19—Compiler directives: This clause describes the compiler directives.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

4 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Clause 20—PLI overview: This clause previews the C language procedural interface standard (Program-

ming Language Interface or PLI) and interface mechanisms that are part of the Verilog HDL.

Clause 21—PLI TF and ACC interface mechanism: This clause describes the interface mechanism that

provides a means for users to link PLI task/function (TF) routine and access (ACC) routine applications to

Verilog software tools.

Clause 22—Using ACC routines: This clause describes the ACC routines in general, including how and

why to use them.

Clause 23—ACC routine definitions: This clause describes the specific ACC routines, explaining their

function, syntax, and usage.

Clause 24—Using TF routines: This clause provides an overview of the types of operations that are done

with the TF routines.

Clause 25—TF routine definitions: This clause describes the specific TF routines, explaining their func-

tion, syntax, and usage.

Clause 26—Using VPI routines: This clause provides an overview of the types of operations that are done

with the Verilog Programming Interface (VPI) routines.

Clause 27—VPI routine definitions: This clause describes the VPI routines.

Annex A—Formal syntax definition: This normative annex describes, using BNF, the syntax of the Ver-

ilog HDL.

Annex B—List of keywords: This normative annex lists the Verilog HDL keywords.

Annex C—System tasks and functions: This informative annex describes system tasks and functions that

are frequently used, but that are not part of the standard.

Annex D—Compiler directives: This informative annex describes compiler directives that are frequently

used, but that are not part of the standard.

Annex E—acc_user.h: This normative annex provides a listing of the contents of the acc_user.h file.

Annex F—veriuser.h: This normative annex provides a listing of the contents of the veriuser.h file.

Annex G—vpi_user.h: This normative annex provides a listing of the contents of the vpi_user.h file.

Annex H—Bibliography: This informative annex contains bibliographic entries pertaining to this standard.

1.5 Header file listings

The header file listings included in Annex E, Annex F, and Annex G for acc_user.h, veriuser.h,

and vpi_user.h are a normative part of this standard. All compliant software tools should use the same

function declarations, constant definitions, and structure definitions contained in these header file listings.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 5
This is an unapproved IEEE Standards Draft, subject to change.

1.6 Examples

Several small examples in the Verilog HDL and the C programming language are shown throughout this

standard. These examples are informative—they are intended to illustrate the usage of Verilog HDL con-

structs and PLI functions in a simple context and do not define the full syntax.

1.7 Prerequisites

Clause 20 through Clause 27 and Annex E through Annex G presuppose a working knowledge of the C
programming language.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

6 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

2. Lexical conventions

This clause describes the lexical tokens used in Verilog HDL source text and their conventions.

2.1 Lexical tokens

Verilog HDL source text files shall be a stream of lexical tokens. A lexical token shall consist of one or more
characters. The layout of tokens in a source file shall be free format—that is, spaces and newlines shall not
be syntactically significant other than being token separators, except for escaped identifiers (see 2.7.1).

The types of lexical tokens in the language are as follows:

— White space
— Comment
— Operator
— Number
— String
— Identifier
— Keyword

2.2 White space

White space shall contain the characters for spaces, tabs, newlines, and formfeeds. These characters shall be

ignored except when they serve to separate other lexical tokens. However, blanks and tabs shall be consid-

ered significant characters in strings (see 2.6).

2.3 Comments

The Verilog HDL has two forms to introduce comments. A one-line comment shall start with the two charac-

ters // and end with a new line. A block comment shall start with /* and end with */. Block comments

shall not be nested. The one-line comment token // shall not have any special meaning in a block comment.

2.4 Operators

Operators are single-, double-, or triple-character sequences and are used in expressions. Clause 4 discusses

the use of operators in expressions.

Unary operators shall appear to the left of their operand. Binary operators shall appear between their oper-

ands. A conditional operator shall have two operator characters that separate three operands.

2.5 Numbers

Constant numbers can be specified as integer constants (defined in 2.5.1) or real constants.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 7
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 2-1—Syntax for integer and real numbers

2.5.1 Integer constants

Integer constants can be specified in decimal, hexadecimal, octal, or binary format.

number ::= (From Annex A - A.8.7)
decimal_number

| octal_number

| binary_number

| hex_number

| real_number

real_numbera ::=

unsigned_number . unsigned_number

| unsigned_number [. unsigned_number] exp [sign] unsigned_number

exp ::= e | E
decimal_number ::=

unsigned_number

| [size] decimal_base unsigned_number

| [size] decimal_base x_digit { _ }

| [size] decimal_base z_digit { _ }

binary_number ::=

[size] binary_base binary_value

octal_number ::=

[size] octal_base octal_value

hex_number ::=

[size] hex_base hex_value

sign ::= + | -
size ::= non_zero_unsigned_number

non_zero_unsigned_numbera ::= non_zero_decimal_digit { _ | decimal_digit}

unsigned_numbera ::= decimal_digit { _ | decimal_digit }

binary_valuea ::= binary_digit { _ | binary_digit }

octal_valuea ::= octal_digit { _ | octal_digit }

hex_valuea ::= hex_digit { _ | hex_digit }

decimal_basea ::= '[s|S]d | '[s|S]D
binary_basea ::= '[s|S]b | '[s|S]B
octal_basea::= '[s|S]o | '[s|S]O
hex_basea ::= '[s|S]h | '[s|S]H
non_zero_decimal_digit ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
decimal_digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
binary_digit ::= x_digit | z_digit | 0 | 1
octal_digit ::= x_digit | z_digit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
hex_digit ::=

x_digit | z_digit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
| a | b | c | d | e | f | A | B | C | D | E | F

x_digit ::= x | X
z_digit ::= z | Z | ?

aEmbedded spaces are illegal.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

8 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

There are two forms to express integer constants. The first form is a simple decimal number, which shall be

specified as a sequence of digits 0 through 9, optionally starting with a plus or minus unary operator. The

second form specifies a based constant, which shall be composed of up to three tokens—an optional size

constant, an apostrophe character (', ASCII 0x27) followed by a base format character, and the digits repre-

senting the value of the number.

The first token, a size constant, shall specify the size of the constant in terms of its exact number of bits. It

shall be specified as a non-zero unsigned decimal number. For example, the size specification for two hexa-

decimal digits is 8, because one hexadecimal digit requires 4 bits. Unsized unsigned constants where the

high order bit is unknown (X or x) or three-state (Z or z) are extended to the size of the expression contain-

ing the constant.

NOTE—In IEEE Std 1364-1995, unsized constants where the high order bit is unknown or three-state, the x or z was
only extended to 32 bits.

The second token, a base_format, shall consist of a case-insensitive letter specifying the base for the

number, optionally preceded by the single character s (or S) to indicate a signed quantity, preceded by the

apostrophe character. Legal base specifications are d, D, h, H, o, O, b, or B, for the bases decimal, hexadeci-

mal, octal, and binary respectively.

The use of x and z in defining the value of a number is case insensitive.

The apostrophe character and the base format character shall not be separated by any white space.

The third token, an unsigned number, shall consist of digits that are legal for the specified base format. The

unsigned number token shall immediately follow the base format, optionally preceded by white space. The

hexadecimal digits a to f shall be case insensitive.

Simple decimal numbers without the size and the base format shall be treated as signed integers, whereas the

numbers specified with the base format shall be treated as signed integers if the s designator is included or

as unsigned integers if the base format only is used. The s designator does not affect the bit pattern speci-

fied, only its interpretation.

A plus or minus operator preceding the size constant is a unary plus or minus operator. A plus or minus oper-

ator between the base format and the number is an illegal syntax.

Negative numbers shall be represented in 2’s complement form.

An x represents the unknown value in hexadecimal, octal, and binary constants. A z represents the high-
impedance value. See 3.1 for a discussion of the Verilog HDL value set. An x shall set 4 bits to unknown in

the hexadecimal base, 3 bits in the octal base, and 1 bit in the binary base. Similarly, a z shall set 4 bits, 3

bits, and 1 bit, respectively, to the high-impedance value.

If the size of the unsigned number is smaller than the size specified for the constant, the unsigned number

shall be padded to the left with zeros. If the leftmost bit in the unsigned number is an x or a z, then an x or a

z shall be used to pad to the left respectively.

When used in a number, the question-mark (?) character is a Verilog HDL alternative for the z character. It

sets 4 bits to the high-impedance value in hexadecimal numbers, 3 bits in octal, and 1 bit in binary. The ques-

tion mark can be used to enhance readability in cases where the high-impedance value is a don’t-care condi-

tion. See the discussion of casez and casex in 9.5.1. The question-mark character is also used in user-defined

primitive state tables. See 8.1.6, Table 40.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 9
This is an unapproved IEEE Standards Draft, subject to change.

The underscore character (_) shall be legal anywhere in a number except as the first character. The under-

score character is ignored. This feature can be used to break up long numbers for readability purposes.

Examples:

Example 1—Unsized constant numbers

Example 2—Sized constant numbers

Example 3—Using sign with constant numbers

Example 4—Automatic left padding

Example 5—Using underscore character in numbers

659 // is a decimal number
’h 837FF // is a hexadecimal number
’o7460 // is an octal number
4af // is illegal (hexadecimal format requires ’h)

4’b1001 // is a 4-bit binary number
5 ’D 3 // is a 5-bit decimal number
3’b01x // is a 3-bit number with the least

// significant bit unknown
12’hx // is a 12-bit unknown number
16’hz // is a 16-bit high-impedance number

8 ’d -6 // this is illegal syntax
-8 ’d 6 // this defines the two’s complement of 6,

// held in 8 bits—equivalent to -(8’d 6)
4 ’shf // this denotes the 4-bit number ‘1111’, to

// be interpreted as a 2’s complement number,
// or ‘-1’. This is equivalent to -4’h 1

-4 ’sd15 // this is equivalent to -(-4’d 1), or ‘0001’.

reg [11:0] a, b, c, d;
initial begin

a = ’h x; // yields xxx
b = ’h 3x; // yields 03x
c = ’h z3; // yields zz3
d = ’h 0z3; // yields 0z3

end
reg [84:0] e, f, g;

e = 'h5; // yields {82{1'b0},3'b101}
f = 'hx; // yields {85{1'hx}}
g = 'hz; // yields {85{1'hz}}

27_195_000
16’b0011_0101_0001_1111
32 ’h 12ab_f001

27_195_000
16’b0011_0101_0001_1111
32 ’h 12ab_f001

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

10 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

NOTES:

1) Sized negative constant numbers and sized signed constant numbers are sign-extended when assigned to a reg data
type, regardless of whether the reg itself is signed or not.

2) Each of the three tokens for specifying a number may be macro substituted.

3) The number of bits that make up an unsized number (which is a simple decimal number or a number without the size
specification) shall be at least 32.

2.5.2 Real constants

The real constant numbers shall be represented as described by IEEE Std 754-1985 [B1],1 an IEEE standard

for double-precision floating-point numbers.

Real numbers can be specified in either decimal notation (for example, 14.72) or in scientific notation (for

example, 39e8, which indicates 39 multiplied by 10 to the eighth power). Real numbers expressed with a

decimal point shall have at least one digit on each side of the decimal point.

Examples:

1.2
0.1
2394.26331
1.2E12 (the exponent symbol can be e or E)

1.30e-2
0.1e-0
23E10
29E-2
236.123_763_e-12 (underscores are ignored)

The following are invalid forms of real numbers because they do not have at least one digit on each side of

the decimal point:

.12
9.
4.E3
.2e-7

2.5.3 Conversion

Real numbers shall be converted to integers by rounding the real number to the nearest integer, rather than

by truncating it. Implicit conversion shall take place when a real number is assigned to an integer. The ties

shall be rounded away from zero. For example:

— The real numbers 35.7 and 35.5 both become 36 when converted to an integer and 35.2 becomes 35.
— Converting -1.5 to integer yields -2, converting 1.5 to integer yields 2.

2.6 Strings

A string is a sequence of characters enclosed by double quotes ("") and contained on a single line. Strings

used as operands in expressions and assignments shall be treated as unsigned integer constants represented

by a sequence of 8-bit ASCII values, with one 8-bit ASCII value representing one character.

1The numbers in brackets correspond to those of the bibliography in Annex H.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 11
This is an unapproved IEEE Standards Draft, subject to change.

2.6.1 String variable declaration

String variables are variables of reg type (see 3.2) with width equal to the number of characters in the string

multiplied by 8.

Example:

To store the twelve-character string "Hello world!" requires a reg 8 * 12, or 96 bits wide

2.6.2 String manipulation

Strings can be manipulated using the Verilog HDL operators. The value being manipulated by the operator is

the sequence of 8-bit ASCII values.

Example:

The output is:

Hello world is stored as 00000048656c6c6f20776f726c64
Hello world!!! is stored as 48656c6c6f20776f726c64212121

NOTE—When a variable is larger than required to hold a value being assigned, the contents on the left are padded with
zeros after the assignment. This is consistent with the padding that occurs during assignment of nonstring values. If a
string is larger than the destination string variable, the string is truncated to the left, and the leftmost characters will be
lost.

2.6.3 Special characters in strings

Certain characters can only be used in strings when preceded by an introductory character called an escape
character. Table 1 lists these characters in the right-hand column, with the escape sequence that represents

the character in the left-hand column.

reg [8*12:1] stringvar;
initial begin
stringvar = "Hello world!";

end

module string_test;
reg [8*14:1] stringvar;
initial begin

stringvar = "Hello world";
$display("%s is stored as %h", stringvar,stringvar);
stringvar = {stringvar,"!!!"};
$display("%s is stored as %h", stringvar,stringvar);

end
endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

12 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

2.7 Identifiers, keywords, and system names

An identifier is used to give an object a unique name so it can be referenced. An identifier is either a simple
identifier or an escaped identifier (see 2.7.1). A simple identifier shall be any sequence of letters, digits, dol-

lar signs ($), and underscore characters (_).

The first character of a simple identifier shall not be a digit or $; it can be a letter or an underscore. Identifi-

ers shall be case sensitive.

Example:

shiftreg_a
busa_index
error_condition
merge_ab
_bus3
n$657

NOTE—Implementations may set a limit on the maximum length of identifiers, but they shall at least be 1024 charac-
ters. If an identifier exceeds the implementation-specified length limit, an error shall be reported.

2.7.1 Escaped identifiers

Escaped identifiers shall start with the backslash character (\) and end with white space (space, tab, new-

line). They provide a means of including any of the printable ASCII characters in an identifier (the decimal

values 33 through 126, or 21 through 7E in hexadecimal).

Neither the leading backslash character nor the terminating white space is considered to be part of the iden-

tifier. Therefore, an escaped identifier \cpu3 is treated the same as a nonescaped identifier cpu3.

Example:

\busa+index
\-clock
error-condition
\net1/\net2
\{a,b}
\a*(b+c)

Table 1—Specifying special characters in string

Escape
string Character produced by escape string

\n New line character

\t Tab character

\\ \ character

\" " character

\ddd A character specified in 1–3 octal digits (0 ≤ d ≤ 7).

If less than three characters are used, the following character must not be an octal digit.

Implementations may issue an error if the character represented is greater than \377.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 13
This is an unapproved IEEE Standards Draft, subject to change.

2.7.2 Generated identifiers

Generated identifiers are created by generate loops (see 12.1.3.2); and are a special case of identifiers in that

they can be used in hierarchical names (see 12.4). A generated identifier is the named generate block identi-

fier terminated with a ([digit(s)]) string. This identifier is used as a node name in hierarchical names (see

12.4).

2.7.3 Keywords

Keywords are predefined nonescaped identifiers that are used to define the language constructs. A Verilog

HDL keyword preceded by an escape character is not interpreted as a keyword.

All keywords are defined in lowercase only. Annex B gives a list of all defined keywords.

2.7.4 System tasks and functions

The $ character introduces a language construct that enables development of user-defined tasks and func-

tions. System constructs are not design semantics, but refer to simulator functionality. A name following the

$ is interpreted as a system task or a system function.

The syntax for a system task or function is given in Syntax 2-2.

Syntax 2-2—Syntax for system tasks and functions

The $identifier system task or function can be defined in three places

— A standard set of $identifier system tasks and functions, as defined in Clause 17 and Clause 18.
— Additional $identifier system tasks and functions defined using the PLI, as described in Clause 20.
— Additional $identifier system tasks and functions defined by software implementations.

Any valid identifier, including keywords already in use in contexts other than this construct, can be used as a
system task or function name. The system tasks and functions described in Clause 17 and Clause 18 are part
of this standard. Additional system tasks and functions with the $identifier construct are not part of this stan-
dard.

Example:

$display ("display a message");
$finish;

system_task_enable ::= (From Annex A - A.6.9)
system_task_identifier [(expression { , expression })] ;

system_function_call ::= (From Annex A - A.8.2)
system_function_identifier [(expression { , expression })]

system_function_identifiera ::= (From Annex A - A.9.3)
$[a-zA-Z0-9_$]{ [a-zA-Z0-9_$] }

system_task_identifiera ::=

$[a-zA-Z0-9_$]{ [a-zA-Z0-9_$] }

aThe $ character in a system_function_identifier or system_task_identifier shall

not be followed by white space. A system_function_identifier or

system_task_identifier shall not be escaped.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

14 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

2.7.5 Compiler directives

The ` character (the ASCII value 0x60, called grave accent) introduces a language construct used to imple-

ment compiler directives. The compiler behavior dictated by a compiler directive shall take effect as soon as

the compiler reads the directive. The directive shall remain in effect for the rest of the compilation unless a

different compiler directive specifies otherwise. A compiler directive in one description file can therefore

control compilation behavior in multiple description files.

The `identifier compiler directive construct can be defined in two places

— A standard set of `identifier compiler directives defined in Clause 19.
— Additional `identifier compiler directives defined by software implementations.

Any valid identifier, including keywords already in use in contexts other than this construct, can be used as a

compiler directive name. The compiler directives described in Clause 19 are part of this standard. Addi-

tional compiler directives with the `identifier construct are not part of this standard.

Example:

`define wordsize 8

2.8 Attributes

With the proliferation of tools other than simulators that use Verilog HDL as their source, a mechanism is
included for specifying properties about objects, statements and groups of statements in the HDL source that
may be used by various tools, including simulators, to control the operation or behavior of the tool. These
properties shall be referred to as "attributes". This subclause specifies the syntactic mechanism that shall be
used for specifying attributes, without standardizing on any particular attributes.

The syntax for specifying an attribute is shown in Syntax 2-3.

Syntax 2-3—Syntax for attributes

An attribute_instance can appear in the Verilog description as a prefix attached to a declaration, a

module item, a statement, or a port connection. It can appear as a suffix to an operator or a Verilog function

name in an expression.

If a value is not specifically assigned to the attribute, then its value shall be 1. If the same attribute name is

defined more than once for the same language element, the last attribute value shall be used and a tool can

give a warning that a duplicate attribute specification has occurred.

attribute_instance ::= (From Annex A - A.9.1)
(* attr_spec { , attr_spec } *)

attr_spec ::=

attr_name = constant_expression

| attr_name

attr_name ::=

identifier

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 15
This is an unapproved IEEE Standards Draft, subject to change.

2.8.1 Examples

Example 1—The following example shows how to attach attributes to a case statement:

(* full_case, parallel_case *)
case (foo)
<rest_of_case_statement>

or

(* full_case=1 *)
(* parallel_case=1 *) // Multiple attribute instances also OK
case (foo)
<rest_of_case_statement>

or

(* full_case, // no value assigned
parallel_case=1 *)

case (foo)
<rest_of_case_statement>

Example 2—To attach the full_case attribute, but NOT the parallel_case attribute:

(* full_case *) // parallel_case not specified
case (foo)
<rest_of_case_statement>

or

(* full_case=1, parallel_case = 0 *)
case (foo)
<rest_of_case_statement>

Example 3—To attach an attribute to a module definition:

(* optimize_power *)
module mod1 (<port_list>);

or

(* optimize_power=1 *)
module mod1 (<port_list>);

Example 4—To attach an attribute to a module instantiation:

(* optimize_power=0 *)
mod1 synth1 (<port_list>);

Example 5—To attach an attribute to a reg declaration:

(* fsm_state *) reg [7:0] state1;
(* fsm_state=1 *) reg [3:0] state2, state3;
reg [3:0] reg1; // this reg does NOT have fsm_state set
(* fsm_state=0 *) reg [3:0] reg2; // nor does this one

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

16 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Example 6—To attach an attribute to an operator:

a = b + (* mode = "cla" *) c;

This sets the value for the attribute mode to be the string cla.

Example 7—To attach an attribute to a Verilog function call:

a = add (* mode = "cla" *) (b, c);

Example 8—To attach an attribute to a conditional operator:

a = b ? (* no_glitch *) c : d;

2.8.2 Syntax

The syntax for legal statements with attributes is shown in Syntax 2-4 — Syntax 2-9.

The syntax for module declaration attributes is given in Syntax 2-4.

Syntax 2-4—Syntax for module declaration attributes

The syntax for port declaration attributes is given in Syntax 2-5.

Syntax 2-5—Syntax for port declaration attributes

module_declaration ::= (From Annex A - A.1.3)
{ attribute_instance } module_keyword module_identifier

[module_parameter_port_list] list_of_ports ;
{ module_item }

endmodule
 | { attribute_instance } module_keyword module_identifier

[module_parameter_port_list] [list_of_port_declarations] ;
{ non_port_module_item }

endmodule

port_declaration ::= (From Annex A - A.1.4)
{attribute_instance} inout_declaration

| {attribute_instance} input_declaration

| {attribute_instance} output_declaration

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 17
This is an unapproved IEEE Standards Draft, subject to change.

The syntax for module item attributes is given in Syntax 2-6.

Syntax 2-6—Syntax for module item attributes

module_item ::= (From Annex A - A.1.5)
module_or_generate_item

| port_declaration ;
| { attribute_instance } generated_instantiation

| { attribute_instance } local_parameter_declaration ;
| { attribute_instance } parameter_declaration ;
| { attribute_instance } specify_block

| { attribute_instance } specparam_declaration

module_or_generate_item ::=

{ attribute_instance } module_or_generate_item_declaration

| { attribute_instance } parameter_override

| { attribute_instance } continuous_assign

| { attribute_instance } gate_instantiation

| { attribute_instance } udp_instantiation

| { attribute_instance } module_instantiation

| { attribute_instance } initial_construct

| { attribute_instance } always_construct

non_port_module_item ::=

{ attribute_instance } generated_instantiation

| { attribute_instance } local_parameter_declaration ;
| { attribute_instance } parameter_declaration ;
| { attribute_instance } specify_block

| { attribute_instance } specparam_declaration

| { attribute_instance } module_or_generate_item

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

18 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The syntax for function port, task, and block attributes is given in Syntax 2-7.

Syntax 2-7—Syntax for function port, task, and block attributes

The syntax for port connection attributes is given in Syntax 2-8.

Syntax 2-8—Syntax for port connection attributes

function_port_list ::= (From Annex A - A.2.6)
{attribute_instance} input_declaration { , {attribute_instance } input_declaration}

task_item_declaration ::= (From Annex A - A.2.7)
block_item_declaration

| { attribute_instance } input_declaration ;
| { attribute_instance } output_declaration ;
| { attribute_instance } inout_declaration ;

task_port_item ::=

{ attribute_instance } input_declaration

| { attribute_instance } output_declaration

| { attribute_instance } inout_declaration

block_item_declaration ::= (From Annex A - A.2.8)
{ attribute_instance } reg [signed] [range] list_of_block_variable_identifiers ;

| { attribute_instance } integer list_of_block_variable_identifiers ;
| { attribute_instance } time list_of_block_variable_identifiers ;
| { attribute_instance } real list_of_block_real_identifiers ;
| { attribute_instance } realtime list_of_block_real_identifiers ;
| { attribute_instance } event_declaration

| { attribute_instance } local_parameter_declaration ;
| { attribute_instance } parameter_declaration ;

ordered_port_connection ::= (From Annex A - A.4.1)
{ attribute_instance } [expression]

named_port_connection ::=

{ attribute_instance } . port_identifier ([expression])

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 19
This is an unapproved IEEE Standards Draft, subject to change.

The syntax for udp attributes is given in Syntax 2-9.

Syntax 2-9—Syntax for udp attributes

udp_declaration ::= (From Annex A - A.5.1)
{ attribute_instance } primitive udp_identifier (udp_port_list) ;
udp_port_declaration { udp_port_declaration }

udp_body

endprimitive
| { attribute_instance } primitive udp_identifier (udp_declaration_port_list) ;

udp_body

endprimitive
udp_output_declaration ::= (From Annex A - A.5.2)

{ attribute_instance } output port_identifier

| { attribute_instance } output reg port_identifier [= constant_expression]

udp_input_declaration ::=

{ attribute_instance } input list_of_port_identifiers

udp_reg_declaration ::=

{ attribute_instance } reg variable_identifier

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

20 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

3. Data types

The set of Verilog HDL data types is designed to represent the data storage and transmission elements found

in digital hardware.

3.1 Value set

The Verilog HDL value set consists of four basic values:

0 - represents a logic zero, or a false condition
1 - represents a logic one, or a true condition
x - represents an unknown logic value
z - represents a high-impedance state

The values 0 and 1 are logical complements of one another.

When the z value is present at the input of a gate, or when it is encountered in an expression, the effect is

usually the same as an x value. Notable exceptions are the metal-oxide semiconductor (MOS) primitives,

which can pass the z value.

Almost all of the data types in the Verilog HDL store all four basic values. The exception is the event type

(see 9.7.3), which has no storage. All bits of vectors can be independently set to one of the four basic values.

The language includes strength information in addition to the basic value information for net variables. This

is described in detail in Clause 7.

3.2 Nets and variables

There are two main groups of data types: the variable data types and the net data types. These two groups

differ in the way that they are assigned and hold values. They also represent different hardware structures.

3.2.1 Net declarations

The net data types shall represent physical connections between structural entities, such as gates. A net shall
not store a value (except for the trireg net). Instead, its value shall be determined by the values of its drivers,
such as a continuous assignment or a gate. See Clause 6 and Clause 7 for definitions of these constructs. If
no driver is connected to a net, its value shall be high-impedance (z) unless the net is a trireg, in which case
it shall hold the previously driven value. It is illegal to redeclare a name already declared by a net, parameter,
or variable declaration (see 3.12).

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 21
This is an unapproved IEEE Standards Draft, subject to change.

The syntax for net declarations is given in Syntax 3-1.

Syntax 3-1—Syntax for net declaration

net_declaration ::= (From Annex A - A.2.1.3)
net_type [signed]

[delay3] list_of_net_identifiers ;
| net_type [drive_strength] [signed]

[delay3] list_of_net_decl_assignments ;
| net_type [vectored | scalared] [signed]

range [delay3] list_of_net_identifiers ;
| net_type [drive_strength] [vectored | scalared] [signed]

range [delay3] list_of_net_decl_assignments ;
| trireg [charge_strength] [signed]

[delay3] list_of_net_identifiers ;
| trireg [drive_strength] [signed]

[delay3] list_of_net_decl_assignments ;
| trireg [charge_strength] [vectored | scalared] [signed]

range [delay3] list_of_net_identifiers ;
| trireg [drive_strength] [vectored | scalared] [signed]

range [delay3] list_of_net_decl_assignments ;
net_type ::= (From Annex A - A.2.2.1)

supply0 | supply1
| tri | triand | trior | tri0 | tri1 | wire | wand | wor

drive_strength ::= (From Annex A - A.2.2.2)
(strength0 , strength1)

| (strength1 , strength0)
| (strength0 , highz1)
| (strength1 , highz0)
| (highz0 , strength1)
| (highz1 , strength0)

strength0 ::= supply0 | strong0 | pull0 | weak0
strength1 ::= supply1 | strong1 | pull1 | weak1
charge_strength ::= (small) | (medium) | (large)
delay3 ::= (From Annex A - A.2.2.3)

delay_value

| # (mintypmax_expression [, mintypmax_expression [, mintypmax_expression]])
delay2 ::=

delay_value

| # (mintypmax_expression [, mintypmax_expression])
delay_value ::=

unsigned_number

| real_number

| identifier

list_of_net_decl_assignments ::= (From Annex A - A.2.3)
net_decl_assignment { , net_decl_assignment }

list_of_net_identifiers ::=

net_identifier [dimension { dimension }]

{ , net_identifier [dimension { dimension }] }

net_decl_assignment ::= (From Annex A - A.2.4)
net_identifier = expression

dimension ::= (From Annex A -A.2.5)
[dimension_constant_expression : dimension_constant_expression]

range ::=

[msb_constant_expression : lsb_constant_expression]

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

22 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The first two forms of net declaration are described in this section. The third form, called net assignment, is

described in Clause 6.

3.2.2 Variable declarations

A variable is an abstraction of a data storage element. A variable shall store a value from one assignment to

the next. An assignment statement in a procedure acts as a trigger that changes the value in the data storage

element. The initialization value for reg, time, and integer data types shall be the unknown value, x. The

default initialization value for real and realtime variable datatypes shall be 0.0. If a variable declaration

assignment is used (see 6.2.1), the variable shall take this value as if the assignment occurred in a blocking

assignment in an initial construct. It is illegal to redeclare a name already declared by a net, parameter, or

variable declaration.

NOTE—In previous versions of the Verilog standard, the term register was used to encompass the reg, integer, time,

real and realtime types, but that term is no longer used as a Verilog data type.

The syntax for variable declarations is given in Syntax 3-2.

Syntax 3-2—Syntax for variable declaration

If a set of nets or variables share the same characteristics, they can be declared in the same declaration

statement.

integer_declaration ::= (From Annex A - A.2.1.3)
integer list_of_variable_identifiers ;

real_declaration ::=

real list_of_real_identifiers ;
realtime_declaration ::=

realtime list_of_real_identifiers ;
reg_declaration ::=

reg [signed] [range] list_of_variable_identifiers ;
time_declaration ::=

time list_of_variable_identifiers ;
real_type ::= (From Annex A - A.2.2.1)

real_identifier [= constant_expression]

 | real_identifier dimension { dimension }

variable_type ::=

variable_identifier [= constant_expression]

| variable_identifier dimension { dimension }

list_of_real_identifiers ::= (From Annex A - A.2.3)
real_type { , real_type }

list_of_variable_identifiers ::=

variable_type { , variable_type }

dimension ::= (From Annex A - A.2.5)
[dimension_constant_expression : dimension_constant_expression]

range ::=

[msb_constant_expression : lsb_constant_expression]

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 23
This is an unapproved IEEE Standards Draft, subject to change.

3.3 Vectors

A net or reg declaration without a range specification shall be considered 1 bit wide and is known as a

scalar. Multiple bit net and reg data types shall be declared by specifying a range, which is known as a

vector.

3.3.1 Specifying vectors

The range specification gives addresses to the individual bits in a multibit net or reg. The most significant bit
specified by the msb constant expression is the left-hand value in the range and the least significant bit spec-
ified by the lsb constant expression is the righthand value in the range.

Both msb constant expression and lsb constant expression shall be constant expressions. The msb and lsb
constant expressions can be any value—positive, negative, or zero. The lsb constant expression can be a
greater, equal, or lesser value than msb constant expression.

Vector nets and regs shall obey laws of arithmetic modulo 2 to the power n (2n), where n is the number of
bits in the vector. Vector nets and regs shall be treated as unsigned quantities, unless the net or reg is declared
to be signed or is connected to a port that is declared to be signed (see 12.2.3).

Examples:

wand w; // a scalar net of type “wand”

tri [15:0] busa; // a three-state 16-bit bus

trireg (small) storeit; // a charge storage node of strength small

reg a; // a scalar reg

reg[3:0] v; // a 4-bit vector reg made up of (from most to

// least significant) v[3], v[2], v[1], and v[0]

reg signed [3:0] signed_reg; // a 4-bit vector in range -8 to 7

reg [-1:4] b; // a 6-bit vector reg

wire w1, w2; // declares two wires

reg [4:0] x, y, z; // declares three 5-bit regs

NOTES:

1) Implementations may set a limit on the maximum length of a vector, but they will at least be 65536 (216) bits.

2) Implementations do not have to detect overflow of integer operations.

CAUTION

Variables can be assigned negative values, but only signed regs,
integer, real, and realtime variables shall retain the significance of the
sign. The unsigned reg and time variables shall treat the value
assigned to them as an unsigned value. Refer to 4.1.6 for a description
of how signed and unsigned variables are treated by certain Verilog
operators.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

24 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

3.3.2 Vector net accessibility

Vectored and scalared shall be optional advisory keywords to be used in vector net or reg declaration. If

these keywords are implemented, certain operations on vectors may be restricted. If the keyword vectored is

used, bit-selects and part-selects and strength specifications may not be permitted, and the PLI may consider

the object unexpanded. If the keyword scalared is used, bit-selects and part-selects of the object shall be

permitted, and the PLI shall consider the object expanded.

Examples:

tri1 scalared [63:0] bus64; //a bus that will be expanded
tri vectored [31:0] data; //a bus that may or may not be expanded

3.4 Strengths

There are two types of strengths that can be specified in a net declaration. They are as follows:

charge strength shall only be used when declaring a net of type trireg

drive strength shall only be used when placing a continuous assignment on a net in the same statement

that declares the net

Gate declarations can also specify a drive strength. See Clause 7 for more information on gates and for

information on strengths.

3.4.1 Charge strength

The charge strength specification shall be used only with trireg nets. A trireg net shall be used to model

charge storage; charge strength shall specify the relative size of the capacitance indicated by one of the fol-

lowing keywords:

— small
— medium
— large

The default charge strength of a trireg net shall be medium.

A trireg net can model a charge storage node whose charge decays over time. The simulation time of a

charge decay shall be specified in the delay specification for the trireg net (see 7.14.2).

Examples:

trireg a; // a trireg net of charge strength medium
trireg (large) #(0,0,50) cap1 ; // a trireg net of charge strength large

//with charge decay time 50 time units
trireg (small)signed [3:0] cap2 ; // a signed 4-bit trireg vector of

 // charge strength small

3.4.2 Drive strength

The drive strength specification allows a continuous assignment to be placed on a net in the same statement

that declares that net. See Clause 6 for more details. Net strength properties are described in detail in Clause
7.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 25
This is an unapproved IEEE Standards Draft, subject to change.

3.5 Implicit declarations

The syntax shown in 3.2 shall be used to declare nets and variables explicitly. In the absence of an explicit

declaration, an implicit net of default net type shall be assumed in the following circumstances:

— If an identifier is used in a port expression declaration, then an implicit net of default net type shall be
assumed, with the vector width of the port expression declaration. See 12.3.3 for a discussion of port
expression declarations.

— If an identifier is used in the terminal list of a primitive instance or a module instance, and that iden-
tifier has not been explicitly declared previously in one of the declaration statements of the instanti-
ating module, then an implicit scalar net of default net type shall be assumed.

— If an identifier appears on the left-hand side of a continuous assignment statement, and that identifier
has not been declared previously, then an implicit scalar net of default net type shall be assumed. See
6.1.2 for a discussion of continuous assignment statements.

See 19.2 for a discussion of control of the type for implicitly declared nets with the `default_nettype com-
piler directive.

3.6 Net initialization

The default initialization value for a net shall be the value z. Nets with drivers shall assume the output value
of their drivers. The trireg net is an exception. The trireg net shall default to the value x, with the strength
specified in the net declaration (small, medium, or large).

3.7 Net types

There are several distinct types of nets, as shown in Table 2.

3.7.1 Wire and tri nets

The wire and tri nets connect elements. The net types wire and tri shall be identical in their syntax and func-
tions; two names are provided so that the name of a net can indicate the purpose of the net in that model. A
wire net can be used for nets that are driven by a single gate or continuous assignment. The tri net type can
be used where multiple drivers drive a net.

Logical conflicts from multiple sources of the same strength on a wire or a tri net result in x (unknown)
values.

Table 3 is a truth table for resolving multiple drivers on wire and tri nets. Note that it assumes equal
strengths for both drivers. Please refer to 7.9 for a discussion of logic strength modeling.

Table 2—Net types

wire tri tri0 supply0
wand triand tri1 supply1
wor trior trireg

Table 3—Truth table for wire and tri nets

wire/tri 0 1 x z

0 0 x x 0

1 x 1 x 1

x x x x x

z 0 1 x z

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

26 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

3.7.2 Wired nets

Wired nets are of type wor, wand, trior, and triand, and are used to model wired logic configurations. Wired

nets use different truth tables to resolve the conflicts that result when multiple drivers drive the same net. The

wor and trior nets shall create wired or configurations, such that when any of the drivers is 1, the resulting

value of the net is 1. The wand and triand nets shall create wired and configurations, such that if any driver

is 0, the value of the net is 0.

The net types wor and trior shall be identical in their syntax and functionality. The net types wand and triand

shall be identical in their syntax and functionality. Table 4 and Table 5 give the truth tables for wired nets.

Note that they assume equal strengths for both drivers. See 7.9 for a discussion of logic strength modeling.

3.7.3 Trireg net

The trireg net stores a value and is used to model charge storage nodes. A trireg net can be in one of two

states:

driven state When at least one driver of a trireg net has a value of 1, 0, or x, the resolved value

propagates into the trireg net and is the driven value of the trireg net.

capacitive state When all the drivers of a trireg net are at the high-impedance value (z), the trireg net

retains its last driven value; the high-impedance value does not propagate from the driver

to the trireg.

The strength of the value on the trireg net in the capacitive state can be small, medium, or large, depending

on the size specified in the declaration of the trireg net. The strength of a trireg net in the driven state can be

supply, strong, pull, or weak, depending on the strength of the driver.

Table 4—Truth table for wand and triand nets

wand/
triand 0 1 x z

0 0 0 0 0

1 0 1 x 1

x 0 x x x

z 0 1 x z

Table 5—Truth table for wor and trior nets

wor/
trior 0 1 x z

0 0 1 x 0

1 1 1 1 1

x x 1 x x

z 0 1 x z

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 27
This is an unapproved IEEE Standards Draft, subject to change.

Examples:

Figure 1 shows a schematic that includes a trireg net whose size is medium, its driver, and the simulation

results.

Figure 1—Simulation values of a trireg and its driver

a) At simulation time 0, wire a and wire b have a value of 1. A value of 1 with a strong strength

propagates from the and gate through the nmos switches connected to each other by wire c into

trireg net d.

b) At simulation time 10, wire a changes value to 0, disconnecting wire c from the and gate. When

wire c is no longer connected to the and gate, the value of wire c changes to HiZ. The value of wire

b remains 1 so wire c remains connected to trireg net d through the nmos2 switch. The HiZ value

does not propagate from wire c into trireg net d. Instead, trireg net d enters the capacitive state,

storing its last driven value of 1. It stores the 1 with a medium strength.

3.7.3.1 Capacitive networks

A capacitive network is a connection between two or more trireg nets. In a capacitive network whose trireg

nets are in the capacitive state, logic and strength values can propagate between trireg nets.

Examples:

Figure 2 shows a capacitive network in which the logic value of some trireg nets change the logic value of

other trireg nets of equal or smaller size.

nmos1 nmos2
wire c

trireg d

wire a wire b

simulation time wire a wire b wire c trireg d

1 1 strong 1 strong 1

0 1 HiZ medium 110

0

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

28 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Figure 2—Simulation results of a capacitive network

In Figure 2, the capacitive strength of trireg_la net is large, trireg_me1 and trireg_me2 are

medium, and trireg_sm is small. Simulation reports the following sequence of events:

a) At simulation time 0, wire a and wire b have a value of 1. The wire c drives a value of 1 into

trireg_la and trireg_sm; wire d drives a value of 1 into trireg_me1 and trireg_me2.

b) At simulation time 10, the value of wire b changes to 0, disconnecting trireg_sm and

trireg_me2 from their drivers. These trireg nets enter the capacitive state and store the value 1,

their last driven value.

c) At simulation time 20, wire c drives a value of 0 into trireg_la.

d) At simulation time 30, wire d drives a value of 0 into trireg_me1.

40 0 0 0 0 0 1 0 1

trireg_smtrireg_la

trireg_me2trireg_me1

wire a

wire b

wire c

wire d

simulation
time wire a wire b wire c wire d trireg_la trireg_sm trireg_me1 trireg_me2

0 1 1 1 1 1 1 1 1

10 0 1 111 1 11

20 1 0 1 110 0 1

30 1 0 0 0 0 1 0 1

nmos_1

nmos_2 tranif1_2

50 0 1 0 0 0 0 x x

tranif1_1

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 29
This is an unapproved IEEE Standards Draft, subject to change.

e) At simulation time 40, the value of wire a changes to 0, disconnecting trireg_la and

trireg_me1 from their drivers. These trireg nets enter the capacitive state and store the value 0.

f) At simulation time 50, the value of wire b changes to 1.

This change of value in wire b connects trireg_sm to trireg_la; these trireg nets have

different sizes and stored different values. This connection causes the smaller trireg net to store the

value of the larger trireg net, and trireg_sm now stores a value of 0.

This change of value in wire b also connects trireg_me1 to trireg_me2; these trireg nets have

the same size and stored different values. The connection causes both trireg_me1 and

trireg_me2 to change value to x.

In a capacitive network, charge strengths propagate from a larger trireg net to a smaller trireg net. Figure 3
shows a capacitive network and its simulation results.

Figure 3—Simulation results of charge sharing

In Figure 3, the capacitive strength of trireg_la is large and the capacitive strength of trireg_sm is

small. Simulation reports the following results:

a) At simulation time 0, the values of wire a, wire b, and wire c are 1, and wire a drives a strong 1
into trireg_la and trireg_sm.

tranif1_2

trireg_sm

simulation
time

wire a

wire b wire c

tranif1_1

wire a wire b trireg_la trireg_sm

0 strong 1

wire c

strong 1 strong 111

0 1 large 1 large 1strong 110

20 00 small 1large 1strong 1

30 1 large 1large 1strong 1 0

40 00 small 1large 1strong 1

trireg_la

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

30 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

b) At simulation time 10, the value of wire b changes to 0, disconnecting trireg_la and

trireg_sm from wire a. The trireg_la and trireg_sm nets enter the capacitive state. Both

trireg nets share the large charge of trireg_la because they remain connected through

tranif1_2.

c) At simulation time 20, the value of wire c changes to 0, disconnecting trireg_sm from

trireg_la. The trireg_sm no longer shares large charge of trireg_la and now stores a

small charge.

d) At simulation time 30, the value of wire c changes to 1, connecting the two trireg nets. These trireg

nets now share the same charge.

e) At simulation time 40, the value of wire c changes again to 0, disconnecting trireg_sm from

trireg_la. Once again, trireg_sm no longer shares the large charge of trireg_la and now

stores a small charge.

3.7.3.2 Ideal capacitive state and charge decay

A trireg net can retain its value indefinitely or its charge can decay over time. The simulation time of charge

decay is specified in the delay specification of the trireg net. See 7.14.2 for charge decay explanation.

3.7.4 Tri0 and tri1 nets

The tri0 and tri1 nets model nets with resistive pulldown and resistive pullup devices on them. When no

driver drives a tri0 net, its value is 0. When no driver drives a tri1 net, its value is 1. The strength of this

value is pull. See Clause 7 for a description of strength modeling.

A tri0 net is equivalent to a wire net with a continuous 0 value of pull strength driving it. A tri1 net is equiv-

alent to a wire net with a continuous 1 value of pull strength driving it.

A truth table for tri0 is shown in Table 6. A truth table for tri1 is shown in Table 7.

Table 6—Truth table for tri0 net

tri0 0 1 x z

0 0 x x 0

1 x 1 x 1

x x x x x

z 0 1 x 0

Table 7—Truth table for tri1 net

tri1 0 1 x z

0 0 x x 0

1 x 1 x 1

x x x x x

z 0 1 x 1

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 31
This is an unapproved IEEE Standards Draft, subject to change.

3.7.5 Supply nets

The supply0 and supply1 nets may be used to model the power supplies in a circuit. These nets shall have

supply strengths.

3.8 regs

Assignments to a reg are made by procedural assignments (see 6.2 and 9.2). Since the reg holds a value

between assignments, it can be used to model hardware registers. Edge-sensitive (i.e., flip-flops) and level

sensitive (i.e., RS and transparent latches) storage elements can be modeled. A reg needs not represent a

hardware storage element since it can also be used to represent combinatorial logic.

3.9 Integers, reals, times, and realtimes

In addition to modeling hardware, there are other uses for variables in an HDL model. Although reg vari-

ables can be used for general purposes such as counting the number of times a particular net changes value,

the integer and time variable data types are provided for convenience and to make the description more self-

documenting.

The syntax for declaring integer, time, real, and realtime variables is given in Syntax 3-3 (from Syntax
3-2).

Syntax 3-3—Syntax for integer, time, real, and realtime declarations

The syntax for a list of reg variables is defined in 3.2.2.

An integer is a general-purpose variable used for manipulating quantities that are not regarded as hardware

registers.

integer_declaration ::= (From Annex A - A.2.1.3)
integer list_of_variable_identifiers ;

real_declaration ::=

real list_of_real_identifiers ;
realtime_declaration ::=

realtime list_of_real_identifiers ;
time_declaration ::=

time list_of_variable_identifiers ;
real_type ::= (From Annex A - A.2.2.1)

real_identifier [= constant_expression]

 | real_identifier dimension { dimension }

variable_type ::=

variable_identifier [= constant_expression]

| variable_identifier dimension { dimension }

list_of_real_identifiers ::= (From Annex A- A.2.3)
real_type { , real_type }

list_of_variable_identifiers ::=

variable_type { , variable_type }

dimension ::= (From Annex A - A.2.5)
[dimension_constant_expression : dimension_constant_expression]

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

32 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

A time variable is used for storing and manipulating simulation time quantities in situations where timing

checks are required and for diagnostics and debugging purposes. This data type is typically used in conjunc-

tion with the $time system function (see Clause 17).

The integer and time variables shall be assigned values in the same manner as reg. Procedural assignments

shall be used to trigger their value changes.

The time variables shall behave the same as a reg of at least 64 bits, with the least significant bit being bit 0.

They shall be unsigned quantities, and unsigned arithmetic shall be performed on them. In contrast, integer

variables shall be treated as signed regs with the least significant bit being zero. Arithmetic operations per-

formed on integer variables shall produce 2’s complement results.

NOTE—Implementations may limit the maximum size of an integer variable, but they shall at least be 32 bits.

The Verilog HDL supports real number constants and real variable data types in addition to integer and time

variable data types. Except for the following restrictions, variables declared as real can be used in the same

places that integer and time variables are used:

— Not all Verilog HDL operators can be used with real number values. See Table 10 and Table 11 for
lists of valid and invalid operators for real numbers and real variables.

— Real variables shall not use range in the declaration.
— Real variables shall default to an initial value of zero.

The realtime declarations shall be treated synonymously with real declarations and can be used interchange-

ably.

Examples:

integer a; // integer value
time last_chng; // time value
real float ; // a variable to store a real value
realtime rtime ; // a variable to store time as a real value

3.9.1 Operators and real numbers

The result of using logical or relational operators on real numbers and real variables is a single-bit scalar

value. Not all Verilog HDL operators can be used with expressions involving real numbers and real vari-

ables. Table 10 lists the valid operators for use with real numbers and real variables. Real number constants

and real variables are also prohibited in the following cases:

— Edge descriptors (posedge, negedge) applied to real variables
— Bit-select or part-select references of variables declared as real
— Real number index expressions of bit-select or part-select references of vectors

3.9.2 Conversion

Real numbers shall be converted to integers by rounding the real number to the nearest integer, rather than

by truncating it. Implicit conversion shall take place when a real number is assigned to an integer. If the frac-

tional part of the real number is exactly 0.5, it shall be rounded away from zero.

Implicit conversion shall take place when an expression is assigned to a real. Individual bits that are x or z in

the net or the variable shall be treated as zero upon conversion.

See 17.8 for a discussion of system tasks that perform explicit conversion.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 33
This is an unapproved IEEE Standards Draft, subject to change.

3.10 Arrays

An array declaration for a net or a variable declares an element type which is either scalar or vector (see 3.3).

For example:

NOTE—Array size does not affect the element size..

Arrays can be used to group elements of the declared element type into multi-dimensional objects. Arrays

shall be declared by specifying the element address range(s) after the declared identifier. Each dimension

shall be represented by an address range. See 3.2.1 and 3.2.2 for net and variable declarations. The expres-

sion(s) that specify the indices of the array shall be constant expressions. The value of the constant expres-

sion can be a positive integer, a negative integer, or zero.

One declaration statement can be used for declaring both arrays and elements of the declared data type. This

ability makes it convenient to declare both arrays and elements that match the element vector width in the

same declaration statement.

An element can be assigned a value in a single assignment, but complete or partial array dimensions cannot.

Nor can complete or partial array dimensions be used to provide a value to an expression. To assign a value

to an element of an array, an index for every dimension shall be specified. The index can be an expression.

This option provides a mechanism to reference different array elements depending on the value of other vari-

ables and nets in the circuit. For example, a program counter reg can be used to index into a RAM.

Implementations may limit the maximum size of an array, but they shall at least be 16777216 (224).

3.10.1 Net arrays

Arrays of nets can be used to connect ports of generated instances. Each element of the array can be used in

the same fashion as a scalar or vector net.

3.10.2 reg and variable arrays

Arrays for all variables types (reg, integer, time, real, realtime) shall be possible.

3.10.3 Memories

A one-dimensional array with elements of type reg is also called a memory. These memories can be used to

model read-only memories (ROMs), random access memories (RAMs), and reg files. Each reg in the array is

known as an element or word and is addressed by a single array index.

An n-bit reg can be assigned a value in a single assignment, but a complete memory cannot. To assign a

value to a memory word, an index shall be specified. The index can be an expression. This option provides a

mechanism to reference different memory words, depending on the value of other variables and nets in the

circuit. For example, a program counter reg could be used to index into a RAM.

Declaration Element Type

reg x[11:0]; scalar reg

wire [0:7] y[5:0]; eight-bit-wide vector wire indexed from 0 to 7

reg [31:0] x [127:0]; thirty-two-bit-wide reg

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

34 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

3.10.3.1 Array examples

3.10.3.1.1 Array declarations

3.10.3.1.2 Assignment to array elements

The assignment statements in this section assume the presence of the declarations in 3.10.3.1.1.

3.10.3.1.3 Memory differences

A memory of n 1-bit regs is different from an n-bit vector reg

3.11 Parameters

Verilog HDL parameters do not belong to either the variable or the net group. Parameters are not variables,

they are constants. There are two types of parameters: module parameters and specify parameters. It is ille-

gal to redeclare a name already declared by a net, parameter or variable declaration.

Both types of parameters accept a range specification. By default, parameters and specparams shall be as

wide as necessary to contain the value of the constant, except when a range specification is present.

reg [7:0] mema[0:255]; // declares a memory mema of 256 8-bit
// registers. The indices are 0 to 255

reg arrayb[7:0][0:255]; // declare a two-dimensional array of
// one bit registers

wire w_array[7:0][5:0]; // declare array of wires
integer inta[1:64]; // an array of 64 integer values
time chng_hist[1:1000] // an array of 1000 time values
integer t_index;

mema = 0; // Illegal syntax- Attempt to write to entire array
arrayb[1] = 0; // Illegal Syntax - Attempt to write to elements
 // [1][0]..[1][255]
arrayb[1][12:31] = 0; // Illegal Syntax - Attempt to write to
 // elements [1][12]..[1][31]
mema[1] = 0; //Assigns 0 to the second element of mema
arrayb[1][0] = 0; // Assigns 0 to the bit referenced by indices
 // [1][0]
inta[4] = 33559; // Assign decimal number to integer in array
chng_hist[t_index] = $time; // Assign current simulation time to
 // element addressed by integer index

reg [1:n] rega; // An n-bit register is not the same
reg mema [1:n]; // as a memory of n 1-bit registers

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 35
This is an unapproved IEEE Standards Draft, subject to change.

3.11.1 Module parameters

The syntax for module parameter declarations is given in Syntax 3-4.

Syntax 3-4—Syntax for module parameter declaration

The list_of_param_assignments shall be a comma-separated list of assignments, where the right hand side of

the assignment shall be a constant expression; that is, an expression containing only constant numbers and

previously defined parameters (See Clause 4).

The list_of_param_assignments can appear in a module as a set of module_items or in the module declara-

tion in the module_parameter_port_list (See 12.1). If any param_assignments appear in a

module_parameter_port_list, then any param_assignments that appear in the module become local parame-

ters and shall not be overridden by any method.

Parameters represent constants; hence, it is illegal to modify their value at runtime. However, module param-

eters can be modified at compilation time to have values that are different from those specified in the decla-

ration assignment. This allows customization of module instances. A parameter can be modified with the

defparam statement or in the module instance statement. Typical uses of parameters are to specify delays

and width of variables. See Clause 12 for details on parameter value assignment.

A module parameter can have a type specification and a range specification. The type and range of module

parameters shall be in accordance with the following rules:

— A parameter declaration with no type or range specification shall default to the type and range of the
final value assigned to the parameter, after any value overrides have been applied.

— A parameter with a range specification, but with no type specification, shall be the range of the
parameter declaration and shall be unsigned. The sign and range shall not be affected by value over-
rides.

— A parameter with a type specification, but with no range specification, shall be of the type specified.
A signed parameter shall default to the range of the final value assigned to the parameter, after any
value overrides have been applied.

local_parameter_declaration ::= (From Annex A - A.2.1.1)
localparam [signed] [range] list_of_param_assignments

| localparam integer list_of_param_assignments

| localparam real list_of_param_assignments

| localparam realtime list_of_param_assignments

| localparam time list_of_param_assignments

parameter_declaration ::=

parameter [signed] [range] list_of_param_assignments

| parameter integer list_of_param_assignments

| parameter real list_of_param_assignments

| parameter realtime list_of_param_assignments

| parameter time list_of_param_assignments

list_of_param_assignments ::= (From Annex A - A.2.3)
param_assignment { , param_assignment }

param_assignment ::= (From Annex A - A.2.4)
parameter_identifier = constant_expression

range ::= (From Annex A - A.2.5)
[msb_constant_expression : lsb_constant_expression]

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

36 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

— A parameter with a signed type specification and with a range specification shall be signed, and shall
be the range of its declaration. The sign and range shall not be affected by value overrides.

— A parameter with no range specification, and with either a signed type specification or no type speci-
fication, shall have an implied range with an lsb equal to 0 and an msb equal to one less than the size
of the final value assigned to the parameter.

— A parameter with no range specification, and with either a signed type specification or no type speci-
fication, and for which the final value assigned to it is unsized, shall have an implied range with an
lsb equal to 0 and an msb equal to an implementation-dependent value of at least 31.

The conversion rules between real and integer values described in 3.9.2 apply to parameters as well.

Examples:

parameter msb = 7; // defines msb as a constant value 7
parameter e = 25, f = 9; // defines two constant numbers
parameter r = 5.7; // declares r as a real parameter
parameter byte_size = 8,

byte_mask = byte_size - 1;
parameter average_delay = (r + f) / 2;

parameter signed [3:0] mux_selector = 0;
parameter real r1 = 3.5e17;
parameter p1 = 13’h7e;
parameter [31:0] dec_const = 1’b1; // value converted to 32 bits
parameter newconst = 3’h4; // implied range of [2:0]
parameter newconst = 4; // implied range of at least [31:0]

3.11.2 Local parameters - localparam

Verilog HDL localparam - local parameter(s) are identical to parameters except that they can not directly be

modified with the defparam statement or by the ordered or named parameter value assignment. Local

parameters can be assigned to a constant expression containing a parameter which can be modified with the

defparam statement or by the ordered or named parameter value assignment. See 12.1.3 for details.

The syntax for local parameter declarations is given in Syntax 3-4.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 37
This is an unapproved IEEE Standards Draft, subject to change.

3.11.3 Specify parameters

The syntax for declaring specify parameters is shown in Syntax 3-5.

Syntax 3-5—Syntax of the specparam declaration

The keyword specparam declares a special type of parameter which is intended only for providing timing

and delay values, but can appear in any expression that is not assigned to a parameter and is not part of the

range specification of a declaration. Originally permitted only in specify blocks (see Clause 14), with this
revision specify parameters (also called specparams) are now permitted both within the specify block and in

the main module body.

A specify parameter declared outside a specify block shall be declared before it is referenced. The value

assigned to a specify parameter can be any constant expression. A specify parameter can be used as part of a

constant expression for a subsequent specify parameter declaration. Unlike a module parameter, a specify

parameter cannot be modified from within the language, but it may be modified through SDF annotation (see

Clause 16).

The specify parameters and module parameters shall not be interchangeable. In addition, module parameters

shall not be assigned a constant expression that includes any specify parameters. Table 8 summarizes the

differences between the two types of parameter declarations.

specparam_declaration ::= (From Annex A - A.2.1.1)
specparam [range] list_of_specparam_assignments ;

list_of_specparam_assignments ::= (From Annex A- A.2.3)
specparam_assignment { , specparam_assignment }

specparam_assignment ::= (From Annex A - A.2.4)
specparam_identifier = constant_mintypmax_expression

| pulse_control_specparam

pulse_control_specparam ::=

PATHPULSE$ = (reject_limit_value [, error_limit_value]) ;
| PATHPULSE$specify_input_terminal_descriptor$specify_output_terminal_descriptor

= (reject_limit_value [, error_limit_value]) ;
error_limit_value ::=

limit_value

reject_limit_value ::=

limit_value

limit_value ::=

constant_mintypmax_expression

range ::= (From Annex A - A.2.5)
[msb_constant_expression : lsb_constant_expression]

Table 8—Differences between specparams and parameters

Specparams
(specify parameter)

Parameters
(module parameter)

Use keyword specparam Use keyword parameter
Shall be declared inside a module or specify block Shall be declared outside specify blocks

May only be used inside a module or specify block May not be used inside specify blocks

May be assigned specparams and parameters May not be assigned specparams

Use SDF annotation to override values Use defparam or instance declaration

parameter value passing to override values

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

38 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

A specify parameter can have a range specification. The range of specify parameters shall be in accordance

with the following rules:

— A specparam declaration with no range specification shall default to the range of the final value
assigned to the parameter, after any value overrides have been applied.

— A specparam with a range specification shall be the range of the parameter declaration. The range
shall not be affected by value overrides.

Examples:

specify
specparam tRise_clk_q = 150, tFall_clk_q = 200;
specparam tRise_control = 40, tFall_control = 50;

endspecify

The lines between the keywords specify and endspecify declare four specify parameters. The first line

declares specify parameters called tRise_clk_q and tFall_clk_q with values 150 and 200 respec-

tively; the second line declares tRise_control and tFall_control specify parameters with values

40 and 50 respectively.

Examples:

module RAM16GEN (DOUT, DIN, ADR, WE, CE)
specparam dhold = 1.0;
specparam ddly = 1.0;
parameter width = 1;
parameter regsize = dhold + 1.0; // Illegal - can’t assign

// specparams to parameters
endmodule

3.12 Name spaces

In Verilog HDL, there are seven name spaces; two are global and five are local. The global name spaces are

definitions and text macros. The definitions name space unifies all the module (see 12.1), macromodule
(see 12.1), and primitive (see 8.1) definitions. Once a name is used to define a module, macromodule, or

primitive, the name shall not be used again to declare another module, macromodule, or primitive.

The text macro name space is global. Since text macro names are introduced and used with a leading ` char-

acter, they remain unambiguous with any other name space (see 19.3). The text macro names are defined in

the linear order of appearance in the set of input files that make up the description of the design unit. Subse-

quent definitions of the same name override the previous definitions for the balance of the input files.

There are five local name spaces: block, module, port, specify block, and attribute. Once a name is defined

within one of the five name spaces, it shall not be defined again in that space (with the same or a different

type).

The block name space is introduced by the named block (see 9.8), function (see 10.3), and task (see 10.2)

constructs. It unifies the definitions of the named blocks, functions, tasks, parameters, named events and the

variable type of declaration (see 3.2.2). The variable type of declaration includes the reg, integer, time,

real, and realtime declarations.

The module name space is introduced by the module, macromodule, and primitive constructs. It unifies

the definition of functions, tasks, named blocks, instance names, parameters, named events, net type of dec-

laration, and variable type of declaration. The net type of declaration includes wire, wor, wand, tri, trior,

triand, tri0, tri1, trireg, supply0, and supply1 (see 3.7).

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 39
This is an unapproved IEEE Standards Draft, subject to change.

The port name space is introduced by the module, macromodule, primitive, function, and task constructs.

It provides a means of structurally defining connections between two objects that are in two different name

spaces. The connection can be unidirectional (either input or output) or bidirectional (inout). The port

name space overlaps the module and the block name spaces. Essentially, the port name space specifies the

type of connection between names in different name spaces. The port type of declarations include input,
output, and inout (see 12.3). A port name introduced in the port name space may be reintroduced in the

module name space by declaring a variable or a wire with the same name as the port name.

The specify block name space is introduced by the specify construct (see 14.2).

The attribute name space is enclosed by the (* and *) constructs attached to a language element (see 2.8).

An attribute name can be defined and used only in the attribute name space. Any other type of name cannot

be defined in this name space.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

40 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

4. Expressions

This clause describes the operators and operands available in the Verilog HDL and how to use them to form

expressions.

An expression is a construct that combines operands with operators to produce a result that is a function of

the values of the operands and the semantic meaning of the operator. Any legal operand, such as a net bit-

select, without any operator is considered an expression. Wherever a value is needed in a Verilog HDL state-

ment, an expression can be used.

Some statement constructs require an expression to be a constant expression. The operands of a constant

expression consist of constant numbers, parameter names, constant bit-selects of parameters, constant part-

selects of parameters, and constant function calls (see 10.3.5) only, but they can use any of the operators

defined in Table 9.

A scalar expression is an expression that evaluates to a scalar (single-bit) result. If the expression evaluates

to a vector (multibit) result, then the least significant bit of the result is used as the scalar result.

The data types reg, integer, time, real, and realtime are all variable data types. Descriptions pertaining to

variable usage apply to all of these data types.

An operand can be one of the following:

— Constant number (including real)
— Net
— Variables of type reg, integer, time, real, and realtime
— Net bit-select
— Bit-select of type reg, integer, and time
— Net part-select
— Part-select of type reg, integer, and time
— Array element
— A call to a user-defined function or system-defined function that returns any of the above

4.1 Operators

The symbols for the Verilog HDL operators are similar to those in the C programming language. Table 9
lists these operators.

Table 9—Operators in the Verilog HDL

{} {{}} Concatenation, replication

+ - * / ** Arithmetic

% Modulus

> >= < <= Relational

! Logical negation

&& Logical and

|| Logical or

== Logical equality

!= Logical inequality

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 41
This is an unapproved IEEE Standards Draft, subject to change.

4.1.1 Operators with real operands

The operators shown in Table 10 shall be legal when applied to real operands. All other operators shall be

considered illegal when used with real operands.

The result of using logical or relational operators on real numbers is a single-bit scalar value.

=== Case equality

!== Case inequality

~ Bit-wise negation

& Bit-wise and

| Bit-wise inclusive or

^ Bit-wise exclusive or

^~ or ~^ Bit-wise equivalence

& Reduction and

~& Reduction nand

| Reduction or

~| Reduction nor

^ Reduction xor

~^ or ^~ Reduction xnor

<< Logical left shift

>> Logical right shift

<<< Arithmetic left shift

>>> Arithmetic right shift

? : Conditional

or Event or

Table 10—Legal operators for use in real expressions

unary + unary - Unary operators

+ - * / ** Arithmetic

> >= < <= Relational

! && || Logical

== != Logical equality

?: Conditional

or Event or

Table 9—Operators in the Verilog HDL (continued)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

42 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Table 11 lists operators that shall not be used to operate on real numbers.

See 3.9.1 for more information on use of real numbers.

4.1.2 Binary operator precedence

The precedence order of binary operators and the conditional operator (?:) is shown in Table 12. The Ver-

ilog HDL has two equality operators. They are discussed in 4.1.8.

Operators shown on the same row in Table 12 shall have the same precedence. Rows are arranged in order

of decreasing precedence for the operators. For example, *, /, and % all have the same precedence, which is

higher than that of the binary + and - operators.

All operators shall associate left to right with the exception of the conditional operator, which shall associate

right to left. Associativity refers to the order in which the operators having the same precedence are evalu-

ated. Thus, in the following example B is added to A and then C is subtracted from the result of A+B.

A + B - C

Table 11—Operators not allowed for real expressions

{} {{}} Concatenate, replicate

% Modulus

=== !== Case equality

~ & |

^ ^~ ~^

Bit-wise

^ ^~ ~^

& ~& | ~|

Reduction

<< >> <<< >>> Shift

Table 12—Precedence rules for operators

+ - ! ~ (unary) Highest precedence

**

* / %

+ - (binary)

 << >> <<< >>>

 < <= > >=

== != === !==

& ~&

^ ^~ ~^

| ~|

&&

||

?: (conditional operator) Lowest precedence

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 43
This is an unapproved IEEE Standards Draft, subject to change.

When operators differ in precedence, the operators with higher precedence shall associate first. In the fol-

lowing example, B is divided by C (division has higher precedence than addition) and then the result is added

to A.

A + B / C

Parentheses can be used to change the operator precedence.

(A + B) / C // not the same as A + B / C

4.1.3 Using integer numbers in expressions

Integer numbers can be used as operands in expressions. An integer number can be expressed as

— An unsized, unbased integer (e.g., 12)
— An unsized, based integer (e.g., ’d12, ’sd12)
— A sized, based integer (e.g., 16’d12, 16’sd12)

A negative value for an integer with no base specifier shall be interpreted differently than for an integer with

a base specifier. An integer with no base specifier shall be interpreted as a signed value in 2’s complement

form. An integer with an unsigned base specifier shall be interpreted as an unsigned value.

Example:

This example shows four ways to write the expression “minus 12 divided by 3.” Note that -12 and -’d12
both evaluate to the same 2’s complement bit pattern, but, in an expression, the -’d12 loses its identity as a

signed negative number.

4.1.4 Expression evaluation order

The operators shall follow the associativity rules while evaluating an expression as described in 4.1.2. How-

ever, if the final result of an expression can be determined early, the entire expression need not be evaluated.

This is called short-circuiting an expression evaluation.

Example:

reg regA, regB, regC, result ;
result = regA & (regB | regC) ;

If regA is known to be zero, the result of the expression can be determined as zero without evaluating the

sub-expression regB | regC.

integer IntA;
IntA = -12 / 3; // The result is -4.

IntA = -’d 12 / 3; // The result is 1431655761.

IntA = -’sd 12 / 3; // The result is -4.

IntA = -4'sd 12 / 3; // -4'sd12 is the negative of the 4-bit
// quantity 1100, which is -4. -(-4) = 4.
// The result is 1.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

44 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

4.1.5 Arithmetic operators

The binary arithmetic operators are given in Table 13.

The integer division shall truncate any fractional part toward zero. For the division or modulus operators, if

the second operand is a zero, then the entire result value shall be x. The modulus operator, for example y %
z, gives the remainder when the first operand is divided by the second, and thus is zero when z divides y

exactly. The result of a modulus operation shall take the sign of the first operand.

The result of the power operator shall be real if either operand is a real, integer, or signed. If both operands

are unsigned then the result shall be unsigned. The result of the power operator is unspecified if the first

operand is zero and the second operand is non-positive, or if the first operand is negative and the second

operand is not an integral value.

The unary arithmetic operators shall take precedence over the binary operators. The unary operators are

given in Table 14.

For the arithmetic operators, if any operand bit value is the unknown value x or the high-impedance value z,

then the entire result value shall be x.

Example:

Table 15 gives examples of modulus operations.

Table 13—Arithmetic operators defined

a + b a plus b

a - b a minus b

a * b a multiplied by b

(or a times b)

a / b a divided by b

a % b a modulo b

a ** b a to the power of b

Table 14—Unary operators defined

+m Unary plus m (same as m)

-m Unary minus m

Table 15—Examples of modulus operators

Modulus expression Result Comments

10 % 3 1 10/3 yields a remainder of 1

11 % 3 2 11/3 yields a remainder of 2

12 % 3 0 12/3 yields no remainder

-10 % 3 -1 The result takes the sign of the first operand

11 % -3 2 The result takes the sign of the first operand

-4’d12 % 3 1 -4’d12 is seen as a large, positive number that leaves a remain-

der of 1 when divided by 3

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 45
This is an unapproved IEEE Standards Draft, subject to change.

4.1.6 Arithmetic expressions with regs and integers

A reg data type shall be treated as an unsigned value unless explicitly declared to be signed. An integer vari-

able shall be treated as signed. Signed values shall use a 2's complement representation. Conversions

between signed and unsigned values shall keep the same bit representation; only the interpretation changes.

Table 16 lists how arithmetic operators interpret each data type.

Example:

The following example shows various ways to divide “minus twelve by three”— using integer and reg data

types in expressions.

Table 16—Data type interpretation by arithmetic operators

Data type Interpretation

unsigned net Unsigned

signed net Signed, 2’s complement

unsigned reg Unsigned

signed reg Signed, 2’s complement

integer Signed, 2’s complement

time Unsigned

real, realtime Signed, floating point

integer intA;
reg [15:0] regA;
reg signed [15:0] regS;

intA = -4’d12;
regA = intA / 3; // expression result is -4,

// intA is an integer data type, regA is 65532

regA = -4’d12; // regA is 65524
intA = regA / 3; // expression result is 21841,

// regA is a reg data type

intA = -4’d12 / 3;// expression result is 1431655761.
// -4’d12 is effectively a 32-bit reg data type

regA = -12 / 3; // expression result is -4, -12 is effectively
// an integer data type. regA is 65532

regS = -12 / 3; // expression result is -4. regS is a signed reg

regS = -4’sd12 / 3;// expression result is 1. -4’sd12 is actually
// 4. The rules for integer division yield 4/3==1

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

46 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

4.1.7 Relational operators

Table 17 lists and defines the relational operators.

An expression using these relational operators shall yield the scalar value 0 if the specified relation is false
or the value 1 if it is true. If either operand of a relational operator contains an unknown (x) or high imped-

ance (z) value, then the result shall be a 1-bit unknown value (x).

When two operands of unequal bit lengths are used and one or both of the operands is unsigned, the smaller

operand shall be zero filled on the most significant bit side to extend to the size of the larger operand.

All the relational operators shall have the same precedence. Relational operators shall have lower prece-

dence than arithmetic operators.

Examples:

The following examples illustrate the implications of this precedence rule:

a < foo - 1 // this expression is the same as
a < (foo - 1) // this expression, but . . .
foo - (1 < a) // this one is not the same as
foo - 1 < a // this expression

When foo - (1 < a) evaluates, the relational expression evaluates first and then either zero or one is

subtracted from foo. When foo - 1 < a evaluates, the value of foo operand is reduced by one and then

compared with a.

When both operands of a relational expression are signed operands, then the expression shall be interpreted

as a comparison between signed values. When either operand of a relational expression is a real operand

then the other operand shall be converted to an equivalent real value, and the expression shall be interpreted

as a comparison between two real values.

Otherwise the expression shall be interpreted as a comparison between unsigned values.

4.1.8 Equality operators

The equality operators shall rank lower in precedence than the relational operators. Table 18 lists and

defines the equality operators.

Table 17—Definitions of the relational operators

a < b a less than b

a > b a greater than b

a <= b a less than or equal to b

a >= b a greater than or equal to b

Table 18—Definitions of the equality operators

a === b a equal to b, including x and z

a !== b a not equal to b, including x and z

a == b a equal to b, result may be unknown

a != b a not equal to b, result may be unknown

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 47
This is an unapproved IEEE Standards Draft, subject to change.

All four equality operators shall have the same precedence. These four operators compare operands bit for

bit, with zero filling if the two operands are of unequal bit length. As with the relational operators, the result

shall be 0 if comparison fails, 1 if it succeeds.

For the logical equality and logical inequality operators (== and !=), if, due to unknown or high-impedance

bits in the operands, the relation is ambiguous, then the result shall be a one bit unknown value (x).

For the case equality and case inequality operators (=== and !==), the comparison shall be done just as it is

in the procedural case statement (see 9.5). Bits that are x or z shall be included in the comparison and shall

match for the result to be considered equal. The result of these operators shall always be a known value,

either 1 or 0.

4.1.9 Logical operators

The operators logical and (&&) and logical or (||) are logical connectives. The result of the evaluation of a

logical comparison shall be 1 (defined as true), 0 (defined as false), or, if the result is ambiguous, the

unknown value (x). The precedence of && is greater than that of ||, and both are lower than relational and

equality operators.

A third logical operator is the unary logical negation operator (!). The negation operator converts a non-

zero or true operand into 0 and a zero or false operand into 1. An ambiguous truth value remains as x.

Examples:

Example 1—If reg alpha holds the integer value 237 and beta holds the value zero, then the following

examples perform as described:

regA = alpha && beta; // regA is set to 0
regB = alpha || beta; // regB is set to 1

Example 2—The following expression performs a logical and of three subexpressions without needing any

parentheses:

a < size-1 && b != c && index != lastone

However, it is recommended for readability purposes that parentheses be used to show very clearly the pre-

cedence intended, as in the following rewrite of this example:

(a < size-1) && (b != c) && (index != lastone)

Example 3—A common use of ! is in constructions like the following:

if (!inword)

In some cases, the preceding construct makes more sense to someone reading the code than this equivalent

construct:

if (inword == 0)

4.1.10 Bit-wise operators

The bit-wise operators shall perform bit-wise manipulations on the operands—that is, the operator shall

combine a bit in one operand with its corresponding bit in the other operand to calculate one bit for the

result. Logic Table 19 through Table 23 show the results for each possible calculation.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

48 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

When the operands are of unequal bit length, the shorter operand is zero-filled in the most significant bit

positions.

4.1.11 Reduction operators

The unary reduction operators shall perform a bit-wise operation on a single operand to produce a single bit

result. For reduction and, reduction or, and reduction xor operators, the first step of the operation shall apply

the operator between the first bit of the operand and the second using logic Table 24 through Table 26. The

second and subsequent steps shall apply the operator between the 1-bit result of the prior step and the next

bit of the operand using the same logic table. For reduction nand, reduction nor, and reduction xnor opera-

tors, the result shall be computed by inverting the result of the reduction and, reduction or, and reduction xor

operation respectively.

Table 23—Bit-wise unary negation operator

~

0 1

1 0

x x

z x

Table 19—Bit-wise binary and
operator

& 0 1 x z

0 0 0 0 0

1 0 1 x x

x 0 x x x

z 0 x x x

Table 20—Bit-wise binary or
operator

| 0 1 x z

0 0 1 x x

1 1 1 1 1

x x 1 x x

z x 1 x x

Table 21—Bit-wise binary
exclusive or operator

^ 0 1 x z

0 0 1 x x

1 1 0 x x

x x x x x

z x x x x

Table 22—Bit-wise binary
exclusive nor operator

^~
~^ 0 1 x z

0 1 0 x x

1 0 1 x x

x x x x x

z x x x x

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 49
This is an unapproved IEEE Standards Draft, subject to change.

Example:

Table 27 shows the results of applying reduction operators on different operands.

4.1.12 Shift operators

There are two types of shift operators, the logical shift operators, << and >>, and the arithmetic shift opera-

tors, <<< and >>>. The left shift operators, << and <<<, shall shift their left operand to the left by the num-

ber by the number of bit positions given by the right operand. In both cases, the vacated bit positions shall be

filled with zeroes. The right shift operators, >> and >>>, shall shift their left operand to the right by the num-

ber of bit positions given by the right operand. The logical right shift shall fill the vacated bit positions with

Table 26—Reduction unary exclusive or operator

^ 0 1 x z

0 0 1 x x

1 1 0 x x

x x x x x

z x x x x

Table 27—Results of unary reduction operations

Operand & ~& | ~| ^ ~^ Comments

4’b0000 0 1 0 1 0 1 No bits set

4’b1111 1 0 1 0 0 1 All bits set

4’b0110 0 1 1 0 0 1 Even number of bits

set

4’b1000 0 1 1 0 1 0 Odd number of bits set

Table 24—Reduction unary and
operator

& 0 1 x z

0 0 0 0 0

1 0 1 x x

x 0 x x x

z 0 x x x

Table 25—Reduction unary or
operator

| 0 1 x z

0 0 1 x x

1 1 1 1 1

x x 1 x x

z x 1 x x

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

50 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

zeroes. The arithmetic right shift shall fill the vacated bit positions with zeroes if the result type is unsigned.

It shall fill the vacated bit positions with the value of the most-significant (i.e., sign) bit of the left operand if

the result type is signed. If the right operand has an unknown or high impedence value, then the result shall

be unknown. The right operand is always treated as an unsigned number and has no effect on the signedness

of the result. The result signedness is determined by the left-hand operand and the remainder of the expres-

sion, as outlined in 4.5.1.

Examples:

Example 1—In this example, the reg result is assigned the binary value 0100, which is 0001 shifted to

the left two positions and zero-filled.

Example 2—In this example, the reg result is assigned the binary value 1110, which is 1000 shifted to

the right two positions and sign-filled.

4.1.13 Conditional operator

The conditional operator, also known as ternary operator, shall be right associative and shall be constructed

using three operands separated by two operators in the format given in Syntax 4-1.

Syntax 4-1—Syntax for conditional operator

The evaluation of a conditional operator shall begin with the evaluation of expression1. If expression1 eval-

uates to false (0), then expression3 shall be evaluated and used as the result of the conditional expression. If

expression1 evaluates to true (known value other than 0), then expression2 is evaluated and used as the

result. If expression1 evaluates to ambiguous value (x or z), then both expression2 and expression3 shall be

evaluated and their results shall be combined, bit by bit, using Table 28 to calculate the final result unless

conditional_expression ::= (From Annex A - A.8.3)
expression1 ? { attribute_instance } expression2 : expression3

expression1 ::=

expression

expression2 ::=

expression

expression3 ::=

expression

module shift;
reg [3:0] start, result;
initial begin

start = 1;
result = (start << 2);

end
endmodule

module ashift;
reg signed [3:0] start, result;
initial begin

start = 4’b1000;
result = (start >>> 2);

end
endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 51
This is an unapproved IEEE Standards Draft, subject to change.

expression2 or expression3 is real, in which case the result shall be 0. If the lengths of expression2 and

expression3 are different, the shorter operand shall be lengthened to match the longer and zero-filled from

the left (the high-order end).

Example:

The following example of a three-state output bus illustrates a common use of the conditional operator.

wire [15:0] busa = drive_busa ? data : 16’bz;

The bus called data is driven onto busa when drive_busa is 1. If drive_busa is unknown, then an

unknown value is driven onto busa. Otherwise, busa is not driven.

4.1.14 Concatenations

A concatenation is the result of the joining together of bits resulting from one or more expressions. The con-

catenation shall be expressed using the brace characters { and }, with commas separating the expressions

within.

Unsized constant numbers shall not be allowed in concatenations. This is because the size of each operand in

the concatenation is needed to calculate the complete size of the concatenation.

Examples:

This example concatenates four expressions:

{a, b[3:0], w, 3’b101}

and it is equivalent to the following example:

{a, b[3], b[2], b[1], b[0], w, 1’b1, 1’b0, 1’b1}

Another form of concatenation is the replication operation. The first expression shall be a positive, non-X

and non-Z constant expression, the second expression follows the rules for concatenations.

This example replicates "w" 4 times.

{4{w}} // This is equivalent to {w, w, w, w}

The following examples show illegal replications.

{ 0{1’b0}} // illegal
{1’bz{1’b0}} // illegal
{1’bx{1’b0}} // illegal

Table 28—Ambiguous condition results for conditional operator

?: 0 1 x z

0 0 x x x

1 x 1 x x

x x x x x

z x x x x

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

52 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

If the replication operator is used on a function call operand, the function need not be evaluated multiple

times. For example:

result = {4{func(w)}}

may be computed as

result = {func(w), func(w), func(w), func(w)}

or

y = func(w) ;
result = {y, y, y, y}

This is another form of expression evaluation short-circuiting.

The next example illustrates nested concatenations:

{b, {3{a, b}}} // This is equivalent to {b, a, b, a, b, a, b}

4.1.15 Event or

The event or operator shall perform an or of events. The , operator does the same thing. See 9.7 for events

and triggering of events.

Example:

The following example shows both ways to make an assignment to rega when an event (change) occurs on

trig or enable.

@(trig or enable) rega = regb ;
@(trig , enable) rega = regb ;

4.2 Operands

There are several types of operands that can be specified in expressions. The simplest type is a reference to a

net or variable in its complete form—that is, just the name of the net or variable is given. In this case, all of

the bits making up the net or variable value shall be used as the operand.

If a single bit of a vector net, reg variable, integer variable, or time variable is required, then a bit-select

operand shall be used. A part-select operand shall be used to reference a group of adjacent bits in a vector

net, vector reg, integer variable, or time variable.

A memory word can be referenced as an operand. A concatenation of other operands (including nested con-

catenations) can be specified as an operand. A function call is an operand.

4.2.1 Vector bit-select and part-select addressing

Bit-selects extract a particular bit from a vector net, vector reg, integer variable, or time variable. The bit can

be addressed using an expression. If the bit-select is out of the address bounds or the bit-select is x or z, then

the value returned by the reference shall be x. The bit-select or part-select of a variable declared as real or

realtime shall be considered illegal.

Several contiguous bits in a vector net, vector reg, integer variable, or time variable can be addressed and are

known as part-selects. There are two types of part-selects, a constant part-select and an indexed part-select.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 53
This is an unapproved IEEE Standards Draft, subject to change.

A constant part-select of a vector reg or net is given with the following syntax:

vect[msb_expr:lsb_expr]

Both expressions shall be constant expressions. The first expression has to address a more significant bit than

the second expression. If the part-select is out of the address bounds or the part-select is x or z, then the

value returned by the reference shall be x.

An indexed part-select of a vector net, vector reg, integer variable, or time variable is given with the follow-

ing syntax:

reg [15:0] big_vect;
reg [0:15] little_vect;

big_vect[lsb_base_expr +: width_expr]
little_vect[msb_base_expr +: width_expr]

big_vect[msb_base_expr -: width_expr]
little_vect[lsb_base_expr -: width_expr]

The width_expr shall be a constant expression. It also shall not be affected by run-time parameter assign-

ments. The lsb_base_expr and msb_base_expr can vary at run-time. The first two examples select

bits starting at the base and ascending the bit range. The number of bits selected is equal to the width expres-

sion. The second two examples select bits starting at the base and descending the bit range. Part-selects that

address a range of bits that are completely out of the address bounds of the net, reg, integer, or time,

or when the part-select is x or z, shall yield the value x when read, and shall have no effect on the data

stored when written. Part-selects that are partially out of range shall when read return x for the bits that are

out of range, and when written shall only affect the bits that are in range.

Examples:

reg [31:0] big_vect;
reg [0:31] little_vect;
reg [63:0] dword;
integer sel;

The first four if statements show the identity between the two part-select constructs. The last one shows an

indexable nature.

initial begin
if (big_vect[0 +:8] == big_vect[7 : 0]) begin end
if (little_vect[0 +:8] == little_vect[0 : 7]) begin end
if (big_vect[15 -:8] == big_vect[15 : 8]) begin end
if (little_vect[15 -:8] == little_vect[8 :15]) begin end
if (sel >0 && sel < 8) dword[8*sel +:8] = big_vect[7:0];

 // Replace the byte selected.

Examples:

Example 1—The following example specifies the single bit of acc vector that is addressed by the operand

index.

acc[index]

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

54 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The actual bit that is accessed by an address is, in part, determined by the declaration of acc. For instance,

each of the declarations of acc shown in the next example causes a particular value of index to access a

different bit:

reg [15:0] acc;
reg [2:17] acc

Example 2—The next example and the bullet items that follow it illustrate the principles of bit addressing.

The code declares an 8-bit reg called vect and initializes it to a value of 4. The list describes how the sepa-

rate bits of that vector can be addressed.

reg [7:0] vect;
vect = 4;// fills vect with the pattern 00000100

// msb is bit 7, lsb is bit 0

— If the value of addr is 2, then vect[addr] returns 1.
— If the value of addr is out of bounds, then vect[addr] returns x.
— If addr is 0, 1, or 3 through 7, vect[addr] returns 0.
— vect[3:0] returns the bits 0100.
— vect[5:1] returns the bits 00010.
— vect[expression that returns x] returns x.
— vect[expression that returns z] returns x.
— If any bit of addr is x or z, then the value of addr is x.

NOTES:

1) Part-select indices that evaluate to x or z may be flagged as a compile time error.

2) Bit-select or part-select indices that are outside of the declared range may be flagged as a compile time error.

4.2.2 Array and memory addressing

Declaration of arrays and memories (one-dimensional arrays of reg) are discussed in 3.10. This subclause

discusses array addressing.

Examples:

The next example declares a memory of 1024 8-bit words:

reg [7:0] mem_name[0:1023];

The syntax for a memory address shall consist of the name of the memory and an expression for the address,

specified with the following format:

mem_name[addr_expr]

The addr_expr can be any expression; therefore, memory indirections can be specified in a single expres-

sion. The next example illustrates memory indirection:

mem_name[mem_name[3]]

In this example, mem_name[3]addresses word three of the memory called mem_name. The value at word

three is the index into mem_name that is used by the memory address mem_name[mem_name[3]]. As

with bit-selects, the address bounds given in the declaration of the memory determine the effect of the

address expression. If the index is out of the address bounds or if any bit in the address is x or z, then the

value of the reference shall be x.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 55
This is an unapproved IEEE Standards Draft, subject to change.

Examples:

The next example declares an array of 256 by 256 8-bit elements and an array 256 by 256 by 8 1-bit

elements:

reg [7:0] twod_array[0:255][0:255];
wire threed_array[0:255][0:255][0:7];

The syntax for access to the array shall consist of the name of the memory or array and an expression for

each addressed dimension:

twod_array[addr_expr][addr_expr]
threed_array[addr_expr][addr_expr][addr_expr]

As before, the addr_expr can be any expression. The array twod_array accesses a whole 8-bit vector,

while the array threed_array accesses a single bit of the three-dimensional array.

To express bit-selects or part-selects of array elements, the desired word shall first be selected by supplying

an address for each dimension. Once selected, bit-selects and part-selects shall be addressed in the same

manner as net and reg bit-selects and part-selects (see 4.2.1).

Examples:

twod_array[14][1][3:0] // access lower 4 bits of word
twod_array[1][3][6] // access bit 6 of word
twod_array[1][3][sel] // use variable bit-select
threed_array[14][1][3:0] // Illegal

4.2.3 Strings

String operands shall be treated as constant numbers consisting of a sequence of 8-bit ASCII codes, one per

character. Any Verilog HDL operator can manipulate string operands. The operator shall behave as though

the entire string were a single numeric value.

When a variable is larger than required to hold the value being assigned, the contents after the assignment

shall be padded on the left with zeros. This is consistent with the padding that occurs during assignment of

nonstring values.

Example:

The following example declares a string variable large enough to hold 14 characters and assigns a value to it.

The example then manipulates the string using the concatenation operator.

module string_test;
reg [8*14:1] stringvar;

initial begin
stringvar = "Hello world";
$display("%s is stored as %h", stringvar, stringvar);
stringvar = {stringvar,"!!!"};
$display("%s is stored as %h", stringvar, stringvar);

end
endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

56 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The result of simulating the above description is

4.2.3.1 String operations

The common string operations copy, concatenate, and compare are supported by Verilog HDL operators.

Copy is provided by simple assignment. Concatenation is provided by the concatenation operator. Compari-

son is provided by the equality operators.

When manipulating string values in vector regs, the regs should be at least 8*n bits (where n is the number

of ASCII characters) in order to preserve the 8-bit ASCII code.

4.2.3.2 String value padding and potential problems

When strings are assigned to variables, the values stored shall be padded on the left with zeros. Padding can

affect the results of comparison and concatenation operations. The comparison and concatenation operators

shall not distinguish between zeros resulting from padding and the original string characters (\0, ASCII
NULL).

Examples:

The following example illustrates the potential problem.

The comparison in this example fails because during the assignment the string variables are padded as illus-

trated in the next example:

s1 = 000000000048656c6c6f
s2 = 00000020776f726c6421

The concatenation of s1 and s2 includes the zero padding, resulting in the following value:

000000000048656c6c6f00000020776f726c6421

 Hello world is stored as 00000048656c6c6f20776f726c64
Hello world!!! is stored as 48656c6c6f20776f726c64212121

reg [8*10:1] s1, s2;
initial begin

s1 = "Hello";
s2 = " world!";
if ({s1,s2} == "Hello world!")

$display("strings are equal");
end

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 57
This is an unapproved IEEE Standards Draft, subject to change.

Since the string “Hello world!” contains no zero padding, the comparison fails, as shown in the following

example:

This comparison yields a result of zero, which is equivalent to false.

4.2.3.3 Null string handling

The null string ("") shall be considered equivalent to the ASCII NULL ("\0") which has a value zero (0),

which is different from a string "0".

4.3 Minimum, typical, and maximum delay expressions

Verilog HDL delay expressions can be specified as three expressions separated by colons and enclosed by

parentheses. This is intended to represent minimum, typical, and maximum values—in that order. The syn-

tax is given in Syntax 4-2.

000000000048656c6c6f00000020776f726c6421
48656c6c6f20776f726c6421

"Hello" " world!"

s1 s2

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

58 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 4-2—Syntax for mintypmax expression

Verilog HDL models typically specify three values for delay expressions. The three values allow a design to

be tested with minimum, typical, or maximum delay values.

Values expressed in min:typ:max format can be used in expressions. The min:typ:max format can be used

wherever expressions can appear.

constant_expression ::= (From Annex A - A.8.3)
constant_primary

| unary_operator { attribute_instance } constant_primary

| constant_expression binary_operator { attribute_instance } constant_expression

| constant_expression ? { attribute_instance } constant_expression

constant_expression

| string

constant_mintypmax_expression ::=

constant_expression

| constant_expression : constant_expression : constant_expression

expression ::=

primary

| unary_operator { attribute_instance } primary

| expression binary_operator { attribute_instance } expression

| conditional_expression

| string

mintypmax_expression ::=

expression

| expression : expression : expression

constant_primary ::= (From Annex A - A.8.4)
constant_concatenation

| constant_function_call

| (constant_mintypmax_expression)
| constant_multiple_concatenation

| genvar_identifier

| number

| parameter_identifier

| specparam_identifier

primary ::=

number

| hierarchical_identifier

| hierarchical_identifier [expression] { [expression] }
| hierarchical_identifier [expression] { [expression] } [range_expression]
| hierarchical_identifier [range_expression]
| concatenation

| multiple_concatenation

| function_call

| system_function_call

| constant_function_call

| (mintypmax_expression)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 59
This is an unapproved IEEE Standards Draft, subject to change.

Examples:

Example 1—This example shows an expression that defines a single triplet of delay values. The minimum

value is the sum of a+d; the typical value is b+e; the maximum value is c+f, as follows:

(a:b:c) + (d:e:f)

Example 2—The next example shows a typical expression that is used to specify min:typ:max format

values:

val - (32’d 50: 32’d 75: 32’d 100)

4.4 Expression bit lengths

Controlling the number of bits that are used in expression evaluations is important if consistent results are to

be achieved. Some situations have a simple solution; for example, if a bit-wise and operation is specified on

two 16-bit regs, then the result is a 16-bit value. However, in some situations it is not obvious how many bits

are used to evaluate an expression, or what size the result should be.

For example, should an arithmetic add of two 16-bit values perform the evaluation using 16 bits, or should

the evaluation use 17 bits in order to allow for a possible carry overflow? The answer depends on the type of

device being modeled, and whether that device handles carry overflow. The Verilog HDL uses the bit length

of the operands to determine how many bits to use while evaluating an expression. The bit length rules are

given in 4.4.1. In the case of the addition operator, the bit length of the largest operand, including the left-

hand side of an assignment, shall be used.

Examples:

reg [15:0] a, b; // 16-bit regs
reg [15:0] sumA; // 16-bit reg
reg [16:0] sumB; // 17-bit reg

sumA = a + b; // expression evaluates using 16 bits
sumB = a + b; // expression evaluates using 17 bits

4.4.1 Rules for expression bit lengths

The rules governing the expression bit lengths have been formulated so that most practical situations have a

natural solution.

The number of bits of an expression (known as the size of the expression) shall be determined by the oper-

ands involved in the expression and the context in which the expression is given.

A self-determined expression is one where the bit length of the expression is solely determined by the

expression itself—for example, an expression representing a delay value.

A context-determined expression is one where the bit length of the expression is determined by the bit length

of the expression and by the fact that it is part of another expression. For example, the bit size of the right-

hand side expression of an assignment depends on itself and the size of the left-hand side.

Table 29 shows how the form of an expression shall determine the bit lengths of the results of the expres-

sion. In Table 29, i, j, and k represent expressions of an operand, and L(i) represents the bit length of the

operand represented by i.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

60 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

4.4.2 An example of an expression bit-length problem

During the evaluation of an expression, interim results shall take the size of the largest operand (in case of an

assignment, this also includes the left-hand side). Care has to be taken to prevent loss of a significant bit dur-

ing expression evaluation. The example below describes how the bit lengths of the operands could result in

the loss of a significant bit.

Given the following declarations

reg [15:0] a, b, answer; // 16-bit regs

The intent is to evaluate the expression

answer = (a + b) >> 1; //will not work properly

where a and b are to be added, which may result in an overflow, and then shifted right by 1 bit to preserve

the carry bit in the 16-bit answer.

Table 29—Bit lengths resulting from self-determined expressions

 Expression Bit length Comments

Unsized constant numbera

aIf an unsized constant is part of an expression that is longer than 32 bits, then if the most significant bit

is unknown (X or x) or three-state (Z or z) the most significant bit is extended up to the size of the ex-

pression, otherwise signed constants are sign extended and unsigned constants are zero extended.

NOTE—Multiplication without losing any overflow bits is still possible simply by assigning the result to

something wide enough to hold it.

Same as integer

Sized constant number As given

i op j, where op is:

+ - * / % & | ^ ^~ ~^

max(L(i),L(j))

op i, where op is:

+ - ~

L(i)

i op j, where op is:

=== !== == != > >= < <=

1 bit Operands are sized to max(L(i),L(j))

i op j, where op is:

&& ||

1 bit All operands are self-determined

op i, where op is:

& ~& | ~| ^ ~^ ^~ !

1 bit All operands are self-determined

i op j, where op is:

>> << ** >>> <<<

L(i) j is self-determined

i ? j : k max(L(j),L(k)) i is self-determined

{i,...,j} L(i)+..+L(j) All operands are self-determined

{i{j,..,k}} i * (L(j)+..+L(k)) All operands are self-determined

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 61
This is an unapproved IEEE Standards Draft, subject to change.

A problem arises, however, because all operands in the expression are of a 16-bit width. Therefore, the

expression (a + b) produces an interim result that is only 16 bits wide, thus losing the carry bit before the

evaluation performs the 1-bit right shift operation.

The solution is to force the expression (a + b) to evaluate using at least 17 bits. For example, adding an

integer value of 0 to the expression will cause the evaluation to be performed using the bit size of integers.

The following example will produce the intended result:

answer = (a + b + 0) >> 1; //will work correctly

In the following example:

module bitlength();
reg [3:0] a,b,c;
reg [4:0] d;

initial begin
 a = 9;
 b = 8;
 c = 1;

$display("answer = %b", c ? (a&b) : d);
end

endmodule

the $display statement will display:

 answer = 01000

By itself, the expression a&b would have the bit length 4, but since it is in the context of the conditional

expression, which uses the maximum bit-length, the expression a&b actually has length 5, the length of d.

4.4.3 Example of self-determined expressions

reg [3:0] a;
reg [5:0] b;
reg [15:0] c;

initial begin
 a = 4’hF;
 b = 6’hA;

$display("a*b=%h", a*b);// expression size is self-determined
 c = {a**b}; // expression a**b is self-determined

 // due to concatenation operator {}
 $display("a**b=%h", c);
 c = a**b; // expression size is determined by c

$display("c=%h", c);
end

Simulator output for this example:

a*b=16 // ’h96 was truncated to ’h16 since expression size is 6
a**b=1 // expression size is 4 bits (size of a)
c=ac61 // expression size is 16 bits (size of c)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

62 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

4.5 Signed expressions

Controlling the sign of an expression is important if consistent results are to be achieved. In addition to the

rules outlined in the following sections, two system functions shall be used to handle type casting on expres-

sions: $signed() and $unsigned(). These functions shall evaluate the input expression and return a value with

the same size and value of the input expression and the type defined by the function:

$signed - returned value is signed
$unsigned - returned value is unsigned

Example:

reg [7:0] regA, regB;
reg signed [7:0] regS;

regA = $unsigned(-4); // regA = 8'b11111100
regB = $unsigned(-4'sd4); // regB = 8'b00001100
regS = $signed (4'b1100); // regS = -4

4.5.1 Rules for expression types

The following are the rules for determining the resulting type of an expression:

— Expression type depends only on the operands. It does not depend on the LHS (if any).
— Decimal numbers are signed.
— Based_numbers are unsigned, except where the s notation is used in the base specifier (as in

"4'sd12").
— Bit-select results are unsigned, regardless of the operands.
— Part-select results are unsigned, regardless of the operands.

NOTE—This is true even if the part-select specifies the entire vector.

reg [15:0] a;
reg signed [7:0] b;

initial
a = b[7:0]; // b[7:0] is unsigned and therefore zero-extended

— Concatenate results are unsigned, regardless of the operands.
— Comparison results (1, 0) are unsigned, regardless of the operands.
— Reals converted to integers by type coercion are signed
— The sign and size of any self-determined operand is determined by the operand itself and indepen-

dent of the remainder of the expression.
— For non-self-determined operands the following rules apply:

if any operand is real, the result is real;
if any operand is unsigned, the result is unsigned, regardless of the operator;
if all operands are signed, the result will be signed, regardless of operator, except as noted.

4.5.2 Steps for evaluating an expression

— Determine the expression size based upon the standard rules of expression size determination.
— Determine the sign of the expression using the rules outlined in 4.5.1.
— Coerce the type of each operand of the expression (excepting those which are self-determined) to the

type of the expression.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 63
This is an unapproved IEEE Standards Draft, subject to change.

— Extend the size of each operand (excepting those which are self-determined) to the size of the
expression. Perform sign extension if and only if the operand type (after type coercion) is signed.

4.5.3 Steps for evaluating an assignment

— Determine the size of the RHS by the standard assignment size determination rules (see 4.4)
— If needed, extend the size of the RHS, performing sign extension if and only if the type of the RHS is

signed.

4.5.4 Handling X and Z in signed expressions

If a signed operand is to be resized to a larger signed width and the value of the sign bit is X, the resulting

value shall be bit-filled with Xs. If the sign bit of the value is Z, then the resulting value shall be bit-filled

with Zs. If any bit of a signed value is X or Z, then any non logical operation involving the value shall result

in the entire resultant value being an X and the type consistent with the expression's type.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

64 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

5. Scheduling semantics

5.1 Execution of a model

The balance of the sections of this standard describe the behavior of each of the elements of the language.

This section gives an overview of the interactions between these elements, especially with respect to the

scheduling and execution of events.

The elements that make up the Verilog HDL can be used to describe the behavior, at varying levels of

abstraction, of electronic hardware. An HDL has to be a parallel programming language. The execution of

certain language constructs is defined by parallel execution of blocks or processes. It is important to under-

stand what execution order is guaranteed to the user, and what execution order is indeterminate.

Although the Verilog HDL is used for more than simulation, the semantics of the language are defined for

simulation, and everything else is abstracted from this base definition.

5.2 Event simulation

The Verilog HDL is defined in terms of a discrete event execution model. The discrete event simulation is

described in more detail in this section to provide a context to describe the meaning and valid interpretation

of Verilog HDL constructs. These resulting definitions provide the standard Verilog reference model for sim-

ulation, which all compliant simulators shall implement. Note, though, that there is a great deal of choice in

the definitions that follow, and differences in some details of execution are to be expected between different

simulators. In addition, Verilog HDL simulators are free to use different algorithms than those described in

this section, provided the user-visible effect is consistent with the reference model.

A design consists of connected threads of execution or processes. Processes are objects that can be evalu-

ated, that may have state, and that can respond to changes on their inputs to produce outputs. Processes

include primitives, modules, initial and always procedural blocks, continuous assignments, asynchronous

tasks, and procedural assignment statements.

Every change in value of a net or variable in the circuit being simulated, as well as the named event, is con-

sidered an update event.

Processes are sensitive to update events. When an update event is executed, all the processes that are sensi-

tive to that event are evaluated in an arbitrary order. The evaluation of a process is also an event, known as an

evaluation event.

In addition to events, another key aspect of a simulator is time. The term simulation time is used to refer to

the time value maintained by the simulator to model the actual time it would take for the circuit being simu-

lated. The term time is used interchangeably with simulation time in this section.

Events can occur at different times. In order to keep track of the events and to make sure they are processed

in the correct order, the events are kept on an event queue, ordered by simulation time. Putting an event on

the queue is called scheduling an event.

5.3 The stratified event queue

The Verilog event queue is logically segmented into five different regions. Events are added to any of the five

regions but are only removed from the active region.

1) Events that occur at the current simulation time and can be processed in any order. These are the

active events.

2) Events that occur at the current simulation time, but that shall be processed after all the active events

are processed. These are the inactive events.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 65
This is an unapproved IEEE Standards Draft, subject to change.

3) Events that have been evaluated during some previous simulation time, but that shall be assigned at

this simulation time after all the active and inactive events are processed. These are the nonblocking
assign update events.

4) Events that shall be processed after all the active, inactive, and nonblocking assign update events are

processed. These are the monitor events.

5) Events that occur at some future simulation time. These are the future events. Future events are

divided into future inactive events, and future nonblocking assignment update events.

The processing of all the active events is called a simulation cycle.

The freedom to choose any active event for immediate processing is an essential source of nondeterminism

in the Verilog HDL.

An explicit zero delay (#0) requires that the process be suspended and added as an inactive event for the cur-

rent time so that the process is resumed in the next simulation cycle in the current time.

A nonblocking assignment (see 9.2.2) creates a nonblocking assign update event, scheduled for current or a

later simulation time.

The $monitor and $strobe system tasks (see 17.1) create monitor events for their arguments. These events

are continuously re-enabled in every successive time step. The monitor events are unique in that they cannot

create any other events.

The call back procedures scheduled with PLI routines such as tf_synchronize() (see 25.58) or

vpi_register_cb(cb_readwrite) (see 27.33) shall be treated as inactive events.

5.4 The Verilog simulation reference model

In all the examples that follow, T refers to the current simulation time, and all events are held in the event

queue, ordered by simulation time.

while (there are events) {

if (no active events) {

if (there are inactive events) {

activate all inactive events;

} else if (there are nonblocking assign update events) {

activate all nonblocking assign update events;

} else if (there are monitor events) {

activate all monitor events;

} else {

advance T to the next event time;

activate all inactive events for time T;

}

}

E = any active event;

if (E is an update event) {

update the modified object;

add evaluation events for sensitive processes to event queue;

} else { /* shall be an evaluation event */

evaluate the process;

add update events to the event queue;

}

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

66 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

5.4.1 Determinism

This standard guarantees a certain scheduling order.

1) Statements within a begin-end block shall be executed in the order in which they appear in that

begin-end block. Execution of statements in a particular begin-end block can be suspended in

favor of other processes in the model; however, in no case shall the statements in a begin-end
block be executed in any order other than that in which they appear in the source.

2) Nonblocking assignments shall be performed in the order the statements were executed. Consider

the following example:

When this block is executed, there will be two events added to the nonblocking assign update queue.

The previous rule requires that they be entered on the queue in source order; this rule requires that

they be taken from the queue and performed in source order as well. Hence, at the end of time step

1, the variable a will be assigned 0 and then 1.

5.4.2 Nondeterminism

One source of nondeterminism is the fact that active events can be taken off the queue and processed in any

order. Another source of nondeterminism is that statements without time-control constructs in behavioral

blocks do not have to be executed as one event. Time control statements are the # expression and @ expres-

sion constructs (see 9.7). At any time while evaluating a behavioral statement, the simulator may suspend

execution and place the partially completed event as a pending active event on the event queue. The effect of

this is to allow the interleaving of process execution. Note that the order of interleaved execution is nonde-

terministic and not under control of the user.

5.5 Race conditions

Because the execution of expression evaluation and net update events may be intermingled, race conditions

are possible:

assign p = q;
initial begin

q = 1;
#1 q = 0;
$display(p);

end

The simulator is correct in displaying either a 1 or a 0. The assignment of 0 to q enables an update event for

p. The simulator may either continue and execute the $display task or execute the update for p, followed by

the $display task.

5.6 Scheduling implication of assignments

Assignments are translated into processes and events as follows.

initial begin
a <= 0;
a <= 1;

end

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 67
This is an unapproved IEEE Standards Draft, subject to change.

5.6.1 Continuous assignment

A continuous assignment statement (Clause 6) corresponds to a process, sensitive to the source elements in

the expression. When the value of the expression changes, it causes an active update event to be added to the

event queue, using current values to determine the target.

5.6.2 Procedural continuous assignment

A procedural continuous assignment (which are the assign or force statement; see 9.3) corresponds to a pro-

cess that is sensitive to the source elements in the expression. When the value of the expression changes, it

causes an active update event to be added to the event queue, using current values to determine the target.

A deassign or a release statement deactivates any corresponding assign or force statement(s).

5.6.3 Blocking assignment

A blocking assignment statement (see 9.2.1) with a delay computes the right-hand side value using the cur-

rent values, then causes the executing process to be suspended and scheduled as a future event. If the delay is

0, the process is scheduled as an inactive event for the current time.

When the process is returned (or if it returns immediately if no delay is specified), the process performs the

assignment to the left-hand side and enables any events based upon the update of the left-hand side. The val-

ues at the time the process resumes are used to determine the target(s). Execution may then continue with the

next sequential statement or with other active events.

5.6.4 Nonblocking assignment

A nonblocking assignment statement (see 9.2.2) always computes the updated value and schedules the

update as a nonblocking assign update event, either in this time step if the delay is zero or as a future event if

the delay is nonzero. The values in effect when the update is placed on the event queue are used to compute

both the right-hand value and the left-hand target.

5.6.5 Switch (transistor) processing

The event-driven simulation algorithm described in 5.4 depends on unidirectional signal flow and can pro-

cess each event independently. The inputs are read, the result is computed, and the update is scheduled.

The Verilog HDL provides switch-level modeling in addition to behavioral and gate-level modeling.

Switches provide bi-directional signal flow and require coordinated processing of nodes connected by

switches.

The Verilog HDL source elements that model switches are various forms of transistors, called tran, tranif0,

tranif1, rtran, rtranif0, and rtranif1.

Switch processing shall consider all the devices in a bidirectional switch-connected net before it can deter-

mine the appropriate value for any node on the net, because the inputs and outputs interact. A simulator can

do this using a relaxation technique. The simulator can process tran at any time. It can process a subset of

tran-connected events at a particular time, intermingled with the execution of other active events.

Further refinement is required when some transistors have gate value x. A conceptually simple technique is

to solve the network repeatedly with these transistors set to all possible combinations of fully conducting

and nonconducting transistors. Any node that has a unique logic level in all cases has steady-state response

equal to this level. All other nodes have steady-state response x.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

68 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

5.6.6 Port connections

Ports connect processes through implicit continuous assignment statements or implicit bidirectional connec-

tions. Bidirectional connections are analogous to an always-enabled tran connection between the two nets,

but without any strength reduction. Port connection rules require that a value receiver be a net or a structural

net expression.

Ports can always be represented as declared objects connected as follows:

— If an input port, then a continuous assignment from an outside expression to a local (input) net
— If an output port, then a continuous assignment from a local output expression to an outside net
— If an inout, then a nonstrength-reducing transistor connecting the local net to an outside net

5.6.7 Functions and tasks

Task and function parameter passing is by value, and it copies in on invocation and copies out on return. The

copy out on the return function behaves in the same manner as does any blocking assignment.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 69
This is an unapproved IEEE Standards Draft, subject to change.

6. Assignments

The assignment is the basic mechanism for placing values into nets and variables. There are two basic forms

of assignments:

— The continuous assignment, which assigns values to nets
— The procedural assignment, which assigns values to variables

There are two additional forms of assignments, assign / deassign and force / release which are called proce-
dural continuous assignments, described in 9.3.

An assignment consists of two parts, a left-hand side and a right-hand side, separated by the equals (=)

character; or, in the case of nonblocking procedural assignment, the less-than-equals (<=) character pair.

The right-hand side can be any expression that evaluates to a value. The left-hand side indicates the variable

to which the right-hand side value is to be assigned. The left-hand side can take one of the forms given in

Table 30, depending on whether the assignment is a continuous assignment or a procedural assignment.

6.1 Continuous assignments

Continuous assignments shall drive values onto nets, both vector and scalar. This assignment shall occur

whenever the value of the right-hand side changes. Continuous assignments provide a way to model combi-

national logic without specifying an interconnection of gates. Instead, the model specifies the logical expres-

sion that drives the net.

Table 30—Legal left-hand side forms in assignment statements

Statement type Left-hand side (LHS)

Continuous assignment Net (vector or scalar)

Constant bit-select of a vector net

Constant part-select of a vector net

Constant indexed part-select of a vector net

Concatenation or nested concatenation of any of the above LHS

Procedural assignment Variables (vector or scalar)

Bit-select of a vector reg, integer, or time variable

Constant part-select of a vector reg, integer, or time variable

Indexed part-select of a vector reg, integer, or time variable

Memory word

Concatenation or nested concatenation of any of the above LHS

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

70 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The syntax for continuous assignments is given in Syntax 6-1.

Syntax 6-1—Syntax for continuous assignment

6.1.1 The net declaration assignment

The first two alternatives in the net declaration are discussed in 3.2. The third alternative, the net declaration

assignment, allows a continuous assignment to be placed on a net in the same statement that declares the net.

Example:

The following is an example of the net declaration form of a continuous assignment:

wire (strong1, pull0) mynet = enable ;

NOTE—Because a net can be declared only once, only one net declaration assignment can be made for a particular net.

This contrasts with the continuous assignment statement; one net can receive multiple assignments of the continuous

assignment form.

6.1.2 The continuous assignment statement

The continuous assignment statement shall place a continuous assignment on a net data type. The net may be

explicitly declared, or may inherit an implicit declaration in accordance with the implicit declarations rules

defined in 3.5.

net_declaration ::= (From Annex A - A.2.1.3)
net_type [signed]

[delay3] list_of_net_identifiers ;
| net_type [drive_strength] [signed]

[delay3] list_of_net_decl_assignments ;
| net_type [vectored | scalared] [signed]

range [delay3] list_of_net_identifiers ;
| net_type [drive_strength] [vectored | scalared] [signed]

range [delay3] list_of_net_decl_assignments ;
| trireg [charge_strength] [signed]

[delay3] list_of_net_identifiers ;
| trireg [drive_strength] [signed]

[delay3] list_of_net_decl_assignments ;
| trireg [charge_strength] [vectored | scalared] [signed]

range [delay3] list_of_net_identifiers ;
| trireg [drive_strength] [vectored | scalared] [signed]

range [delay3] list_of_net_decl_assignments ;
list_of_net_decl_assignments ::= (From Annex A - A.2.3)

net_decl_assignment { , net_decl_assignment }

net_decl_assignment ::= (From Annex A - A.2.4)
net_identifier = expression

continuous_assign ::= (From Annex A - A.6.1)
assign [drive_strength] [delay3] list_of_net_assignments ;

list_of_net_assignments ::=

net_assignment { , net_assignment }

net_assignment ::=

net_lvalue = expression

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 71
This is an unapproved IEEE Standards Draft, subject to change.

Assignments on nets shall be continuous and automatic. This means that whenever an operand in the right-

hand side expression changes value, the whole right-hand side shall be evaluated and if the new value is dif-

ferent from the previous value, then the new value shall be assigned to the left-hand side.

Examples:

Example 1—The following is an example of a continuous assignment to a net that has been previously

declared:

wire mynet ;
assign (strong1, pull0) mynet = enable ;

Example 2—The following is an example of the use of a continuous assignment to model a 4-bit adder with

carry. The assignment could not be specified directly in the declaration of the nets because it requires a con-

catenation on the left-hand side.

Example 3—The following example describes a module with one 16-bit output bus. It selects between one of

four input busses and connects the selected bus to the output bus.

The following sequence of events is experienced during simulation of this example:

a) The value of s, a bus selector input variable, is checked in the assign statement. Based on the value

of s, the net data receives the data from one of the four input buses.

b) The setting of data net triggers the continuous assignment in the net declaration for busout. If

enable is set, the contents of data are assigned to busout; if enable is 0, the contents of Zee
are assigned to busout.

module adder (sum_out, carry_out, carry_in, ina, inb);
output [3:0] sum_out;
output carry_out;
input [3:0] ina, inb;
input carry_in;
wire carry_out, carry_in;
wire [3:0] sum_out, ina, inb;
assign {carry_out, sum_out} = ina + inb + carry_in;
endmodule

module select_bus(busout, bus0, bus1, bus2, bus3, enable, s);
parameter n = 16;
parameter Zee = 16’bz;
output [1:n] busout;
input [1:n] bus0, bus1, bus2, bus3;
input enable;
input [1:2] s;
tri [1:n] data; // net declaration
// net declaration with continuous assignment
tri [1:n] busout = enable ? data : Zee;
// assignment statement with four continuous assignments
assign

data = (s == 0) ? bus0 : Zee,
data = (s == 1) ? bus1 : Zee,
data = (s == 2) ? bus2 : Zee,
data = (s == 3) ? bus3 : Zee;

endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

72 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

6.1.3 Delays

A delay given to a continuous assignment shall specify the time duration between a right-hand side operand

value change and the assignment made to the left-hand side. If the left-hand side references a scalar net, then

the delay shall be treated in the same way as for gate delays—that is, different delays can be given for the

output rising, falling, and changing to high impedance (see Clause 7).

If the left-hand side references a vector net, then up to three delays can be applied. The following rules deter-

mine which delay controls the assignment:

— If the right-hand side makes a transition from nonzero to zero, then the falling delay shall be used.
— If the right-hand side makes a transition to z, then the turn-off delay shall be used.
— For all other cases, the rising delay shall be used.

Specifying the delay in a continuous assignment that is part of the net declaration shall be treated differently

from specifying a net delay and then making a continuous assignment to the net. A delay value can be

applied to a net in a net declaration, as in the following example:

wire #10 wireA;

This syntax, called a net delay, means that any value change that is to be applied to wireA by some other

statement shall be delayed for ten time units before it takes effect. When there is a continuous assignment in

a declaration, the delay is part of the continuous assignment and is not a net delay. Thus, it shall not be added

to the delay of other drivers on the net. Furthermore, if the assignment is to a vector net, then the rising and

falling delays shall not be applied to the individual bits if the assignment is included in the declaration.

In situations where a right-hand side operand changes before a previous change has had time to propagate to

the left-hand side, then the following steps are taken:

a) The value of the right-hand side expression is evaluated.

b) If this RHS value differs from the value currently scheduled to propagate to the left-hand side, then

the currently scheduled propagation event is descheduled.

c) If the new RHS value equals the current left-hand side value, no event is scheduled.

d) If the new RHS value differs from the current LHS value, a delay is calculated in the standard way

using the current value of the left-hand side, the newly calculated value of the right-hand side, and

the delays indicated on the statement; a new propagation event is then scheduled to occur delay time

units in the future.

6.1.4 Strength

The driving strength of a continuous assignment can be specified by the user. This applies only to assign-

ments to scalar nets of the following types:

wire tri trireg
wand triand tri0
wor trior tri1

Continuous assignments driving strengths can be specified in either a net declaration or in a stand-alone

assignment, using the assign keyword. The strength specification, if provided, shall immediately follow the

keyword (either the keyword for the net type or assign) and precede any delay specified. Whenever the

continuous assignment drives the net, the strength of the value shall be simulated as specified.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 73
This is an unapproved IEEE Standards Draft, subject to change.

A drive strength specification shall contain one strength value that applies when the value being assigned to

the net is 1 and a second strength value that applies when the assigned value is 0. The following keywords

shall specify the strength value for an assignment of 1:

supply1 strong1 pull1 weak1 highz1

The following keywords shall specify the strength value for an assignment of 0:

supply0 strong0 pull0 weak0 highz0

The order of the two strength specifications shall be arbitrary. The following two rules shall constrain the use

of drive strength specifications:

— The strength specifications (highz1, highz0) and (highz0, highz1) shall be treated as illegal
constructs.

— If drive strength is not specified, it shall default to (strong1, strong0).

6.2 Procedural assignments

The primary discussion of procedural assignments is in 9.2. However, a description of the basic ideas in this

clause highlights the differences between continuous assignments and procedural assignments.

As stated in 6.1, continuous assignments drive nets in a manner similar to the way gates drive nets. The

expression on the right-hand side can be thought of as a combinatorial circuit that drives the net continu-

ously. In contrast, procedural assignments put values in variables. The assignment does not have duration;

instead, the variable holds the value of the assignment until the next procedural assignment to that variable.

Procedural assignments occur within procedures such as always, initial (see 9.9), task, and function (see

Clause 10) and can be thought of as “triggered” assignments. The trigger occurs when the flow of execution

in the simulation reaches an assignment within a procedure. Reaching the assignment can be controlled by

conditional statements. Event controls, delay controls, if statements, case statements, and looping statements

can all be used to control whether assignments are evaluated. Clause 9 gives details and examples.

6.2.1 Variable declaration assignment

The variable declaration assignment is a special case of procedural assignment as it assigns a value to a vari-

able. It allows an initial value to be placed in a variable in the same statement that declares the variable. The

assignment shall be to a constant expression. The assignment does not have duration; instead, the variable

holds the value until the next assignment to that variable. Variable declaration assignments to an array are

not allowed. Variable declaration assignments are only allowed at the module level.

Examples:

Example 1—Declare a 4 bit reg and assign it the value 4.

reg[3:0] a = 4'h4;

This is equivalent to writing:

reg[3:0] a;
initial a = 4'h4;

Example 2—The following example is not legal.

reg [3:0] array [3:0] = 0;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

74 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Example 3—Declare two integers, the first is assigned the value of 0.

integer i = 0, j;

Example 4—Declare two real variables, assigned to the values 2.5 and 300,000.

real r1 = 2.5, n300k = 3E6;

Example 5—Declare a time variable and realtime variable with initial values.

time t1 = 25;
realtime rt1 = 2.5;

NOTE—If the same variable is assigned different values both in an initial block and in a variable declaration assignment,
the order of the evaluation is undefined.

6.2.2 Variable declaration syntax

The syntax for variable declaration assignments is given in Syntax 6-2.

Syntax 6-2—Syntax for reg declaration assignment

integer_declaration ::= (From Annex A - A.2.1.3)
integer list_of_variable_identifiers ;

real_declaration ::=

real list_of_real_identifiers ;
realtime_declaration ::=

realtime list_of_real_identifiers ;
reg_declaration ::=

reg [signed] [range] list_of_variable_identifiers ;
time_declaration ::=

time list_of_variable_identifiers ;
real_type ::= (From Annex A - A.2.2.1)

real_identifier [= constant_expression]

| real_identifier dimension { dimension }

variable_type ::=

variable_identifier [= constant_expression]

| variable_identifier dimension { dimension }

list_of_real_identifiers ::= (From Annex A - A.2.3)
real_type { , real_type }

list_of_variable_identifiers ::=

variable_type { , variable_type }

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 75
This is an unapproved IEEE Standards Draft, subject to change.

7. Gate and switch level modeling

This clause describes the syntax and semantics of these built-in primitives and how a hardware design can be

described using these primitives.

There are 14 logic gates and 12 switches predefined in the Verilog HDL to provide the gate and switch level

modeling facility. Modeling with logic gates and switches has the following advantages:

— Gates provide a much closer one-to-one mapping between the actual circuit and the model.
— There is no continuous assignment equivalent to the bidirectional transfer gate.

7.1 Gate and switch declaration syntax

Syntax 7-1 shows the gate and switch declaration syntax.

A gate or a switch instance declaration shall have the following specifications:

— The keyword that names the type of gate or switch primitive
— An optional drive strength
— An optional propagation delay
— An optional identifier that names each gate or switch instance
— An optional range for array of instances
— The terminal connection list

Multiple instances of the one type of gate or switch primitive can be declared as a comma-separated list. All

such instances shall have the same drive strength and delay specification.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

76 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 7-1—Syntax for gate instantiation

gate_instantiation ::= (From Annex A - A.3.1)
cmos_switchtype [delay3] cmos_switch_instance { , cmos_switch_instance } ;

| enable_gatetype [drive_strength] [delay3] enable_gate_instance { , enable_gate_instance } ;
| mos_switchtype [delay3] mos_switch_instance { , mos_switch_instance } ;
| n_input_gatetype [drive_strength] [delay2] n_input_gate_instance {, n_input_gate_instance };
| n_output_gatetype [drive_strength] [delay2] n_output_gate_instance

{ , n_output_gate_instance } ;
| pass_en_switchtype [delay2] pass_enable_switch_instance {, pass_enable_switch_instance } ;
| pass_switchtype pass_switch_instance { , pass_switch_instance } ;
| pulldown [pulldown_strength] pull_gate_instance { , pull_gate_instance } ;
| pullup [pullup_strength] pull_gate_instance { , pull_gate_instance } ;

cmos_switch_instance ::= [name_of_gate_instance]

(output_terminal , input_terminal , ncontrol_terminal , pcontrol_terminal)
enable_gate_instance ::= [name_of_gate_instance]

(output_terminal , input_terminal , enable_terminal)
mos_switch_instance ::= [name_of_gate_instance]

(output_terminal , input_terminal , enable_terminal)
n_input_gate_instance ::= [name_of_gate_instance]

(output_terminal , input_terminal { , input_terminal })
n_output_gate_instance ::= [name_of_gate_instance]

(output_terminal { , output_terminal } , input_terminal)
pass_switch_instance ::= [name_of_gate_instance] (inout_terminal , inout_terminal)
pass_enable_switch_instance ::= [name_of_gate_instance]

(inout_terminal , inout_terminal , enable_terminal)
pull_gate_instance ::= [name_of_gate_instance] (output_terminal)
name_of_gate_instance ::= gate_instance_identifier [range]

pulldown_strength ::= (From Annex A - A.3.2)
(strength0 , strength1)

| (strength1 , strength0)
| (strength0)

pullup_strength ::= (strength0 , strength1)
| (strength1 , strength0)
| (strength1)

enable_terminal ::= (From Annex A - A.3.3)
expression

inout_terminal ::= net_lvalue

input_terminal ::= expression

ncontrol_terminal ::= expression

output_terminal ::= net_lvalue

pcontrol_terminal ::= expression

cmos_switchtype ::= (From Annex A - A.3.4)
cmos | rcmos

enable_gatetype ::= bufif0 | bufif1 | notif0 | notif1
mos_switchtype ::= nmos | pmos | rnmos | rpmos
n_input_gatetype ::= and | nand | or | nor | xor | xnor
n_output_gatetype ::= buf | not
pass_en_switchtype ::= tranif0 | tranif1 | rtranif1 | rtranif0
pass_switchtype ::= tran | rtran

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 77
This is an unapproved IEEE Standards Draft, subject to change.

7.1.1 The gate type specification

A gate or switch instance declaration shall begin with the keyword that specifies the gate or switch primitive

being used by the instances that follow in the declaration. Table 31 lists the keywords that shall begin a gate

or a switch instance declaration.

Explanations of the built-in gates and switches shown in Table 31 begin in 7.2.

7.1.2 The drive strength specification

An optional drive strength specification shall specify the strength of the logic values on the output terminals

of the gate instance. Only the instances of the gate primitives shown in Table 32 can have the drive strength

specification.

The drive strength specification for a gate instance, with the exception of pullup and pulldown, shall have a

strength1 specification and a strength0 specification. The strength1 specification shall specify the strength of

signals with a logic value 1, and the strength0 specification shall specify the strength of signals with a logic

value 0. The strength specification shall follow the gate type keyword and precede any delay specification.

The strength0 specification can precede or follow the strength1 specification. The strength1 and strength0
specifications shall be separated by a comma and enclosed within a pair of parentheses.

The pullup gate can have only strength1 specification; strength0 specification shall be optional. The pull-
down gate can have only strength0 specification; strength1 specification shall be optional.

The strength1 specification shall be one of the following keywords:

supply1 strong1 pull1 weak1

The strength0 specification shall be one of the following keywords:

supply0 strong0 pull0 weak0

Specifying highz1 as strength1 shall cause the gate or switch to output a logic value z in place of a 1. Spec-

ifying highz0 shall cause the gate to output a logic value z in place of a 0. The strength specifications

Table 31—Built-in gates and switches

n_input gates n_output gates three-state
gates pull gates MOS switches bidirectional

switches

and buf bufif0 pulldown cmos rtran

nand not bufif1 pullup nmos rtranif0

nor notif0 pmos rtranif1

or notif1 rcmos tran

xnor rnmos tranif0

xor rpmos tranif1

Table 32—Valid gate types for strength specifications

and nand buf not pulldown

or nor bufif0 notif0 pullup

xor xnor bufif1 notif1

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

78 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

(highz0, highz1) and (highz1, highz0) shall be considered invalid.

In the absence of a strength specification, the instances shall have the default strengths strong1 and strong0.

Example:

The following example shows a drive strength specification in a declaration of an open collector nor gate:

nor (highz1,strong0) n1(out1,in1,in2);

In this example, the nor gate outputs a z in place of a 1.

Logic strength modeling is discussed in more detail in 7.9 through 7.13.

7.1.3 The delay specification

An optional delay specification shall specify the propagation delay through the gates and switches in a dec-

laration. Gates and switches in declarations with no delay specification shall have no propagation delay. A

delay specification can contain up to three delay values, depending on the gate type. The pullup and pull-
down instance declarations shall not include delay specifications. Delays are discussed in more detail in

7.14.

7.1.4 The primitive instance identifier

An optional name can be given to a gate or switch instance. If multiple instances are declared as an array of

instances, an identifier shall be used to name the instances.

7.1.5 The range specification

There are many situations when repetitive instances are required. These instances shall differ from each

other only by the index of the vector to which they are connected.

In order to specify an array of instances, the instance name shall be followed by the range specification. The

range shall be specified by two constant expressions, left-hand index (lhi) and right-hand index (rhi), sep-

arated by a colon and enclosed within a pair of square brackets. A [lhi:rhi] range specification shall

represent an array of abs(lhi-rhi)+1 instances. Neither of the two constant expressions are required to

be zero, and lhi is not required to be larger than rhi. If both constant expressions are equal, only one

instance shall be generated.

An array of instances shall have a continuous range. One instance identifier shall be associated with only one

range to declare an array of instances.

The range specification shall be optional. If no range specification is given, a single instance shall be created.

Example:

A declaration shown below is illegal:

nand #2 t_nand[0:3] (...), t_nand[4:7] (...);

It could be declared correctly as one array of eight instances, or two arrays with unique names of four ele-

ments each:

nand #2 t_nand[0:7](...);
nand #2 x_nand[0:3] (...), y_nand[4:7] (...);

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 79
This is an unapproved IEEE Standards Draft, subject to change.

7.1.6 Primitive instance connection list

The terminal list describes how the gate or switch connects to the rest of the model. The gate or switch type

can limit these expressions. The connection list shall be enclosed in a pair of parentheses, and the terminals

shall be separated by commas. The output or bidirectional terminals shall always come first in the terminal

list, followed by the input terminals.

The terminal connections for an array of instances shall follow these rules:

— The bit length of each port expression in the declared instance-array shall be compared with the bit
length of each single-instance port or terminal in the instantiated module or primitive.

— For each port or terminal where the bit length of the instance-array port expression is the same as the
bit length of the single-instance port, the instance-array port expression shall be connected to each
single-instance port.

— If bit lengths are different, each instance shall get a part-select of the port expression as specified in
the range, starting with the right-hand index.

— Too many or too few bits to connect to all the instances shall be considered an error.

An individual instance from an array of instances shall be referenced in the same manner as referencing an

element of an array of regs.

Examples:

Example 1—The following declaration of nand_array declares four instances that can be referenced by

nand_array[1], nand_array[2], nand_array[3], and nand_array[4] respectively.

nand #2 nand_array[1:4](...) ;

Example 2—The two module descriptions that follow are equivalent except for indexed instance names, and

they demonstrate the range specification and connection rules for declaring an array of instances:

module driver (in, out, en);
input [3:0] in;
output [3:0] out;
input en;

bufif0 ar[3:0] (out, in, en); // array of three-state buffers

endmodule

module driver_equiv (in, out, en);
input [3:0] in;
output [3:0] out;
input en;

bufif0 ar3 (out[3], in[3], en); // each buffer declared separately
bufif0 ar2 (out[2], in[2], en);
bufif0 ar1 (out[1], in[1], en);
bufif0 ar0 (out[0], in[0], en);

endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

80 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Example 3—The two module descriptions that follow are equivalent except for indexed instance names, and

they demonstrate how different instances within an array of instances are connected when the port sizes do

not match.

Example 4—This example demonstrates how a series of modules can be chained together. Figure 4 shows

an equivalent schematic interconnection of DFF instances.

module busdriver (busin, bushigh, buslow, enh, enl);
input [15:0] busin;
output [7:0] bushigh, buslow;
input enh, enl;

driver busar3 (busin[15:12], bushigh[7:4], enh);
driver busar2 (busin[11:8], bushigh[3:0], enh);
driver busar1 (busin[7:4], buslow[7:4], enl);
driver busar0 (busin[3:0], buslow[3:0], enl);

endmodule

module busdriver_equiv (busin, bushigh, buslow, enh, enl);
input [15:0] busin;
output [7:0] bushigh, buslow;
input enh, enl;

driver busar[3:0] (.out({bushigh, buslow}), .in(busin),
 .en({enh, enh, enl, enl}));

endmodule

module dffn (q, d, clk);
parameter bits = 1;
input [bits-1:0] d;
output [bits-1:0] q;
input clk ;

DFF dff[bits-1:0] (q, d, clk); // create a row of D flip-flops

endmodule

module MxN_pipeline (in, out, clk);
parameter M = 3, N = 4; // M=width,N=depth
input [M-1:0] in;
output [M-1:0] out;
input clk;
wire [M*(N-1):1] t;

// #(M) redefines the bits parameter for dffn
// create p[1:N] columns of dffn rows (pipeline)

dffn #(M) p[1:N] ({out, t}, {t, in}, clk);

endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 81
This is an unapproved IEEE Standards Draft, subject to change.

Figure 4—Schematic diagram of interconnections in array of instances

7.2 and, nand, nor, or, xor, and xnor gates

The instance declaration of a multiple input logic gate shall begin with one of the following keywords:

and nand nor or xor xnor

The delay specification shall be zero, one, or two delays. If the specification contains two delays, the first

delay shall determine the output rise delay, the second delay shall determine the output fall delay, and the

smaller of the two delays shall apply to output transitions to x. If only one delay is specified, it shall specify

both the rise delay and the fall delay. If there is no delay specification, there shall be no propagation delay

through the gate.

These six logic gates shall have one output and one or more inputs. The first terminal in the terminal list

shall connect to the output of the gate and all other terminals connect to its inputs.

The truth tables for these gates, showing the result of two input values, appear in Table 33.

in[2:0]

clk

out[2:0]

p[4] p[3] p[2] p[1]

dff[2] dff[2]dff[2]dff[2]

dff[1] dff[1]dff[1]dff[1]

dff[0] dff[0] dff[0] dff[0]

t[3] t[6] t[9]

t[2] t[5] t[8]

t[1] t[4] t[7]

out[2]

out[1]

out[0]

in[2]

in[1]

in[0]

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

82 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Versions of these six logic gates having more than two inputs shall have a natural extension, but the number

of inputs shall not alter propagation delays.

Example:

The following example declares a two input and gate:

and a1 (out, in1, in2);

The inputs are in1 and in2. The output is out. The instance name is a1.

7.3 buf and not gates

The instance declaration of a multiple output logic gate shall begin with one of the following keywords:

buf not

The delay specification shall be zero, one, or two delays. If the specification contains two delays, the first

delay shall determine the output rise delay, the second delay shall determine the output fall delay, and the

smaller of the two delays shall apply to output transitions to x. If only one delay is specified, it shall specify

both the rise delay and the fall delay. If there is no delay specification, there shall be no propagation delay

through the gate.

Table 33—Truth tables for multiple input logic gates

and 0 1 x z

0 0 0 0 0

1 0 1 x x

x 0 x x x

z 0 x x x

nand 0 1 x z

0 1 1 1 1

1 1 0 x x

x 1 x x x

z 1 x x x

nor 0 1 x z

0 1 0 x x

1 0 0 0 0

x x 0 x x

z x 0 x x

xor 0 1 x z

0 0 1 x x

1 1 0 x x

x x x x x

z x x x x

xnor 0 1 x z

0 1 0 x x

1 0 1 x x

x x x x x

z x x x x

or 0 1 x z

0 0 1 x x

1 1 1 1 1

x x 1 x x

z x 1 x x

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 83
This is an unapproved IEEE Standards Draft, subject to change.

These two logic gates shall have one input and one or more outputs. The last terminal in the terminal list

shall connect to the input of the logic gate, and the other terminals shall connect to the outputs of the logic

gate.

Truth tables for these logic gates with one input and one output are shown in Table 34.

Example:

The following example declares a two output buf:

buf b1 (out1, out2, in);

The input is in. The outputs are out1 and out2. The instance name is b1.

7.4 bufif1, bufif0, notif1, and notif0 gates

The instance declaration of these three-state logic gates shall begin with one of the following keywords:

bufif0 bufif1 notif1 notif0

These four logic gates model three-state drivers. In addition to logic values 1 and 0, these gates can output

z.

The delay specification shall be zero, one, two, or three delays. If the delay specification contains three

delays, the first delay shall determine the rise delay, the second delay shall determine the fall delay, the third

delay shall determine the delay of transitions to z, and the smallest of the three delays shall determine the

delay of transitions to x. If the specification contains two delays, the first delay shall determine the output

rise delay, the second delay shall determine the output fall delay, and the smaller of the two delays shall

apply to output transitions to x and z. If only one delay is specified, it shall specify the delay for all output

transitions. If there is no delay specification, there shall be no propagation delay through the gate.

Some combinations of data input values and control input values can cause these gates to output either of

two values, without a preference for either value (see 7.10.2). These logic tables for these gates include two

symbols representing such unknown results. The symbol L shall represent a result that has a value 0 or z.

The symbol H shall represent a result that has a value 1 or z. Delays on transitions to H or L shall be treated

the same as delays on transitions to x.

Table 34—Truth tables for multiple output logic gates

buf

input output

0 0

1 1

x x

z x

not

input output

0 1

1 0

x x

z x

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

84 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

These four logic gates shall have one output, one data input, and one control input. The first terminal in the

terminal list shall connect to the output, the second terminal shall connect to the data input, and the third ter-

minal shall connect to the control input.

Table 35 presents the logic tables for these gates.

Example:

The following example declares an instance of bufif1:

bufif1 bf1 (outw, inw, controlw);

The output is outw, the input is inw, and the control is controlw. The instance name is bf1.

7.5 MOS switches

The instance declaration of a MOS switch shall begin with one of the following keywords:

cmos nmos pmos rcmos rnmos rpmos

The cmos and rcmos switches are described in 7.7.

The pmos keyword stands for the P-type metal-oxide semiconductor (PMOS) transistor and the nmos key-

word stands for the N-type metal-oxide semiconductor (NMOS) transistor. PMOS and NMOS transistors

have relatively low impedance between their sources and drains when they conduct. The rpmos keyword

stands for resistive PMOS transistor and the rnmos keyword stands for resistive NMOS transistor. Resistive

Table 35—Truth tables for three-state logic gates

bufif0
CONTROL

0 1 x z

D 0 0 z L L

A 1 1 z H H

T x x z x x

A z x z x x

bufif1
CONTROL

0 1 x z

D 0 z 0 L L

A 1 z 1 H H

T x z x x x

A z z x x x

notif0
CONTROL

0 1 x z

D 0 1 z H H

A 1 0 z L L

T x x z x x

A z x z x x

notif1
CONTROL

0 1 x z

D 0 z 1 H H

A 1 z 0 L L

T x z x x x

A z z x x x

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 85
This is an unapproved IEEE Standards Draft, subject to change.

PMOS and resistive NMOS transistors have significantly higher impedance between their sources and drains

when they conduct than PMOS and NMOS transistors have. The load devices in static MOS networks are

examples of rpmos and rnmos transistors. These four switches are unidirectional channels for data similar

to the bufif gates.

The delay specification shall be zero, one, two, or three delays. If the delay specification contains three

delays, the first delay shall determine the rise delay, the second delay shall determine the fall delay, the third

delay shall determine the delay of transitions to z, and the smallest of the three delays shall determine the

delay of transitions to x. If the specification contains two delays, the first delay shall determine the output

rise delay, the second delay shall determine the output fall delay, and the smaller of the two delays shall

apply to output transitions to x and z. If only one delay is specified, it shall specify the delay for all output

transitions. If there is no delay specification, there shall be no propagation delay through the switch.

Some combinations of data input values and control input values can cause these switches to output either of

two values, without a preference for either value. The logic tables for these switches include two symbols

representing such unknown results. The symbol L represents a result that has a value 0 or z. The symbol H
represents a result that has a value 1 or z. Delays on transitions to H and L shall be the same as delays on

transitions to x.

These four switches shall have one output, one data input, and one control input. The first terminal in the ter-

minal list shall connect to the output, the second terminal shall connect to the data input, and the third termi-

nal shall connect to the control input.

The nmos and pmos switches shall pass signals from their inputs and through their outputs with a change in

the strength of the signal in only one case, as discussed in 7.11. The rnmos and rpmos switches shall reduce

the strength of signals that propagate through them, as discussed in 7.12.

Table 36 presents the logic tables for these switches.

Example:

The following example declares a pmos switch:

pmos p1 (out, data, control);

The output is out, the data input is data, and the control input is control. The instance name is p1.

Table 36—Truth tables for MOS switches

pmos
rpmos

CONTROL

0 1 x z

D 0 0 z L L

A 1 1 z H H

T x x z x x

A z z z z z

nmos
rnmos

CONTROL

0 1 x z

D 0 z 0 L L

A 1 z 1 H H

T x z x x x

A z z z z z

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

86 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

7.6 Bidirectional pass switches

The instance declaration of a bidirectional pass switch shall begin with one of the following keywords:

tran tranif1 tranif0
rtran rtranif1 rtranif0

The bidirectional pass switches shall not delay signals propagating through them. When tranif0, tranif1,

rtranif0, or rtranif1 devices are turned off they shall block signals, and when they are turned on they shall

pass signals. The tran and rtran devices cannot be turned off, and they shall always pass signals.

The delay specifications for tranif1, tranif0, rtranif1, and rtranif0 devices shall be zero, one, or two

delays. If the specification contains two delays, the first delay shall determine the turn-on delay, and the sec-

ond delay shall determine the turn-off delay, and the smaller of the two delays shall apply to output transi-

tions to x and z. If only one delay is specified, it shall specify both the turn-on and the turn-off delays. If

there is no delay specification, there shall be no turn-on or turn-off delay for the bidirectional pass switch.

The bidirectional pass switches tran and rtran shall not accept delay specification.

The tranif1, tranif0, rtranif1, and rtranif0 devices shall have three items in their terminal lists. The first

two shall be bidirectional terminals that conduct signals to and from the devices, and the third terminal shall

connect to a control input. The tran and rtran devices shall have terminal lists containing two bidirectional

terminals. Both bidirectional terminals shall unconditionally conduct signals to and from the devices, allow-

ing signals to pass in either direction through the devices. The bidirectional terminals of all six devices shall

be connected only to scalar nets or bit-selects of vector nets.

The tran, tranif0, and tranif1 devices shall pass signals with an alteration in their strength in only one case,

as discussed in 7.11. The rtran, rtranif0, and rtranif1 devices shall reduce the strength of the signals pass-

ing through them according to rules discussed in 7.12.

Example:

The following example declares an instance of tranif1:

tranif1 t1 (inout1,inout2,control);

The bidirectional terminals are inout1 and inout2. The control input is control. The instance name is

t1.

7.7 CMOS switches

The instance declaration of a CMOS switch shall begin with one of the following keywords:

cmos rcmos

The delay specification shall be zero, one, two, or three delays. If the delay specification contains three

delays, the first delay shall determine the rise delay, the second delay shall determine the fall delay, the third

delay shall determine the delay of transitions to z, and the smallest of the three delays shall determine the

delay of transitions to x. Delays in transitions to H or L are the same as delays in transitions to x. If the spec-

ification contains two delays, the first delay shall determine the output rise delay, the second delay shall

determine the output fall delay, and the smaller of the two delays shall apply to output transitions to x and z.

If only one delay is specified, it shall specify the delay for all output transitions. If there is no delay specifi-

cation, there shall be no propagation delay through the switch.

The cmos and rcmos switches shall have a data input, a data output, and two control inputs. In the terminal

list, the first terminal shall connect to the data output, the second terminal shall connect to the data input, the

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 87
This is an unapproved IEEE Standards Draft, subject to change.

third terminal shall connect to the n-channel control input, and the last terminal shall connect to the p-chan-

nel control input.

The cmos gate shall pass signals with an alteration in their strength in only one case, as discussed in 7.11.

The rcmos gate shall reduce the strength of signals passing through it according to rules described in 7.12.

The cmos switch shall be treated as the combination of a pmos switch and an nmos switch. The rcmos
switch shall be treated as the combination of an rpmos switch and an rnmos switch. The combined switches

in these configurations shall share data input and data output terminals, but they shall have separate control

inputs.

Example:

The equivalence of the cmos gate to the pairing of an nmos gate and a pmos gate is shown in the following

example:

7.8 pullup and pulldown sources

The instance declaration of a pullup or a pulldown source shall begin with one of the following keywords:

pullup pulldown

A pullup source shall place a logic value 1 on the nets connected in its terminal list. A pulldown source

shall place a logic value 0 on the nets connected in its terminal list. The signals that these sources place on

nets shall have pull strength in the absence of a strength specification. If conflicting strength specification is

declared, it shall be ignored. There shall be no delay specifications for these sources.

Example:

The following example declares two pullup instances:

pullup (strong1) p1 (neta), p2 (netb);

In this example, the p1 instance drives neta and the p2 instance drives netb.

cmos (w, datain, ncontrol, pcontrol);

is equivalent to:

nmos (w, datain, ncontrol);
pmos (w, datain, pcontrol);

nmos

pmos

ncontrol

pcontrol

w datain

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

88 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

7.9 Logic strength modeling

The Verilog HDL provides for accurate modeling of signal contention, bidirectional pass gates, resistive

MOS devices, dynamic MOS, charge sharing, and other technology-dependent network configurations by

allowing scalar net signal values to have a full range of unknown values and different levels of strength or

combinations of levels of strength. This multiple-level logic strength modeling resolves combinations of sig-

nals into known or unknown values to represent the behavior of hardware with improved accuracy.

A strength specification shall have two components

a) The strength of the 0 portion of the net value, called strength0, designated as one of the following:

supply0 strong0 pull0 weak0 highz0

b) The strength of the 1 portion of the net value, called strength1, designated as one of the following:

supply1 strong1 pull1 weak1 highz1

The combinations (highz0, highz1) and (highz1, highz0) shall be considered illegal.

Despite this division of the strength specification, it is helpful to consider strength as a property occupying

regions of a continuum in order to predict the results of combinations of signals.

Table 37 demonstrates the continuum of strengths. The left column lists the keywords used in specifying

strengths. The right column gives correlated strength levels.

Table 37—Strength levels for scalar net signal values

Strength name Strength level

supply0 7

strong0 6

pull0 5

large0 4

weak0 3

medium0 2

small0 1

highz0 0

highz1 0

small1 1

medium1 2

weak1 3

large1 4

pull1 5

strong1 6

supply1 7

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 89
This is an unapproved IEEE Standards Draft, subject to change.

In Table 37, there are four driving strengths:

supply strong pull weak

Signals with driving strengths shall propagate from gate outputs and continuous assignment outputs.

In Table 37, there are three charge storage strengths:

large medium small

Signals with the charge storage strengths shall originate in the trireg net type.

It is possible to think of the strengths of signals in the preceding table as locations on the scale in Figure 5.

Figure 5—Scale of strengths

Discussions of signal combinations later in this section employs graphics similar to those used in Figure 5.

If the signal value of a net is known, all of its strength levels shall be in either the strength0 part of the scale

represented by Figure 5, or all strength levels shall be in its strength1 part. If the signal value of a net is

unknown, it shall have strength levels in both the strength0 and the strength1 parts. A net with a signal value

z shall have a strength level only in one of the 0 subdivisions of the parts of the scale.

7.10 Strengths and values of combined signals

In addition to a signal value, a net shall have either a single unambiguous strength level or an ambiguous

strength consisting of more than one level. When signals combine, their strengths and values shall determine

the strength and value of the resulting signal in accordance with the principles in 7.10.1 through 7.10.4.

7.10.1 Combined signals of unambiguous strength

This subclause deals with combinations of signals in which each signal has a known value and a single

strength level.

If two or more signals of unequal strength combine in a wired net configuration, the stronger signal shall

dominate all the weaker drivers and determine the result. The combination of two or more signals of like

value shall result in the same value with the greater of all the strengths. The combination of signals identical

in strength and value shall result in the same signal.

The combination of signals with unlike values and the same strength can have three possible results. Two of

the results occur in the presence of wired logic and the third occurs in its absence. Wired logic is discussed

in 7.10.4. The result in the absence of wired logic is the subject of Figure 7.

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

90 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Example:

Figure 6—Combining unequal strengths

In Figure 6, the numbers in parentheses indicate the relative strengths of the signals. The combination of a

pull1 and a strong0 results in a strong0, which is the stronger of the two signals.

7.10.2 Ambiguous strengths: sources and combinations

There are several classifications of signals possessing ambiguous strengths

— Signals with known values and multiple strength levels
— Signals with a value x, which have strength levels consisting of subdivisions of both the strength1

and the strength0 parts of the scale of strengths in Figure 5
— Signals with a value L, which have strength levels that consist of high impedance joined with

strength levels in the strength0 part of the scale of strengths in Figure 5
— Signals with a value H, which have strength levels that consist of high impedance joined with

strength levels in the strength1 part of the scale of strengths in Figure 5

Many configurations can produce signals of ambiguous strength. When two signals of equal strength and

opposite value combine, the result shall be a value x, along with the strength levels of both signals and all

the smaller strength levels.

Examples:

Figure 7 shows the combination of a weak signal with a value 1 and a weak signal with a value 0 yielding a

signal with weak strength and a value x.

Figure 7—Combination of signals of equal strength and opposite values

This output signal is described in Figure 8.

Pu1(5)

St0(6)
St0(6)

Su1(7)

La1(4)
Su1(7)

We1

We0

WeX

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 91
This is an unapproved IEEE Standards Draft, subject to change.

Figure 8—Weak x signal strength

An ambiguous signal strength can be a range of possible values. An example is the strength of the output

from the three-state drivers with unknown control inputs as shown in Figure 9.

Figure 9—Bufifs with control inputs of x

The output of the bufif1 in Figure 9 is a strong H, composed of the range of values described in Figure 10.

Figure 10—Strong H range of values

The output of the bufif0 in Figure 9 is a strong L, composed of the range of values described in Figure 11.

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

X

St1

X

We0

StH

StL

bufif1

bufif0

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

92 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Figure 11—Strong L range of values

The combination of two signals of ambiguous strength shall result in a signal of ambiguous strength. The

resulting signal shall have a range of strength levels that includes the strength levels in its component sig-

nals. The combination of outputs from two three-state drivers with unknown control inputs, shown in

Figure 12, is an example.

Figure 12—Combined signals of ambiguous strength

In Figure 12, the combination of signals of ambiguous strengths produces a range that includes the extremes

of the signals and all the strengths between them, as described in Figure 13.

Figure 13—Range of strengths for an unknown signal

The result is a value x because its range includes the values 1 and 0. The number 35, which precedes the x,

is a concatenation of two digits. The first is the digit 3, which corresponds to the highest strength0 level for

the result. The second digit, 5, corresponds to the highest strength1 level for the result.

Switch networks can produce a ranges of strengths of the same value, such as the signals from the upper and

lower configurations in Figure 14.

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

X

X

Pu1

We0

PuH

WeL

35X

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 93
This is an unapproved IEEE Standards Draft, subject to change.

Figure 14—Ambiguous strengths from switch networks

In Figure 14, the upper combination of a reg, a gate controlled by a reg of unspecified value, and a pullup

produces a signal with a value of 1 and a range of strengths (651) described in Figure 15.

Figure 15—Range of two strengths of a defined value

In Figure 14, the lower combination of a pulldown, a gate controlled by a reg of unspecified value, and an

and gate produces a signal with a value 0 and a range of strengths (530) described in Figure 16.

Figure 16—Range of three strengths of a defined value

reg a

reg b Vcc

reg g

reg d

reg e

651

530

56X

pullup=x

=1

=x

=0

=0

pulldown ground

and
We0 (3)

Pu0 (5)

Pu1

(6)

(5)

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

94 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

When the signals from the upper and lower configurations in Figure 14 combine, the result is an unknown

with a range (56x) determined by the extremes of the two signals shown in Figure 17.

Figure 17—Unknown value with a range of strengths

In Figure 14, replacing the pulldown in the lower configuration with a supply0 would change the range of

the result to the range (StX) described in Figure 18.

The range in Figure 18 is strong x, because it is unknown and the extremes of both its components are

strong. The extreme of the output of the lower configuration is strong because the lower pmos reduces the

strength of the supply0 signal. This modeling feature is discussed in 7.11.

Figure 18—Strong X range

Logic gates produce results with ambiguous strengths as well as three-state drivers. Such a case appears in

Figure 19. The and gate N1 is declared with highz0 strength, and N2 is declared with weak0 strength.

Figure 19—Ambiguous strength from gates

In Figure 19, reg b has an unspecified value, so input to the upper and gate is strong x. The upper and gate

has a strength specification including highz0. The signal from the upper and gate is a strong H composed of

the values as described in Figure 20.

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

StH

36X

We0

a=1

b=X

c=0

d=0

N1

N2

and (strong1,highz0) N1(a,b);

and (strong1, weak0) N2(c,d);

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 95
This is an unapproved IEEE Standards Draft, subject to change.

Figure 20—Ambiguous strength signal from a gate

HiZ0 is part of the result, because the strength specification for the gate in question specified that strength

for an output with a value 0. A strength specification other than high impedance for the 0 value output

results in a gate output value x. The output of the lower and gate is a weak 0 as described in Figure 21.

Figure 21—Weak 0

When the signals combine, the result is the range (36x) as described in Figure 22.

Figure 22—Ambiguous strength in combined gate signals

Figure 22 presents the combination of an ambiguous signal and an unambiguous signal. Such combinations

are the topic of 7.10.3.

7.10.3 Ambiguous strength signals and unambiguous signals

The combination of a signal with unambiguous strength and known value with another signal of ambiguous

strength presents several possible cases. To understand a set of rules governing this type of combination, it is

necessary to consider the strength levels of the ambiguous strength signal separately from each other and rel-

ative to the unambiguous strength signal. When a signal of known value and unambiguous strength com-

bines with a component of a signal of ambiguous strength, these shall be the effects:

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

96 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

a) The strength levels of the ambiguous strength signal that are greater than the strength level of the

unambiguous signal shall remain in the result.

b) The strength levels of the ambiguous strength signal that are smaller than or equal to the strength

level of the unambiguous signal shall disappear from the result, subject to rule c.

c) If the operation of rule a and rule b results in a gap in strength levels because the signals are of

opposite value, the signals in the gap shall be part of the result.

The following figures show some applications of the rules.

Figure 23—Elimination of strength levels

In Figure 23, the strength levels in the ambiguous strength signal that are smaller than or equal to the

strength level of the unambiguous strength signal disappear from the result, demonstrating rule b.

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

Combining the two signals above results in the following signal:

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 97
This is an unapproved IEEE Standards Draft, subject to change.

Figure 24—Result demonstrating a range and the
elimination of strength levels of two values

In Figure 24, rules a, b, and c apply. The strength levels of the ambiguous strength signal that are of opposite

value and lesser strength than the unambiguous strength signal disappear from the result. The strength levels

in the ambiguous strength signal that are less than the strength level of the unambiguous strength signal, and

of the same value, disappear from the result. The strength level of the unambiguous strength signal and the

greater extreme of the ambiguous strength signal define a range in the result.

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

Combining the two signals above results in the following signal:

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

98 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Figure 25—Result demonstrating a range and the
elimination of strength levels of one value

In Figure 25, rules a and b apply. The strength levels in the ambiguous strength signal that are less than the

strength level of the unambiguous strength signal disappear from the result. The strength level of the unam-

biguous strength signal and the strength level at the greater extreme of the ambiguous strength signal define

a range in the result.

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

Combining the two signals above results in the following signal:

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 99
This is an unapproved IEEE Standards Draft, subject to change.

Figure 26—A range of both values

In Figure 26, rules a, b, and c apply. The greater extreme of the range of strengths for the ambiguous

strength signal is larger than the strength level of the unambiguous strength signal. The result is a range

defined by the greatest strength in the range of the ambiguous strength signal and by the strength level of the

unambiguous strength signal.

7.10.4 Wired logic net types

The net types triand, wand, trior, and wor shall resolve conflicts when multiple drivers have the same

strength. These net types shall resolve signal values by treating signals as inputs of logic functions.

Examples:

Consider the combination of two signals of unambiguous strength in Figure 27.

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

Combining the two signals above results in the following signal:

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

100 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Figure 27—Wired logic with unambiguous strength signals

The combination of the signals in Figure 27, using wired and logic, produces a result with the same value as

the result produced by an and gate with the value of the two signals as its inputs. The combination of signals

using wired or logic produces a result with the same value as the result produced by an or gate with the val-

ues of the two signals as its inputs. The strength of the result is the same as the strength of the combined sig-

nals in both cases. If the value of the upper signal changes so that both signals in Figure 27 possess a value

1, then the results of both types of logic have a value 1.

When ambiguous strength signals combine in wired logic, it is necessary to consider the results of all combi-

nations of each of the strength levels in the first signal with each of the strength levels in the second signal,

as shown in Figure 28.

wired AND logic value result: 0
wired OR logic value result: 1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 101
This is an unapproved IEEE Standards Draft, subject to change.

Figure 28—Wired logic and ambiguous strengths

signal1 signal2 result

strength value strength value strength value

5 0 5 1 5 1

6 0 5 1 6 0

signal1 signal2 result

strength value strength value strength value

5 0 5 1 5 0

6 0 5 1 6 0

Signal 1

Signal 2

The result is the following signal:

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

The combinations of strength levels for or logic appear in the
following chart:

The result is the following signal:

The combinations of strength levels for and logic appear in the
following chart:

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

102 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

7.11 Strength reduction by nonresistive devices

The nmos, pmos, and cmos switches shall pass the strength from the data input to the output, except that a

supply strength shall be reduced to a strong strength.

The tran, tranif0, and tranif1 switches shall not affect signal strength across the bidirectional terminals,

except that a supply strength shall be reduced to a strong strength.

7.12 Strength reduction by resistive devices

The rnmos, rpmos, rcmos, rtran, rtranif1, and rtranif0 devices shall reduce the strength of signals that

pass through them according to Table 38.

7.13 Strengths of net types

The tri0, tri1, supply0, and supply1 net types shall generate signals with specific strength levels. The trireg
declaration can specify either of two signal strength levels other than a default strength level.

7.13.1 tri0 and tri1 net strengths

The tri0 net type models a net connected to a resistive pulldown device. In the absence of an overriding

source, such a signal shall have a value 0 and a pull strength. The tri1 net type models a net connected to a

resistive pullup device. In the absence of an overriding source, such a signal shall have a value 1 and a pull
strength.

7.13.2 trireg strength

The trireg net type models charge storage nodes. The strength of the drive resulting from a trireg net that is

in the charge storage state (that is, a driver charged the net and then went to high impedance) shall be one of

these three strengths: large, medium, or small. The specific strength associated with a particular trireg net

shall be specified by the user in the net declaration. The default shall be medium. The syntax of this specifi-

cation is described in 3.4.1.

7.13.3 supply0 and supply1 net strengths

The supply0 net type models ground connections. The supply1 net type models connections to power sup-

plies. The supply0 and supply1 net types shall have supply driving strengths.

Table 38—Strength reduction rules

Input strength Reduced strength

Supply drive Pull drive

Strong drive Pull drive

Pull drive Weak drive

Large capacitor Medium capacitor

Weak drive Medium capacitor

Medium capacitor Small capacitor

Small capacitor Small capacitor

High impedance High impedance

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 103
This is an unapproved IEEE Standards Draft, subject to change.

7.14 Gate and net delays

Gate and net delays provide a means of more accurately describing delays through a circuit. The gate delays
specify the signal propagation delay from any gate input to the gate output. Up to three values per output

representing rise, fall, and turn-off delays can be specified (see 7.2 through 7.8).

Net delays refer to the time it takes from any driver on the net changing value to the time when the net value

is updated and propagated further. Up to three delay values per net can be specified.

For both gates and nets, the default delay shall be zero when no delay specification is given. When one delay

value is given, then this value shall be used for all propagation delays associated with the gate or the net.

When two delays are given, the first delay shall specify the rise delay and the second delay shall specify the

fall delay. The delay when the signal changes to high impedance or to unknown shall be the lesser of the two

delay values.

For a three-delay specification

— The first delay refers to the transition to the 1 value (rise delay).
— The second delay refers to the transition to the 0 value (fall delay).
— The third delay refers to the transition to the high-impedance value.

When a value changes to the unknown (x) value, the delay is the smallest of the three delays. The strength of

the input signal shall not affect the propagation delay from an input to an output.

Table 39 summarizes the from-to propagation delay choice for the two- and three-delay specifications.

Table 39—Rules for propagation delays

Delay used if there are

From value: To value: 2 delays 3 delays

0 1 d1 d1

0 x min(d1, d2) min(d1, d2, d3)

0 z min(d1, d2) d3

1 0 d2 d2

1 x min(d1, d2) min(d1, d2, d3)

1 z min(d1, d2) d3

x 0 d2 d2

x 1 d1 d1

x z min(d1, d2) d3

z 0 d2 d2

z 1 d1 d1

z x min(d1, d2) min(d1, d2, d3)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

104 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Examples:

Example 1—The following is an example of a delay specification with one, two, and three delays:

and #(10) a1 (out, in1, in2); // only one delay
and #(10,12) a2 (out, in1, in2); // rise and fall delays
bufif0 #(10,12,11) b3 (out, in, ctrl);// rise, fall, and turn-off delays

Example 2—The following example specifies a simple latch module with three-state outputs, where individ-

ual delays are given to the gates. The propagation delay from the primary inputs to the outputs of the module

will be cumulative, and it depends on the signal path through the network.

7.14.1 min:typ:max delays

The syntax for delays on gate primitives (including user-defined primitives; see Clause 8), nets, and contin-

uous assignments shall allow three values each for the rising, falling, and turn-off delays. The minimum,

typical, and maximum values for each delay shall be specified as constant expressions separated by colons.

There shall be no required relation (e.g., min ≤ typ ≤ max) between the expressions for minimum, typical,

and maximum delays. These can be any three constant expressions.

Examples:

The following example shows min:typ:max values for rising, falling, and turn-off delays:

The syntax for delay controls in procedural statements (see 9.7) also allows minimum, typical, and maxi-

mum values. These are specified by expressions separated by colons. The following example illustrates this

concept.

module tri_latch (qout, nqout, clock, data, enable);
output qout, nqout;
input clock, data, enable;
tri qout, nqout;

not #5 n1 (ndata, data);
nand #(3,5) n2 (wa, data, clock),

n3 (wb, ndata, clock);
nand #(12,15) n4 (q, nq, wa),

n5 (nq, q, wb);
bufif1 #(3,7,13) q_drive (qout, q, enable),

nq_drive (nqout, nq, enable);

endmodule

module iobuf (io1, io2, dir);
. . .

bufif0 #(5:7:9, 8:10:12, 15:18:21) b1 (io1, io2, dir);
bufif1 #(6:8:10, 5:7:9, 13:17:19) b2 (io2, io1, dir);

. . .
endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 105
This is an unapproved IEEE Standards Draft, subject to change.

7.14.2 trireg net charge decay

Like all nets, the delay specification in a trireg net declaration can contain up to three delays. The first two

delays shall specify the delay for transition to the 1 and 0 logic states when the trireg net is driven to these

states by a driver. The third delay shall specify the charge decay time instead of the delay in a transition to

the z logic state. The charge decay time specifies the delay between when the drivers of a trireg net turn off

and when its stored charge can no longer be determined.

A trireg net does not need a turn-off delay specification because a trireg net never makes a transition to the

z logic state. When the drivers of a trireg net make transitions from the 1, 0, or x logic states to off, the

trireg net shall retain the previous 1, 0, or x logic state that was on its drivers. The z value shall not propa-

gate from the drivers of a trireg net to a trireg net. A trireg net can only hold a z logic state when z is the

initial logic state of the trireg net or when the trireg net is forced to the z state with a force statement (see

9.3.2).

A delay specification for charge decay models a charge storage node that is not ideal—a charge storage node

whose charge leaks out through its surrounding devices and connections.

The following subclauses describe the charge decay process and the delay specification for charge decay.

7.14.2.1 The charge decay process

Charge decay is the cause of transition of a 1 or 0 that is stored in a trireg net to an unknown value (x) after

a specified delay. The charge decay process shall begin when the drivers of the trireg net turn off and the

trireg net starts to hold charge. The charge decay process shall end under the following two conditions:

a) The delay specified by charge decay time elapses and the trireg net makes a transition from 1 or 0
to x.

b) The drivers of trireg net turn on and propagate a 1, 0, or x into the trireg net.

7.14.2.2 The delay specification for charge decay time

The third delay in a trireg net declaration shall specify the charge decay time. A three-valued delay specifi-

cation in a trireg net declaration shall have the following form:

#(d1, d2, d3) // (rise_delay, fall_delay, charge_decay_time)

The charge decay time specification in a trireg net declaration shall be preceded by a rise and a fall delay

specification.

Examples:

Example 1—The following example shows a specification of the charge decay time in a trireg net declara-

tion:

trireg (large) #(0,0,50) cap1;

parameter min_hi = 97, typ_hi = 100, max_hi = 107;
reg clk;

always begin
#(95:100:105) clk = 1;
#(min_hi:typ_hi:max_hi) clk = 0;

end

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

106 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

This example declares a trireg net named cap1. This trireg net stores a large charge. The delay specifica-

tions for the rise delay is 0, the fall delay is 0, and the charge decay time specification is 50 time units.

Example 2—The next example presents a source description file that contains a trireg net declaration with a

charge decay time specification. Figure 29 shows an equivalent schematic for the source description.

Figure 29—Trireg net with capacitance

data

gate

nmos1
trireg

module capacitor;
reg data, gate;

// trireg declaration with a charge decay time of 50 time units
trireg (large) #(0,0,50) cap1;

nmos nmos1 (cap1, data, gate); // nmos that drives the trireg

initial begin
$monitor("%0d data=%v gate=%v cap1=%v", $time, data, gate, cap1);
data = 1;
// Toggle the driver of the control input to the nmos switch

 gate = 1;
#10 gate = 0;
#30 gate = 1;
#10 gate = 0;
#100 $finish;

end
endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 107
This is an unapproved IEEE Standards Draft, subject to change.

8. User-defined primitives (UDPs)

This clause describes a modeling technique to augment the set of predefined gate primitives by designing

and specifying new primitive elements called user-defined primitives (UDPs). Instances of these new UDPs

can be used in exactly the same manner as the gate primitives to represent the circuit being modeled.

The following two types of behavior can be represented in a user-defined primitive:

a) Combinational—modeled by a combinational UDP

b) Sequential—modeled by a sequential UDP

A combinational UDP uses the value of its inputs to determine the next value of its output. A sequential

UDP uses the value of its inputs and the current value of its output to determine the value of its output.

Sequential UDPs provide a way to model sequential circuits such as flip-flops and latches. A sequential UDP

can model both level-sensitive and edge-sensitive behavior.

Each UDP has exactly one output, which can be in one of three states: 0, 1, or x. The three-state value z is

not supported. In sequential UDPs, the output always has the same value as the internal state.

The z values passed to UDP inputs shall be treated the same as x values.

8.1 UDP definition

UDP definitions are independent of modules; they are at the same level as module definitions in the syntax

hierarchy. They can appear anywhere in the source text, either before or after they are instantiated inside a

module. They shall not appear between the keywords module and endmodule.

NOTE—Implementations may limit the maximum number of UDP definitions in a model, but they shall allow at least

256.

The formal syntax of the UDP definition is given in Syntax 8-1.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

108 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 8-1—Syntax for user-defined primitives

udp_declaration ::= (From Annex A - A.5.1)
{ attribute_instance } primitive udp_identifier (udp_port_list) ;
udp_port_declaration { udp_port_declaration }

udp_body

endprimitive
| { attribute_instance } primitive udp_identifier (udp_declaration_port_list) ;
udp_body

endprimitive
udp_port_list ::= (From Annex A - A.5.2)

output_port_identifier , input_port_identifier { , input_port_identifier }

udp_declaration_port_list ::=

udp_output_declaration , udp_input_declaration { , udp_input_declaration }

udp_port_declaration ::=

udp_output_declaration ;
| udp_input_declaration ;
| udp_reg_declaration ;

udp_output_declaration ::=

{ attribute_instance } output port_identifier

| { attribute_instance } output reg port_identifier [= constant_expression]

udp_input_declaration ::=

{ attribute_instance } input list_of_port_identifiers

udp_reg_declaration ::=

{ attribute_instance } reg variable_identifier

udp_body ::= (From Annex A - A.5.3)
combinational_body | sequential_body

combinational_body ::=

table combinational_entry { combinational_entry } endtable
combinational_entry ::=

level_input_list : output_symbol ;
sequential_body ::=

[udp_initial_statement] table sequential_entry { sequential_entry } endtable
udp_initial_statement ::=

initial output_port_identifier = init_val ;
init_val ::= 1'b0 | 1'b1 | 1'bx | 1'bX | 1'B0 | 1'B1 | 1'Bx | 1'BX | 1 | 0
sequential_entry ::=

seq_input_list : current_state : next_state ;
seq_input_list ::=

level_input_list | edge_input_list

level_input_list ::=

level_symbol { level_symbol }

edge_input_list ::=

{ level_symbol } edge_indicator { level_symbol }

edge_indicator ::=

(level_symbol level_symbol) | edge_symbol

current_state ::= level_symbol

next_state ::=output_symbol | -
output_symbol ::= 0 | 1 | x | X
level_symbol ::= 0 | 1 | x | X | ? | b | B
edge_symbol ::= r | R | f | F | p | P | n | N | *

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 109
This is an unapproved IEEE Standards Draft, subject to change.

8.1.1 UDP header

A UDP definition shall have one of two alternate forms. The first form shall begin with the keyword primi-
tive, followed by an identifier, which shall be the name of the UDP. This in turn shall be followed by a

comma-separated list of port names enclosed in parentheses, which shall be followed by a semicolon. The

UDP definition header shall be followed by port declarations and a state table. The UDP definition shall be

terminated by the keyword endprimitive.

The second form shall begin with the keyword primitive, followed by an identifier, which shall be the name

of the UDP. This in turn shall be followed by a comma separated list of port declarations enclosed in paren-

thesis, followed by a semicolon. The UDP definition header shall be followed by a state table. The UDP def-

inition shall be terminated by the keyword endprimitive.

UDPs have multiple input ports and exactly one output port; bidirectional inout ports are not permitted on

UDPs. All ports of a UDP shall be scalar; vector ports are not permitted.

The output port shall be the first port in the port list.

8.1.2 UDP port declarations

UDPs shall contain input and output port declarations. The output port declaration begins with the keyword

output, followed by one output port name. The input port declaration begins with the keyword input, fol-

lowed by one or more input port names.

Sequential UDPs shall contain a reg declaration for the output port, either in addition to the output declara-

tion, when the UDP is declared using the first form of a UDP Header, or as part of the output_declaration, in

either case. Combinational UDPs cannot contain a reg declaration. The initial value of the output port can be

specified in an initial statement in a sequential UDP (see 8.1.3).

NOTE—Implementations may limit the maximum number of inputs to a UDP, but they shall allow at least 9 inputs for
sequential UDPs and 10 inputs for combinational UDPs.

8.1.3 Sequential UDP initial statement

The sequential UDP initial statement specifies the value of the output port when simulation begins. This

statement begins with the keyword initial. The statement that follows shall be an assignment statement that

assigns a single-bit literal value to the output port.

8.1.4 UDP state table

The state table defines the behavior of a UDP. It begins with the keyword table and is terminated with the

keyword endtable. Each row of the table is terminated by a semicolon.

Each row of the table is created using a variety of characters (see Table 40), which indicate input values and

output state. Three states—0, 1, and x—are supported. The z state is explicitly excluded from consideration

in user-defined primitives. A number of special characters are defined to represent certain combinations of

state possibilities. These are described in Table 40.

The order of the input state fields of each row of the state table is taken directly from the port list in the UDP

definition header. It is not related to the order of the input port declarations.

Combinational UDPs have one field per input and one field for the output. The input fields are separated

from the output field by a colon (:). Each row defines the output for a particular combination of the input val-

ues (see 8.2).

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

110 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Sequential UDPs have an additional field inserted between the input fields and the output field. This addi-

tional field represents the current state of the UDP and is considered equivalent to the current output value. It

is delimited by colons. Each row defines the output based on the current state, particular combinations of

input values, and at most one input transition (see 8.4). A row such as the one shown below is illegal:

(01) (10) 0 : 0 : 1 ;

If all input values are specified as x, then the output state shall be specified as x.

It is not necessary to explicitly specify every possible input combination. All combinations of input values

that are not explicitly specified result in a default output state of x.

It is illegal to have the same combination of inputs, including edges, specified for different outputs.

8.1.5 Z values in UDP

The z value in a table entry is not supported and it is considered illegal. The z values passed to UDP inputs

shall be treated the same as x values.

8.1.6 Summary of symbols

To improve the readability and to ease writing of the state table, several special symbols are provided.

Table 40 summarizes the meaning of all the value symbols that are valid in the table part of a UDP defini-

tion.

Table 40—UDP table symbols

Symbol Interpretation Comments

0 Logic 0

1 Logic 1

x Unknown Permitted in the input fields of all

UDPs and in the current state field

of sequential UDPs.

? Iteration of 0, 1, and x Not permitted in output field.

b Iteration of 0 and 1 Permitted in the input fields of all

UDPs and in the current state field

of sequential UDPs. Not permitted

in the output field.

- No change Permitted only in the output field of

a sequential UDP.

(vw) Value change from v to w v and w can be any one of 0,

1, x, ?, or b, and are only permitted

in the input field.

* Same as (??) Any value change on input.

r Same as (01) Rising edge on input.

f Same as (10) Falling edge on input.

p Iteration of (01), (0 x) and (x1) Potential positive edge on the input.

n Iteration of (10), (1x)and (x0 Potential negative edge on the input.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 111
This is an unapproved IEEE Standards Draft, subject to change.

8.2 Combinational UDPs

In combinational UDPs, the output state is determined solely as a function of the current input states. When-

ever an input state changes, the UDP is evaluated and the output state is set to the value indicated by the row

in the state table that matches all the input states. All combinations of the inputs that are not explicitly spec-

ified will drive the output state to the unknown value x.

Examples:

The following example defines a multiplexer with two data inputs and a control input.

The first entry in this example can be explained as follows: when control equals 0, and dataA equals 1,

and dataB equals 0, then output mux equals 1.

The input combination 0xx (control=0, dataA=x, dataB=x) is not specified. If this combination

occurs during simulation, the value of output port mux will become x.

Using ?, the description of a multiplexer can be abbreviated as

primitive multiplexer (mux, control, dataA, dataB);
output mux;
input control, dataA, dataB;
table
// control dataA dataB mux

0 1 0 : 1 ;
0 1 1 : 1 ;
0 1 x : 1 ;
0 0 0 : 0 ;
0 0 1 : 0 ;
0 0 x : 0 ;
1 0 1 : 1 ;
1 1 1 : 1 ;
1 x 1 : 1 ;
1 0 0 : 0 ;
1 1 0 : 0 ;
1 x 0 : 0 ;
x 0 0 : 0 ;
x 1 1 : 1 ;

endtable
endprimitive

primitive multiplexer (mux, control, dataA, dataB);
output mux;
input control, dataA, dataB;
table
// control dataA dataB mux

0 1 ? : 1 ; // ? = 0 1 x
0 0 ? : 0 ;
1 ? 1 : 1 ;
1 ? 0 : 0 ;
x 0 0 : 0 ;
x 1 1 : 1 ;

endtable
endprimitive

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

112 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

8.3 Level-sensitive sequential UDPs

Level-sensitive sequential behavior is represented the same way as combinational behavior, except that the

output is declared to be of type reg, and there is an additional field in each table entry. This new field repre-

sents the current state of the UDP. The output field in a sequential UDP represents the next state.

Example:

Consider the example of a latch:

This description differs from a combinational UDP model in two ways. First, the output identifier q has an

additional reg declaration to indicate that there is an internal state q. The output value of the UDP is always

the same as the internal state. Second, a field for the current state, which is separated by colons from the

inputs and the output, has been added.

8.4 Edge-sensitive sequential UDPs

In level-sensitive behavior, the values of the inputs and the current state are sufficient to determine the output

value. Edge-sensitive behavior differs in that changes in the output are triggered by specific transitions of the

inputs. This makes the state table a transition table.

Each table entry can have a transition specification on at most one input. A transition is specified by a pair of

values in parenthesis such as (01) or a transition symbol such as r. Entries such as the following are illegal:

(01)(01)0 : 0 : 1 ;

All transitions that do not affect the output shall be explicitly specified. Otherwise, such transitions cause the

value of the output to change to x. All unspecified transitions default to the output value x.

If the behavior of the UDP is sensitive to edges of any input, the desired output state shall be specified for all
edges of all inputs.

Example:

The following example describes a rising edge D flip-flop:

primitive latch (q, clock, data);
output q; reg q;
input clock, data;
table
// clock data q q+

0 1 : ? : 1 ;
0 0 : ? : 0 ;
1 ? : ? : - ; // - = no change

endtable
endprimitive

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 113
This is an unapproved IEEE Standards Draft, subject to change.

The terms such as (01) represent transitions of the input values. Specifically, (01) represents a transition

from 0 to 1. The first line in the table of the preceding UDP definition is interpreted as follows: when clock

changes value from 0 to 1, and data equals 0, the output goes to 0 no matter what the current state.

The transition of clock from 0 to x with data equal to 0 and current state equal to 1 will result in the output

q going to x.

8.5 Sequential UDP initialization

The initial value on the output port of a sequential UDP can be specified with an initial statement that pro-

vides a procedural assignment. The initial statement is optional.

Like initial statements in modules, the initial statement in UDPs begin with the keyword initial. The valid

contents of initial statements in UDPs and the valid left-hand and right-hand sides of their procedural assign-

ment statements differ from initial statements in modules. A partial list of differences between these two

types of initial statements is described in Table 41.

Table 41—Initial statements in UDPs and modules

Initial statements in UDPs Initial statements in modules

Contents limited to one procedural assignment

statement

Contents can be one procedural statement of

any type or a block statement that contains

more than one procedural statement

The procedural assignment statement shall

assign a value to a reg whose identifier

matches the identifier of an output terminal

Procedural assignment statements in initial

statements can assign values to a reg whose

identifier does not match the identifier of an

output terminal

The procedural assignment statement shall

assign one of the following values: 1’b1, 1’b0,

1’bx, 1, 0

Procedural assignment statements can assign

values of any size, radix, and value

primitive d_edge_ff (q, clock, data);
output q; reg q;
input clock, data;
table
// clock data q q+

// obtain output on rising edge of clock
(01) 0 : ? : 0 ;
(01) 1 : ? : 1 ;
(0?) 1 : 1 : 1 ;
(0?) 0 : 0 : 0 ;
// ignore negative edge of clock
(?0) ? : ? : - ;
// ignore data changes on steady clock
 ? (??) : ? : - ;

endtable
endprimitive

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

114 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Examples:

Example 1—The following example shows a sequential UDP that contains an initial statement.

The output q has an initial value of 1 at the start of the simulation; a delay specification on an instantiated

UDP does not delay the simulation time of the assignment of this initial value to the output. When simula-

tion starts, this value is the current state in the state table. Delays are not permitted in a UDP initial state-

ment.

Example 2—The following example and figure show how values are applied in a module that instantiates a

sequential UDP with an initial statement.

The UDP dff1 contains an initial statement that sets the initial value of its output to 1. The module dff
contains an instance of UDP dff1.

Figure 30 shows the schematic of the preceding module and the simulation propagation times of the initial

value of the UDP output.

primitive srff (q, s, r);
output q; reg q;
input s, r;
initial q = 1’b1;
table
// s r q q+
 1 0 : ? : 1 ;
 f 0 : 1 : - ;
 0 r : ? : 0 ;
 0 f : 0 : - ;
 1 1 : ? : 0 ;
endtable
endprimitive

primitive dff1 (q, clk, d);
input clk, d;
output q; reg q;
initial q = 1’b1;
table
// clk d q q+

 r 0 : ? : 0 ;
 r 1 : ? : 1 ;
 f ? : ? : - ;
 ? * : ? : - ;

endtable
endprimitive

module dff (q, qb, clk, d);
input clk, d;
output q, qb;

dff1 g1 (qi, clk, d);
buf #3 g2 (q, qi);
not #5 g3 (qb, qi);

endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 115
This is an unapproved IEEE Standards Draft, subject to change.

Figure 30—Module schematic and simulation times of initial value propagation

In Figure 30, the fanout from the UDP output qi includes nets q and qb. At simulation time 0, qi changes

value to 1. That initial value of qi does not propagate to net q until simulation time 3, and it does not prop-

agate to net qb until simulation time 5.

8.6 UDP instances

The syntax for creating a UDP instance is shown in Syntax 8-2.

Syntax 8-2—Syntax for UDP instances

udp_instantiation ::= (From Annex A- A.5.4)
udp_identifier [drive_strength] [delay2]

udp_instance { , udp_instance } ;
udp_instance ::=

[name_of_udp_instance] (output_terminal , input_terminal

{ , input_terminal })
name_of_udp_instance ::=

udp_instance_identifier [range]

qi
UDP dff1 g1

buf g2

not g3

d

clk

q

qb

module dff

#3

#5

0

1

0

1

0

1

0 3 5

qi

q

qb

simulation time

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

116 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Instances of user-defined primitives are specified inside modules in the same manner as gates (see 7.1). The

instance name is optional, just as for gates. The port connection order is as specified in the UDP definition.

Only two delays can be specified because z is not supported for UDPs. An optional range may be specified

for an array of UDP instances. The port connection rules remain the same as outlined in 7.1.

Example:

The following example creates an instance of the D-type flip-flop d_edge_ff (defined in 8.4).

8.7 Mixing level-sensitive and edge-sensitive descriptions

UDP definitions allow a mixing of the level-sensitive and the edge-sensitive constructs in the same table.

When the input changes, the edge-sensitive cases are processed first, followed by level-sensitive cases. Thus,

when level-sensitive and edge-sensitive cases specify different output values, the result is specified by the

level-sensitive case.

Example:

module flip;
reg clock, data;
parameter p1 = 10;
parameter p2 = 33;
parameter p3 = 12;

d_edge_ff #p3 d_inst (q, clock, data);

initial begin
data = 1;
clock = 1;
#(20 * p1) $finish;

end
always #p1 clock = ~clock;
always #p2 data = ~data;
endmodule

primitive jk_edge_ff (q, clock, j, k, preset, clear);
output q; reg q;
input clock, j, k, preset, clear;
table
// clock jk pc state output/next state

 ? ?? 01 : ? : 1 ; // preset logic
 ? ?? *1 : 1 : 1 ;
 ? ?? 10 : ? : 0 ; // clear logic
 ? ?? 1* : 0 : 0 ;
 r 00 00 : 0 : 1 ; // normal clocking cases
 r 00 11 : ? : - ;
 r 01 11 : ? : 0 ;
 r 10 11 : ? : 1 ;
 r 11 11 : 0 : 1 ;
 r 11 11 : 1 : 0 ;
 f ?? ?? : ? : - ;
 b *? ?? : ? : - ; // j and k transition cases
 b ?* ?? : ? : - ;

endtable
endprimitive

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 117
This is an unapproved IEEE Standards Draft, subject to change.

In this example, the preset and clear logic is level-sensitive. Whenever the preset and clear combination is

01, the output has value 1. Similarly, whenever the preset and clear combination has value 10, the output

has value 0.

The remaining logic is sensitive to edges of the clock. In the normal clocking cases, the flip-flop is sensitive

to the rising clock edge, as indicated by an r in the clock field in those entries. The insensitivity to the fall-

ing edge of clock is indicated by a hyphen (-) in the output field (see Table 40) for the entry with an f as the

value of clock. Remember that the desired output for this input transition shall be specified to avoid

unwanted x values at the output. The last two entries show that the transitions in j and k inputs do not

change the output on a steady low or high clock.

8.8 Level-sensitive dominance

Table 42 shows level-sensitive and edge-sensitive entries in the example from 8.7, their level-sensitive or

edge-sensitive behavior, and a case of input values that each includes.

The included cases specify opposite next state values for the same input and current state combination. The

level-sensitive included case specifies that when the inputs clock, jk, and pc values are 0, 00, and 01
and the current state is 0, the output changes to 1. The edge-sensitive included case specifies that when

clock falls from 1 to 0, the other inputs jk and pc are 00 and 01, and the current state is 0, then the out-

put changes to 0.

When the edge-sensitive case is processed first, followed by the level-sensitive case, the output changes to 1.

Table 42—Mixing of level-sensitive and edge-sensitive entries

Entry Included case Behavior

? ?? 01: ?: 1; 0 00 01: 0: 1; Level-sensitive

f ?? ??: ?: -; f 00 01: 0: 0; Edge-sensitive

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

118 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

9. Behavioral modeling

The language constructs introduced so far allow hardware to be described at a relatively detailed level. Mod-

eling a circuit with logic gates and continuous assignments reflects quite closely the logic structure of the

circuit being modeled; however, these constructs do not provide the power of abstraction necessary for

describing complex high-level aspects of a system. The procedural constructs described in this section are

well suited to tackling problems such as describing a microprocessor or implementing complex timing

checks.

This section starts with a brief overview of a behavioral model to provide a context for many types of behav-

ioral statements in the Verilog HDL.

9.1 Behavioral model overview

Verilog behavioral models contain procedural statements that control the simulation and manipulate vari-

ables of the data types previously described. These statements are contained within procedures. Each proce-

dure has an activity flow associated with it.

The activity starts at the control constructs initial and always. Each initial construct and each always con-

struct starts a separate activity flow. All of the activity flows are concurrent to model the inherent concur-

rence of hardware. These constructs are formally described in 9.9.

The following example shows a complete Verilog behavioral model.

During simulation of this model, all of the flows defined by the initial and always constructs start together at

simulation time zero. The initial constructs execute once, and the always constructs execute repetitively.

In this model, the reg variables a and b initialize to 1 and 0 respectively at simulation time zero. The initial

construct is then complete and does not execute again during this simulation run. This initial construct con-

tains a begin-end block (also called a sequential block) of statements. In this begin-end block a is initialized

first, followed by b.

The always constructs also start at time zero, but the values of the variables do not change until the times

specified by the delay controls (introduced by #) have elapsed. Thus, reg a inverts after 50 time units and reg

b inverts after 100 time units. Since the always constructs repeat, this model will produce two square waves.

The reg a toggles with a period of 100 time units, and reg b toggles with a period of 200 time units. The two

always constructs proceed concurrently throughout the entire simulation run.

module behave;
reg [1:0] a, b;

initial begin
a = ’b1;
b = ’b0;

end
always begin

#50 a = ~a;
end
always begin

#100 b = ~b;
end

endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 119
This is an unapproved IEEE Standards Draft, subject to change.

9.2 Procedural assignments

As described in Clause 6, procedural assignments are used for updating reg, integer, time, real, realtime,

and memory data types. There is a significant difference between procedural assignments and continuous

assignments:

— Continuous assignments drive nets and are evaluated and updated whenever an input operand
changes value.

— Procedural assignments update the value of variables under the control of the procedural flow con-
structs that surround them.

The right-hand side of a procedural assignment can be any expression that evaluates to a value. The left-hand

side shall be a variable that receives the assignment from the right-hand side. The left-hand side of a proce-

dural assignment can take one of the following forms:

— reg, integer, real, realtime, or time data type: an assignment to the name reference of one of these

data types.

— Bit-select of a reg, integer, or time data type: an assignment to a single bit that leaves the other bits

untouched.

— Part-select of a reg, integer, or time data type: a part-select of one or more contiguous bits that

leaves the rest of the bits untouched.

— Memory word: a single word of a memory.

— Concatenation or nested concatenation of any of the above: a concatenation or nested concatenation

of any of the previous four forms can be specified, which effectively partitions the result of the right-

hand side expression and assigns the partition parts, in order, to the various parts of the concatenation

or nested concatenation.

NOTE—When the right-hand side evaluates to fewer bits than the left-hand side, then if the right-hand side is signed

(see 4.5), it shall be sign-extended to the size of the left-hand side.

The Verilog HDL contains two types of procedural assignment statements:

— Blocking procedural assignment statements
— Nonblocking procedural assignment statements

Blocking and nonblocking procedural assignment statements specify different procedural flows in sequential

blocks.

9.2.1 Blocking procedural assignments

A blocking procedural assignment statement shall be executed before the execution of the statements that

follow it in a sequential block (see 9.8.1). A blocking procedural assignment statement shall not prevent the

execution of statements that follow it in a parallel block (see 9.8.2).

The syntax for a blocking procedural assignment is given in Syntax 9-1.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

120 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 9-1—Syntax for blocking assignments

In this syntax, reg_lvalue is a data type that is valid for a procedural assignment statement, = is the

assignment operator, and delay_or_event_control is the optional intra-assignment timing control. The con-

trol can be either a delay control (e.g., #6) or an event_control (e.g., @(posedge clk)). The expression is

the right-hand side value that shall be assigned to the left-hand side. If reg_lvalue requires an evaluation,

it shall be evaluated at the time specified by the intra-assignment timing control.

The = assignment operator used by blocking procedural assignments is also used by procedural continuous

assignments and continuous assignments.

Example:

The following examples show blocking procedural assignments.

blocking_assignment ::= (From Annex A - A.6.2)
variable_lvalue = [delay_or_event_control] expression

delay_control ::= (From Annex A - A.6.5)
delay_value

| # (mintypmax_expression)
delay_or_event_control ::=

delay_control

| event_control

| repeat (expression) event_control

event_control ::=

@ event_identifier

| @ (event_expression)
| @*
| @ (*)

event_expression ::=

expression

| hierarchical_identifier

| posedge expression

| negedge expression

| event_expression or event_expression

| event_expression , event_expression

variable_lvalue ::= (From Annex A - A.8.5)
 hierarchical_variable_identifier { [expression] } [[range_expression]]
| { variable_lvalue { , variable_lvalue } }

rega = 0;
rega[3] = 1; // a bit-select
rega[3:5] = 7; // a part-select
mema[address] = 8’hff; // assignment to a mem element
{carry, acc} = rega + regb; // a concatenation

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 121
This is an unapproved IEEE Standards Draft, subject to change.

9.2.2 The nonblocking procedural assignment

The nonblocking procedural assignment allows assignment scheduling without blocking the procedural

flow. The nonblocking procedural assignment statement can be used whenever several variable assignments

within the same time step can be made without regard to order or dependence upon each other.

The syntax for a nonblocking procedural assignment is given in Syntax 9-2.

Syntax 9-2—Syntax for nonblocking assignments

In this syntax, reg_lvalue is a data type that is valid for a procedural assignment statement, <= is the

nonblocking assignment operator, and delay_or_event_control is the optional intra-assignment

timing control. If reg_lvalue requires an evaluation, it shall be evaluated at the same time as the expres-

sion on the right-hand side. The order of evaluation of the reg_lvalue and the expression on the right-

hand side is undefined if timing control is not specified.

The nonblocking assignment operator is the same operator as the less-than-or-equal-to relational operator.

The interpretation shall be decided from the context in which <= appears. When <= is used in an expression,

it shall be interpreted as a relational operator, and when it is used in a nonblocking procedural assignment, it

shall be interpreted as an assignment operator.

nonblocking_assignment ::= (From Annex A - A.6.2)
variable_lvalue <= [delay_or_event_control] expression

delay_control ::= (From Annex A - A.6.5)
delay_value

| # (mintypmax_expression)
delay_or_event_control ::=

delay_control

| event_control

| repeat (expression) event_control

event_control ::=

@ event_identifier

| @ (event_expression)
| @*
| @ (*)

event_expression ::=

expression

| hierarchical_identifier

| posedge expression

| negedge expression

| event_expression or event_expression

| event_expression , event_expression

variable_lvalue ::= (From Annex A - A.8.5)
 hierarchical_variable_identifier { [expression] } [[range_expression]]
| { variable_lvalue { , variable_lvalue } }

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

122 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The nonblocking procedural assignments shall be evaluated in two steps as discussed in Clause 5. These two

steps are shown in the following example.

Example 1:

At the end of the time step means that the nonblocking assignments are the last assignments executed in a

time step—with one exception. Nonblocking assignment events can create blocking assignment events.

These blocking assignment events shall be processed after the scheduled nonblocking events.

Unlike an event or delay control for blocking assignments, the nonblocking assignment does not block the

procedural flow. The nonblocking assignment evaluates and schedules the assignment, but it does not block

the execution of subsequent statements in a begin-end block.

Example 2:

As shown in the previous example, the simulator evaluates and schedules assignments for the end of the cur-

rent time step and can perform swapping operations with the nonblocking procedural assignments.

module evaluates2 (out);
output out;
reg a, b, c;

initial begin
a = 0;
b = 1;
c = 0;

end

always c = #5 ~c;

always @(posedge c) begin
a <= b; // evaluates, schedules,
b <= a; // and executes in two steps

end
endmodule

At posedge c, the simulator

evaluates the right-hand sides

of the nonblocking assign-

ments and schedules the

assignments of the new values

at the end of the nonblocking
assign update events (see 5.4).

Step 1:

a = 0

b = 1
Step 2:

When the simulator activates

the nonblocking assign update
events, the simulator updates

the left-hand side of each non-

blocking assignment statement.

Nonblocking

assignment

schedules

changes at

time 5

a = 1

b = 0

Assignment

values are:

//non_block1.v
module non_block1;
reg a, b, c, d, e, f;

//blocking assignments
initial begin

a = #10 1; // a will be assigned 1 at time 10
b = #2 0; // b will be assigned 0 at time 12
c = #4 1; // c will be assigned 1 at time 16

end
//non-blocking assignments
initial begin

d <= #10 1; // d will be assigned 1 at time 10
e <= #2 0; // e will be assigned 0 at time 2
f <= #4 1; // f will be assigned 1 at time 4

end
endmodule

scheduled
changes at

time 2

e = 0

f = 1

d = 1

scheduled
changes at

time 4

scheduled
changes at

time 10

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 123
This is an unapproved IEEE Standards Draft, subject to change.

Example 3:

The order of the execution of distinct nonblocking assignments to a given variable shall be preserved. This

means that if there is clear ordering of the execution of a set of nonblocking assigments, then the order of the

resulting updates of the destination of the nonblocking assignments shall be the same as the ordering of the

execution.

Example 4:

If the simulator executes two procedural blocks concurrently, and if these procedural blocks contain non-

blocking assignment operators to the same variable, the final value of that variable is indeterminate. For

example, the value of reg a is indeterminate in the following example.

Example 5:

//non_block1.v
module non_block1;
reg a, b;
initial begin

a = 0;
b = 1;
a <= b; // evaluates, schedules, and
b <= a; // executes in two steps

end
initial begin

$monitor ($time, ,"a = %b b = %b", a, b);
#100 $finish;

end
endmodule

The simulator evaluates the right-

hand side of the nonblocking

assignments and schedules the

assignments for the end of the cur-

rent time step.

Step 1:

Step 2:

At the end of the current time step,

the simulator updates the left-hand

side of each nonblocking assign-

ment statement.

a = 1

b = 0

assignment values are:

module multiple2;
reg a;

initial a = 1;
// The assigned value of the reg is determinate
initial begin

a <= #4 0; // schedules a = 0 at time 4
a <= #4 1; // schedules a = 1 at time 4

end // At time 4, a = 1
endmodule

module multiple3 ;
reg a;

initial a = 1;
initial a <= #4 0; // schedules 0 at time 4
initial a <= #4 1; // schedules 1 at time 4

// At time 4, a = ??
// The assigned value of the reg is indeterminate
endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

124 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

NOTE—The fact that two nonblocking assignments targeting the same variable are in different blocks is not by itself
sufficient to make the order of assignments to a variable indeterminate. For example, the value of reg a at the end of time
cycle 16 is determinate in the following example:

The following example shows how the value of i[0] is assigned to r1 and how the assignments are sched-

uled to occur after each time delay.

Example 6:

module multiple2 ;
reg a;

initial #8 a <= #8 1;// executed at time 8; schedules
// an update of 1 at time 16

initial #12 a <= #4 0;// executed at time 12; schedules
// an update of 0 at time 16

// Because it is determinate that the update of a to
// the value 1 is scheduled before the update of a to
// the value 0, then it is determinate that a will have the
// value 0 at the end of time slot 16.

endmodule

module multiple;
reg r1;
reg [2:0] i;

initial begin
// starts at time 0, does not hold the block

r1 = 0;
// makes assignments to r1 without cancelling previous assignments

for (i = 0; i <= 5; i = i+1)
r1 <= # (i*10) i[0];

end
endmodule

r1
10 20 30 40 500

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 125
This is an unapproved IEEE Standards Draft, subject to change.

9.3 Procedural continuous assignments

The procedural continuous assignments (using keywords assign and force) are procedural statements that

allow expressions to be driven continuously onto variables or nets. The syntax for these statements is given

in Syntax 9-3.

Syntax 9-3—Syntax for procedural continuous assignments

The left-hand side of the assignment in the assign statement shall be a variable reference or a concatenation

of variables. It shall not be a memory word (array reference) or a bit-select or a part-select of a variable.

In contrast, the left-hand side of the assignment in the force statement can be a variable reference or a net

reference. It can be a concatenation of any of the above. Bit-selects and part-selects of vector variables are

not allowed.

9.3.1 The assign and deassign procedural statements

The assign procedural continuous assignment statement shall override all procedural assignments to a vari-

able. The deassign procedural statement shall end a procedural continuous assignment to a variable. The

value of the variable shall remain the same until the reg is assigned a new value through a procedural assign-

ment or a procedural continuous assignment. The assign and deassign procedural statements allow, for

example, modeling of asynchronous clear/preset on a D-type edge-triggered flip-flop, where the clock is

inhibited when the clear or preset is active.

If the keyword assign is applied to a variable for which there is already a procedural continuous assignment,

then this new procedural continuous assignment shall deassign the variable before making the new proce-

dural continuous assignment.

net_assignment ::= (From Annex A - A.6.1)
net_lvalue = expression

procedural_continuous_assignments ::= (From Annex A - A.6.2)
assign variable_assignment

| deassign variable_lvalue

| force variable_assignment

| force net_assignment

| release variable_lvalue

| release net_lvalue

variable_assignment ::=

variable_lvalue = expression

net_lvalue ::= (From Annex A - A.8.5)
hierarchical_net_identifier { [constant_expression] } [[constant_range_expression]]

| { net_lvalue { , net_lvalue } }
variable_lvalue ::=

 hierarchical_variable_identifier { [expression] } [[range_expression]]
| { variable_lvalue { , variable_lvalue } }

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

126 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Example:

The following example shows a use of the assign and deassign procedural statements in a behavioral

description of a D-type flip-flop with preset and clear inputs.

If either clear or preset is low, then the output q will be held continuously to the appropriate constant

value and a positive edge on the clock will not affect q. When both the clear and preset are high, then

q is deassigned.

9.3.2 The force and release procedural statements

Another form of procedural continuous assignment is provided by the force and release procedural state-

ments. These statements have a similar effect to the assign-deassign pair, but a force can be applied to nets as

well as to variables. The left-hand side of the assignment can be a variable, a net, a constant bit-select of a

vector net, a part-select of a vector net, or a concatenation. It cannot be a memory word (array reference) or

a bit-select or a part-select of a vector variable.

A force statement to a variable shall override a procedural assignment or procedural continuous assignment

that takes place on the variable until a release procedural statement is executed on the variable. After the

release procedural statement is executed, the variable shall not immediately change value (as would a net

that is assigned with a procedural continuous assignment). The value specified in the force statement shall be

maintained in the variable until the next procedural assignment takes place, except in the case where a proce-

dural continuous assignment is active on the variable.

A force procedural statement on a net overrides all drivers of the net—gate outputs, module outputs, and

continuous assignments—until a release procedural statement is executed on the net.

Releasing a variable that currently has an active procedural continuous assignment shall re-establish that

assignment.

module dff (q, d, clear, preset, clock);
output q;
input d, clear, preset, clock;
reg q;

always @(clear or preset)
if (!clear)

assign q = 0;
else if (!preset)

assign q = 1;
else

deassign q;

always @(posedge clock)
q = d;

endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 127
This is an unapproved IEEE Standards Draft, subject to change.

Example:

In this example, an and gate instance and1 is “patched” as an or gate by a force procedural statement that

forces its output to the value of its logical or inputs, and an assign procedural statement of logical and values

is “patched” as an assign procedural statement of logical or values.

The right-hand side of a procedural continuous assignment or a force statement can be an expression. This

shall be treated just as a continuous assignment; that is, if any variable on the right-hand side of the assign-

ment changes, the assignment shall be re-evaluated while the assign or force is in effect. For example:

force a = b + f(c) ;

Here, if b changes or c changes, a will be forced to the new value of the expression b+f(c).

9.4 Conditional statement

The conditional statement (or if-else statement) is used to make a decision as to whether a statement is exe-

cuted or not. Formally, the syntax is given in Syntax 9-4.

module test;
reg a, b, c, d;
wire e;

and and1 (e, a, b, c);

initial begin
$monitor("%d d=%b,e=%b", $stime, d, e);
assign d = a & b & c;
a = 1;
b = 0;
c = 1;
#10;
force d = (a | b | c);
force e = (a | b | c);
#10 $stop;
release d;
release e;
#10 $finish;

end
endmodule

Results:
 0 d=0,e=0
10 d=1,e=1
20 d=0,e=0

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

128 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 9-4—Syntax of if statement

If the expression evaluates to true (that is, has a nonzero known value), the first statement shall be executed.

If it evaluates to false (has a zero value or the value is x or z), the first statement shall not execute. If there is

an else statement and expression is false, the else statement shall be executed.

Since the numeric value of the if expression is tested for being zero, certain shortcuts are possible. For

example, the following two statements express the same logic:

if (expression)
if (expression != 0)

Because the else part of an if-else is optional, there can be confusion when an else is omitted from a nested if

sequence. This is resolved by always associating the else with the closest previous if that lacks an else. In the

example below, the else goes with the inner if, as shown by indentation.

If that association is not desired, a begin-end block statement shall be used to force the proper association, as

shown below.

9.4.1 If-else-if construct

The following construction occurs so often that it is worth a brief separate discussion:

conditional_statement ::= (From Annex A - A.6.6)
if (expression)

statement_or_null [else statement_or_null]

| if_else_if_statement

function_conditional_statement ::= (From Annex A - A.6.6)
if (expression) function_statement_or_null

[else function_statement_or_null]

| function_if_else_if_statement

if (index > 0)
if (rega > regb)

result = rega;
else // else applies to preceding if

result = regb;

if (index > 0) begin
if (rega > regb)

result = rega;
end
else result = regb;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 129
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 9-5—Syntax of if-else-if construct

This sequence of if statements (known as an if-else-if construct) is the most general way of writing a multi-

way decision. The expressions shall be evaluated in order; if any expression is true, the statement associated

with it shall be executed, and this shall terminate the whole chain. Each statement is either a single statement

or a block of statements.

The last else part of the if-else-if construct handles the none-of-the-above or default case where none of the

other conditions were satisfied. Sometimes there is no explicit action for the default; in that case, the trailing

else statement can be omitted or it can be used for error checking to catch an impossible condition.

if_else_if_statement ::= (From Annex A - A.6.6)
if (expression) statement_or_null

{ else if (expression) statement_or_null }

[else statement_or_null]

function_if_else_if_statement ::= (From Annex A - A.6.6)
if (expression) function_statement_or_null

{ else if (expression) function_statement_or_null }

[else function_statement_or_null]

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

130 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Example:

The following module fragment uses the if-else statement to test the variable index to decide whether one

of three modify_segn regs has to be added to the memory address, and which increment is to be added to

the index reg. The first ten lines declare the regs and parameters.

9.5 Case statement

The case statement is a multiway decision statement that tests whether an expression matches one of a num-

ber of other expressions and branches accordingly. The case statement has the syntax shown in Syntax 9-6.

// declare regs and parameters
reg [31:0] instruction, segment_area[255:0];
reg [7:0] index;
reg [5:0] modify_seg1,

modify_seg2,
modify_seg3;

parameter
segment1 = 0, inc_seg1 = 1,
segment2 = 20, inc_seg2 = 2,
segment3 = 64, inc_seg3 = 4,
data = 128;

// test the index variable
if (index < segment2) begin

instruction = segment_area [index + modify_seg1];
index = index + inc_seg1;

end
else if (index < segment3) begin

instruction = segment_area [index + modify_seg2];
index = index + inc_seg2;

end
else if (index < data) begin

instruction = segment_area [index + modify_seg3];
index = index + inc_seg3;

end
else

instruction = segment_area [index];

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 131
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 9-6—Syntax for case statement

The default statement shall be optional. Use of multiple default statements in one case statement shall be

illegal.

The case expression and the case item expression can be computed at runtime; neither expression is required

to be a constant expression.

Examples:

A simple example of the use of the case statement is the decoding of reg rega to produce a value for

result as follows:

case_statement ::= (From Annex A - A.6.7)
case (expression)

case_item { case_item } endcase
| casez (expression)

case_item { case_item } endcase
| casex (expression)

case_item { case_item } endcase
case_item ::=

expression { , expression } : statement_or_null

| default [:] statement_or_null

function_case_statement ::=

case (expression)
function_case_item { function_case_item } endcase

| casez (expression)
function_case_item { function_case_item } endcase

| casex (expression)
function_case_item { function_case_item } endcase

function_case_item ::=

expression { , expression } : function_statement_or_null

| default [:] function_statement_or_null

reg [15:0] rega;
reg [9:0] result;

case (rega)
16’d0: result = 10’b0111111111;
16’d1: result = 10’b1011111111;
16’d2: result = 10’b1101111111;
16’d3: result = 10’b1110111111;
16’d4: result = 10’b1111011111;
16’d5: result = 10’b1111101111;
16’d6: result = 10’b1111110111;
16’d7: result = 10’b1111111011;
16’d8: result = 10’b1111111101;
16’d9: result = 10’b1111111110;
default result = ’bx;

endcase

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

132 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The case item expressions shall be evaluated and compared in the exact order in which they are given. Dur-

ing the linear search, if one of the case item expressions matches the case expression given in parentheses,

then the statement associated with that case item shall be executed and the linear search shall terminate. If all

comparisons fail and the default item is given, then the default item statement shall be executed. If the

default statement is not given and all of the comparisons fail, then none of the case item statements shall be

executed.

Apart from syntax, the case statement differs from the multiway if-else-if construct in two important ways:

a) The conditional expressions in the if-else-if construct are more general than comparing one

expression with several others, as in the case statement.

b) The case statement provides a definitive result when there are x and z values in an expression.

In a case expression comparison, the comparison only succeeds when each bit matches exactly with respect

to the values 0, 1, x, and z. As a consequence, care is needed in specifying the expressions in the case
statement. The bit length of all the expressions shall be equal so that exact bit-wise matching can be per-

formed. The length of all the case item expressions, as well as the case expression in the parentheses, shall

be made equal to the length of the longest case expression and case item expression.

NOTE—The default length of x and z is the same as the default length of an integer.

The reason for providing a case expression comparison that handles the x and z values is that it provides a

mechanism for detecting such values and reducing the pessimism that can be generated by their presence.

Examples:

Example 1—The following example illustrates the use of a case statement to handle x and z values properly.

In this example, if select[1] is 0 and flaga is 0, then whether the value of select[2] is x or z,

result should be 0—which is resolved by the third case.

Example 2—The following example shows another way to use a case statement to detect x and z values.

case (select[1:2])
2’b00: result = 0;
2’b01: result = flaga;
2’b0x,
2’b0z: result = flaga ? ’bx : 0;
2’b10: result = flagb;
2’bx0,
2’bz0: result = flagb ? ’bx : 0;
default result = ’bx;

endcase

case (sig)
1’bz: $display("signal is floating");
1’bx: $display("signal is unknown");
default: $display("signal is %b", sig);

endcase

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 133
This is an unapproved IEEE Standards Draft, subject to change.

9.5.1 Case statement with don’t-cares

Two other types of case statements are provided to allow handling of don’t-care conditions in the case com-

parisons. One of these treats high-impedance values (z) as don’t-cares, and the other treats both high-imped-

ance and unknown (x) values as don’t-cares.

These case statements can be used in the same way as the traditional case statement, but they begin with key-

words casez and casex respectively.

Don’t-care values (z values for casez, z and x values for casex) in any bit of either the case expression or the

case items shall be treated as don’t-care conditions during the comparison, and that bit position shall not be

considered. The don’t-care conditions in case expression can be used to control dynamically which bits

should be compared at any time.

The syntax of literal numbers allows the use of the question mark (?) in place of z in these case statements.

This provides a convenient format for specification of don’t-care bits in case statements.

Examples:

Example 1—The following is an example of the casez statement. It demonstrates an instruction decode,

where values of the most significant bits select which task should be called. If the most significant bit of ir
is a 1, then the task instruction1 is called, regardless of the values of the other bits of ir.

Example 2—The following is an example of the casex statement. It demonstrates an extreme case of how

don’t-care conditions can be dynamically controlled during simulation. In this case, if r =
8´b01100110, then the task stat2 is called.

9.5.2 Constant expression in case statement

A constant expression can be used for case expression. The value of the constant expression shall be com-

pared against case item expressions.

reg [7:0] ir;

casez (ir)
8’b1???????: instruction1(ir);
8’b01??????: instruction2(ir);
8’b00010???: instruction3(ir);
8’b000001??: instruction4(ir);

endcase

reg [7:0] r, mask;

mask = 8’bx0x0x0x0;
casex (r ^ mask)

8’b001100xx: stat1;
8’b1100xx00: stat2;
8’b00xx0011: stat3;
8’bxx010100: stat4;

endcase

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

134 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Example:

The following example demonstrates the usage by modeling a 3-bit priority encoder.

Note that the case expression is a constant expression (1). The case items are expressions (bit-selects) and

are compared against the constant expression for a match.

9.6 Looping statements

There are four types of looping statements. These statements provide a means of controlling the execution of

a statement zero, one, or more times.

forever Continuously executes a statement.

repeat Executes a statement a fixed number of times. If the expression evaluates to unknown or

high impedance, it shall be treated as zero, and no statement shall be executed.

while Executes a statement until an expression becomes false. If the expression starts out false,

the statement shall not be executed at all.

for Controls execution of its associated statement(s) by a three-step process, as follows:

a) Executes an assignment normally used to initialize a variable that controls the number

of loops executed.

b) Evaluates an expression—if the result is zero, the for-loop shall exit, and if it is not

zero, the for-loop shall execute its associated statement(s) and then perform step c. If

the expression evaluates to an unknown or high-impedance value, it shall be treated as

zero.

c) Executes an assignment normally used to modify the value of the loop-control

variable, then repeats step b.

reg [2:0] encode ;

case (1)
encode[2] : $display(“Select Line 2”) ;
encode[1] : $display(“Select Line 1”) ;
encode[0] : $display(“Select Line 0”) ;
default $display(“Error: One of the bits expected ON”);

endcase

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 135
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 9-7 shows the syntax for various looping statements.

Syntax 9-7—Syntax for the looping statements

The rest of this clause presents examples for three of the looping statements. The forever loop should only be

used in conjunction with the timing controls or the disable statement, therefore, this example is presented in

9.7.2.

Examples:

Example 1—Repeat statement: In the following example of a repeat loop, add and shift operators implement

a multiplier.

function_loop_statement ::= (From Annex A - A.6.8)
forever function_statement

| repeat (expression) function_statement

| while (expression) function_statement

| for (variable_assignment ; expression ; variable_assignment)
function_statement

loop_statement ::=

forever statement

| repeat (expression) statement

| while (expression) statement

| for (variable_assignment ; expression ; variable_assignment)
statement

parameter size = 8, longsize = 16;
reg [size:1] opa, opb;
reg [longsize:1] result;

begin : mult
reg [longsize:1] shift_opa, shift_opb;
shift_opa = opa;
shift_opb = opb;
result = 0;
repeat (size) begin

if (shift_opb[1])
result = result + shift_opa;

shift_opa = shift_opa << 1;
shift_opb = shift_opb >> 1;

end
end

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

136 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Example 2—While statement: The following example counts the number of logic 1 values in rega.

Example 3—For statement: The for statement accomplishes the same results as the following pseudo-code

that is based on the while loop:

The for loop implements this logic while using only two lines, as shown in the pseudo-code below.

9.7 Procedural timing controls

The Verilog HDL has two types of explicit timing control over when procedural statements can occur. The

first type is a delay control, in which an expression specifies the time duration between initially encountering

the statement and when the statement actually executes. The delay expression can be a dynamic function of

the state of the circuit, but it can be a simple number that separates statement executions in time. The delay

control is an important feature when specifying stimulus waveform descriptions. It is described in 9.7.1 and

9.7.7.

The second type of timing control is the event expression, which allows statement execution to be delayed

until the occurrence of some simulation event occurring in a procedure executing concurrently with this pro-

cedure. A simulation event can be a change of value on a net or variable (an implicit event) or the occurrence

of an explicitly named event that is triggered from other procedures (an explicit event). Most often, an event

control is a positive or negative edge on a clock signal. Event control is discussed in 9.7.2 through 9.7.7.

The procedural statements encountered so far all execute without advancing simulation time. Simulation

time can advance by one of the following three methods:

— A delay control, which is introduced by the symbol #
— An event control, which is introduced by the symbol @
— The wait statement, which operates like a combination of the event control and the while loop

Syntax 9-8 describes timing control in procedural statements.

begin : count1s
reg [7:0] tempreg;
count = 0;
tempreg = rega;
while (tempreg) begin

if (tempreg[0])
count = count + 1;

tempreg = tempreg >> 1;
end

end

begin
initial_assignment;
while (condition) begin

statement
step_assignment;

end
end

for (initial_assignment; condition; step_assignment)
statement

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 137
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 9-8—Syntax for procedural timing control

The gate and net delays also advance simulation time, as discussed in Clause 6. The next subclauses discuss

the three procedural timing control methods.

9.7.1 Delay control

A procedural statement following the delay control shall be delayed in its execution with respect to the pro-

cedural statement preceding the delay control by the specified delay. If the delay expression evaluates to an

unknown or high-impedance value, it shall be interpreted as zero delay. If the delay expression evaluates to a

negative value, it shall be interpreted as a 2’s complement unsigned integer of the same size as a time vari-

able. Specify parameters are permitted in the delay expression. They may be overridden by SDF annotation,

in which case the expression is reevaluated.

Examples:

Example 1—The following example delays the execution of the assignment by 10 time units:

#10 rega = regb;

Example 2—The next three examples provide an expression following the number sign (#). Execution of the

assignment is delayed by the amount of simulation time specified by the value of the expression.

#d rega = regb; // d is defined as a parameter
#((d+e)/2) rega = regb;// delay is average of d and e
#regr regr = regr + 1; // delay is the value in regr

delay_control ::= (From Annex A - A.6.5)
delay_value

| # (mintypmax_expression)
event_control ::=

@ event_identifier

| @ (event_expression)
| @*
| @ (*)

procedural_timing_control ::=

delay_control

| event_control

procedural_timing_control_statement ::=

| procedural_timing_control statement_or_null

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

138 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

9.7.2 Event control

The execution of a procedural statement can be synchronized with a value change on a net or variable or the

occurrence of a declared event. The value changes on nets and variable can be used as events to trigger the

execution of a statement. This is known as detecting an implicit event. The event can also be based on the

direction of the change—that is, towards the value 1 (posedge) or towards the value 0 (negedge). The behav-

ior of posedge and negedge events is shown in Table 43 and can be described as follows:

— A negedge shall be detected on the transition from 1 to x, z, or 0, and from x or z to 0
— A posedge shall be detected on the transition from 0 to x, z, or 1, and from x or z to 1

If the expression evaluates to more than a 1-bit result, the edge transition shall be detected on the least signif-

icant bit of the result. The change of value in any of the operands without a change in the value of the least

significant bit of the expression result shall not be detected as an edge.

Example:

The following example shows illustrations of edge-controlled statements.

9.7.3 Named events

A new data type, in addition to nets and variables, called “event” can be declared. An identifier declared as

an event data type is called a named event. A named event can be triggered explicitly. It can be used in an

event expression to control the execution of procedural statements in the same manner as event controls

described in 9.7.2. Named events can be made to occur from a procedure. This allows control over the

enabling of multiple actions in other procedures.

An event name shall be declared explicitly before it is used. Syntax 9-9 gives the syntax for declaring

events.

Table 43—Detecting posedge and negedge

To 0 1 x z

From

0 No edge posedge posedge posedge

1 negedge No edge negedge negedge

x negedge posedge No edge No edge

z negedge posedge No edge No edge

@r rega = regb; // controlled by any value change in the reg r
@(posedge clock) rega = regb; // controlled by posedge on clock
forever @(negedge clock) rega = regb; // controlled by negative edge

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 139
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 9-9—Syntax for event declaration

An event shall not hold any data. The following are the characteristics of a named event:

— It can be made to occur at any particular time
— It has no time duration
— Its occurrence can be recognized by using the event control syntax described in 9.7.2.

A declared event is made to occur by the activation of an event triggering statement with the syntax given in

Syntax 9-10. An event is not made to occur by changing the index of an event array in an event control

expression.

Syntax 9-10—Syntax for event trigger

An event-controlled statement (for example, @trig rega = regb;) shall cause simulation of its con-

taining procedure to wait until some other procedure executes the appropriate event-triggering statement (for

example, -> trig).

Named events and event control give a powerful and efficient means of describing the communication

between, and synchronization of, two or more concurrently active processes. A basic example of this is a

small waveform clock generator that synchronizes control of a synchronous circuit by signalling the occur-

rence of an explicit event periodically while the circuit waits for the event to occur.

9.7.4 Event or operator

The logical or of any number of events can be expressed such that the occurrence of any one of the events

triggers the execution of the procedural statement that follows it. The keyword or or a comma character (,) is

used as an event logical or operator. A combination of these can be used in the same event expression.

Comma-separated sensitivity lists shall be synonymous to or-separated sensitivity lists.

event_declaration ::= (From Annex A - A.2.1.3)
event list_of_event_identifiers ;

list_of_event_identifiers ::= (From Annex A - A.2.3)
event_identifier [dimension { dimension }]

{ , event_identifier [dimension { dimension }] }

dimension ::= (From Annex A - A.2.5)
[dimension_constant_expression : dimension_constant_expression]

event_trigger ::= (From Annex A - A.6.5)
-> hierarchical_event_identifier { [expression] } ;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

140 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Examples:

The next two examples show the logical or of two and three events respectively.

@(trig or enable) rega = regb; // controlled by trig or enable
@(posedge clk_a or posedge clk_b or trig) rega = regb;

The following examples show the use of the comma (,) as an event logical or operator.

always @(a, b, c, d, e)
always @(posedge clk, negedge rstn)
always @(a or b, c, d or e)

9.7.5 Implicit event_expression list

The event_expression list of an event control is a common source of bugs in RTL simulations. Users

tend to forget to add some of the nets or variables read in the timing control statement. This is often found

when comparing RTL and gate level versions of a design. The implicit event_expression, @*, is a

convenient shorthand that eliminates these problems by adding all nets and variables which are read by the

statement (which can be a statement group) of a procedural_timing_control_statement to the

event_expression.

All net and variable identifiers which appear in the statement will be automatically added to the event

expression with these exceptions:

— Identifiers which only appear in wait or event expressions.
— Identifiers which only appear as a hierarchical_reg_identifier in the reg_lvalue of the left hand

side of assignments.

Nets and variables which appear on the right hand side of assignments, in function and task calls, in case and

conditional expressions, as an index variable on the left hand side of assignments, or as variables in case

item expressions, shall all be included by these rules.

Examples:

Example 1

always @(*) // equivalent to @(a or b or c or d or f)
y = (a & b) | (c & d) | myfunction(f);

Example 2

always @* begin // equivalent to @(a or b or c or d or tmp1 or tmp2)
tmp1 = a & b;
tmp2 = c & d;
y = tmp1 | tmp2;

end

Example 3

always @* begin // equivalent to @(b)
@(i) kid = b; // i is not added to @*

end

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 141
This is an unapproved IEEE Standards Draft, subject to change.

Example 4

always @* begin // equivalent to @(a or b or c or d)
x = a ^ b;
@* // equivalent to @(c or d)

x = c ^ d;
end

Example 5

always @* begin // same as @(a or en)
y = 8’hff;
y[a] = !en;

end

Example 6

always @* begin // same as @(state or go or ws)
next = 4’b0;
case (1’b1)

state[IDLE]: if (go) next[READ] = 1’b1;
 else next[IDLE] = 1’b1;

state[READ]: next[DLY] = 1’b1;
state[DLY]: if (!ws) next[DONE] = 1’b1;

 else next[READ] = 1’b1;
state[DONE]: next[IDLE] = 1’b1;

endcase
end

9.7.6 Level-sensitive event control

The execution of a procedural statement can also be delayed until a condition becomes true. This is accom-

plished using the wait statement, which is a special form of event control. The nature of the wait statement is

level-sensitive, as opposed to basic event control (specified by the @ character), which is edge-sensitive.

The wait statement shall evaluate a condition, and, if it is false, the procedural statements following the wait

statement shall remain blocked until that condition becomes true before continuing. The wait statement has

the form given in Syntax 9-11.

Syntax 9-11—Syntax for wait statement

Example:

The following example shows the use of the wait statement to accomplish level-sensitive event control.

If the value of enable is 1 when the block is entered, the wait statement will delay the evaluation of the

wait_statement ::= (From Annex A - A.6.5)
wait (expression) statement_or_null

begin
wait (!enable) #10 a = b;
#10 c = d;

end

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

142 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

next statement (#10 a = b;) until the value of enable changes to 0. If enable is already 0 when the

begin-end block is entered, then the assignment “a = b;” is evaluated after a delay of 10 and no addi-

tional delay occurs.

9.7.7 Intra-assignment timing controls

The delay and event control constructs previously described precede a statement and delay its execution. In

contrast, the intra-assignment delay and event controls are contained within an assignment statement and

modify the flow of activity in a different way. This subclause describes the purpose of intra-assignment tim-

ing controls and the repeat timing control that can be used in intra-assignment delays.

An intra-assignment delay or event control shall delay the assignment of the new value to the left-hand side,

but the right-hand side expression shall be evaluated before the delay, instead of after the delay. The syntax

for intra-assignment delay and event control is given in Syntax 9-12.

Syntax 9-12—Syntax for intra-assignment delay and event control

The intra-assignment delay and event control can be applied to both blocking assignments and nonblocking

assignments. The event expression shall be resolved to a 1-bit value. The repeat event control shall specify

an intra-assignment delay of a specified number of occurrences of an event. If the repeat count literal, or

signed reg holding the repeat count, is less than or equal to 0 at the time of evaluation, the assignment occurs

as if there is no repeat construct.

Examples:

repeat (-3) @ (event_expression)
// will not execute event_expression.

blocking_assignment ::= (From Annex A - A.6.2)
variable_lvalue = [delay_or_event_control] expression

nonblocking_assignment ::=

variable_lvalue <= [delay_or_event_control] expression

delay_control ::= (From Annex A - A.6.5)
delay_value

| # (mintypmax_expression)
delay_or_event_control ::=

delay_control

| event_control

| repeat (expression) event_control

event_control ::=

@ event_identifier

| @ (event_expression)
| @*
| @ (*)

event_expression ::=

expression

| hierarchical_identifier

| posedge expression

| negedge expression

| event_expression or event_expression

| event_expression , event_expression

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 143
This is an unapproved IEEE Standards Draft, subject to change.

repeat (a) @ (event_expression)
// if a is assigned -3, it will execute the event_expression
// if a is declared as an unsigned reg,
// but not if it is signed.

This construct is convenient when events have to be synchronized with counts of clock signals.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

144 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Examples:

Table 44 illustrates the philosophy of intra-assignment timing controls by showing the code that could

accomplish the same timing effect without using intra-assignment.

The next three examples use the fork-join behavioral construct. All statements between the keywords fork
and join execute concurrently. This construct is described in more detail in 9.8.2.

The following example shows a race condition that could be prevented by using intra-assignment timing

control:

fork
#5 a = b;
#5 b = a;

join

The code in this example samples and sets the values of both a and b at the same simulation time, thereby

creating a race condition. The intra-assignment form of timing control used in the next example prevents this

race condition.

fork // data swap
a = #5 b;
b = #5 a;

join

Intra-assignment timing control works because the intra-assignment delay causes the values of a and b to be

evaluated before the delay, and the assignments to be made after the delay. Some existing tools that imple-

ment intra-assignment timing control use temporary storage in evaluating each expression on the right-hand

side.

Intra-assignment waiting for events is also effective. In the following example, the right-hand side expres-

sions are evaluated when the assignment statements are encountered, but the assignments are delayed until

the rising edge of the clock signal.

Table 44—Intra-assignment timing control equivalence

Intra-assignment timing control

With intra-assignment construct Without intra-assignment construct

a = #5 b;
begin
temp = b;
#5 a = temp;
end

a = @(posedge clk) b;
begin
temp = b;
@(posedge clk) a = temp;
end

a = repeat(3)
@(posedge clk) b;

begin
temp = b;
@(posedge clk);
@(posedge clk);
@(posedge clk) a = temp;
end

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 145
This is an unapproved IEEE Standards Draft, subject to change.

fork // data shift
a = @(posedge clk) b;
b = @(posedge clk) c;

join

The following is an example of a repeat event control as the intra-assignment delay of a nonblocking assign-

ment:

a <= repeat(5) @(posedge clk) data;

Figure 31 illustrates the activities that result from this repeat event control.

Figure 31—Repeat event control utilizing a clock edge

In this example, the value of data is evaluated when the assignment is encountered. After five occurrences

of posedge clk, a is assigned the value of data.

The following is an example of a repeat event control as the intra-assignment delay of a procedural assign-

ment:

a = repeat(num) @(clk) data;

In this example, the value of data is evaluated when the assignment is encountered. After the number of

transitions of clk equals the value of num, a is assigned the value of data.

The following is an example of a repeat event control with expressions containing operations to specify both

the number of event occurrences and the event that is counted:

a <= repeat(a+b) @(posedge phi1 or negedge phi2) data;

In this example, the value of data is evaluated when the assignment is encountered. After the sum of the

positive edges of phi1 and the negative edges of phi2 equals the sum of a and b, a is assigned the value

of data. Even if posedge phi1 and negedge phi2 occurred at the same simulation time, each will be

detected separately.

clk

data

a

data is evaluated

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

146 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

9.8 Block statements

The block statements are a means of grouping statements together so that they act syntactically like a single

statement. There are two types of blocks in the Verilog HDL:

— Sequential block, also called begin-end block
— Parallel block, also called fork-join block

The sequential block shall be delimited by the keywords begin and end. The procedural statements in

sequential block shall be executed sequentially in the given order.

The parallel block shall be delimited by the keywords fork and join. The procedural statements in parallel

block shall be executed concurrently.

9.8.1 Sequential blocks

A sequential block shall have the following characteristics:

— Statements shall be executed in sequence, one after another
— Delay values for each statement shall be treated relative to the simulation time of the execution of the

previous statement
— Control shall pass out of the block after the last statement executes

Syntax 9-13 gives the formal syntax for a sequential block.

Syntax 9-13—Syntax for the sequential block

Examples:

Example 1—A sequential block enables the following two assignments to have a deterministic result:

function_seq_block ::= (From Annex A - A.6.3)
begin [: block_identifier

{ block_item_declaration }] { function_statement } end
seq_block ::=

begin [: block_identifier

{ block_item_declaration }] { statement } end
block_item_declaration ::= (From Annex A - A.2.8)

{ attribute_instance } reg [signed] [range] list_of_block_variable_identifiers ;
| { attribute_instance } integer list_of_block_variable_identifiers ;
| { attribute_instance } time list_of_block_variable_identifiers ;
| { attribute_instance } real list_of_block_real_identifiers ;
| { attribute_instance } realtime list_of_block_real_identifiers ;
| { attribute_instance } event_declaration

| { attribute_instance } local_parameter_declaration ;
| { attribute_instance } parameter_declaration ;

begin
areg = breg;
creg = areg; // creg stores the value of breg

end

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 147
This is an unapproved IEEE Standards Draft, subject to change.

The first assignment is performed and areg is updated before control passes to the second assignment.

Example 2—Delay control can be used in a sequential block to separate the two assignments in time.

Example 3—The following example shows how the combination of the sequential block and delay control

can be used to specify a time-sequenced waveform.

9.8.2 Parallel blocks

A parallel block shall have the following characteristics:

— Statements shall execute concurrently
— Delay values for each statement shall be considered relative to the simulation time of entering the

block
— Delay control can be used to provide time-ordering for assignments
— Control shall pass out of the block when the last time-ordered statement executes

Syntax 9-14 gives the formal syntax for a parallel block.

Syntax 9-14—Syntax for the parallel block

The timing controls in a fork-join block do not have to be ordered sequentially in time.

par_block ::= (From Annex A - A.6.3)
fork [: block_identifier

{ block_item_declaration }] { statement } join
block_item_declaration ::= (From Annex A - A.2.8)

{ attribute_instance } reg [signed] [range] list_of_block_variable_identifiers ;
| { attribute_instance } integer list_of_block_variable_identifiers ;
| { attribute_instance } time list_of_block_variable_identifiers ;
| { attribute_instance } real list_of_block_real_identifiers ;
| { attribute_instance } realtime list_of_block_real_identifiers ;
| { attribute_instance } event_declaration

| { attribute_instance } local_parameter_declaration ;
| { attribute_instance } parameter_declaration ;

begin
areg = breg;
@(posedge clock) creg = areg; // assignment delayed until

end // posedge on clock

parameter d = 50; // d declared as a parameter and
reg [7:0] r; // r declared as an 8-bit reg

begin // a waveform controlled by sequential delay
#d r = ’h35;
#d r = ’hE2;
#d r = ’h00;
#d r = ’hF7;
#d -> end_wave;//trigger an event called end_wave

end

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

148 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Example:

The following example codes the waveform description shown in example 3 of 9.8.1 by using a parallel

block instead of a sequential block. The waveform produced on the reg is exactly the same for both imple-

mentations.

9.8.3 Block names

Both sequential and parallel blocks can be named by adding : name_of_block after the keywords begin
or fork. The naming of blocks serves several purposes:

— It allows local variables, parameters, and named events to be declared for the block.
— It allows the block to be referenced in statements such as the disable statement (see Clause 11).

All variables shall be static—that is, a unique location exists for all variables and leaving or entering blocks

shall not affect the values stored in them.

The block names give a means of uniquely identifying all variables at any simulation time.

9.8.4 Start and finish times

Both sequential and procedural blocks have the notion of a start and finish time. For sequential blocks, the

start time is when the first statement is executed, and the finish time is when the last statement has been exe-

cuted. For parallel blocks, the start time is the same for all the statements, and the finish time is when the last

time-ordered statement has been executed.

Sequential and parallel blocks can be embedded within each other, allowing complex control structures to be

expressed easily and with a high degree of structure. When blocks are embedded within each other, the tim-

ing of when a block starts and finishes is important. Execution shall not continue to the statement following

a block until the finish time for the block has been reached—that is, until the block has completely finished

executing.

Examples:

Example 1—The following example shows the statements from the example in 9.8.2 written in the reverse

order and still producing the same waveform.

fork
#50 r = ’h35;
#100 r = ’hE2;
#150 r = ’h00;
#200 r = ’hF7;
#250 -> end_wave;

join

fork
#250 -> end_wave;
#200 r = ’hF7;
#150 r = ’h00;
#100 r = ’hE2;
#50 r = ’h35;

join

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 149
This is an unapproved IEEE Standards Draft, subject to change.

Example 2—When an assignment is to be made after two separate events have occurred, known as the join-
ing of events, a fork-join block can be useful.

The two events can occur in any order (or even at the same simulation time) and the fork-join block will

complete and the assignment will be made. In contrast to this, if the fork-join block was a begin-end
block and the Bevent occurred before the Aevent, then the block would be waiting for the next Bevent.

Example 3—This example shows two sequential blocks, each of which will execute when its controlling

event occurs. Because the event controls are within a fork-join block, they execute in parallel and the

sequential blocks can therefore also execute in parallel.

9.9 Structured procedures

All procedures in the Verilog HDL are specified within one of the following four statements:

— initial construct
— always construct
— Task
— Function

The initial and always constructs are enabled at the beginning of a simulation. The initial construct shall exe-

cute only once and its activity shall cease when the statement has finished. In contrast, the always construct

shall execute repeatedly. Its activity shall cease only when the simulation is terminated. There shall be no

implied order of execution between initial and always constructs. The initial constructs need not be sched-

uled and executed before the always constructs. There shall be no limit to the number of initial and always

constructs that can be defined in a module.

begin
fork

@Aevent;
@Bevent;

join
areg = breg;

end

fork
@enable_a

begin
#ta wa = 0;
#ta wa = 1;
#ta wa = 0;

end
@enable_b

begin
#tb wb = 1;
#tb wb = 0;
#tb wb = 1;

end
join

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

150 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Tasks and functions are procedures that are enabled from one or more places in other procedures. Tasks and

functions are described in Clause 10.

9.9.1 Initial construct

The syntax for the initial construct is given in Syntax 9-15.

Syntax 9-15—Syntax for initial construct

Examples:

The following example illustrates use of the initial construct for initialization of variables at the start of sim-

ulation.

Another typical usage of the initial construct is specification of waveform descriptions that execute once to

provide stimulus to the main part of the circuit being simulated.

9.9.2 Always construct

The always construct repeats continuously throughout the duration of the simulation. Syntax 9-16 shows the

syntax for the always construct.

Syntax 9-16—Syntax for always construct

The always construct, because of its looping nature, is only useful when used in conjunction with some form

of timing control. If an always construct has no control for simulation time to advance, it will create a simu-

lation deadlock condition.

initial_construct ::= (From Annex A - A.6.2)
initial statement

always_construct ::= (From Annex A - A.6.2)
always statement

initial begin
areg = 0; // initialize a reg
for (index = 0; index < size; index = index + 1)

 memory[index] = 0; //initialize memory word
end

initial begin
inputs = ’b000000; //initialize at time zero
#10 inputs = ’b011001; // first pattern
#10 inputs = ’b011011; // second pattern
#10 inputs = ’b011000; // third pattern
#10 inputs = ’b001000; // last pattern

end

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 151
This is an unapproved IEEE Standards Draft, subject to change.

The following code, for example, creates a zero-delay infinite loop.

always areg = ~areg;

Providing a timing control to the above code creates a potentially useful description as shown in the follow-

ing:

always #half_period areg = ~areg;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

152 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

10. Tasks and functions

Tasks and functions provide the ability to execute common procedures from several different places in a

description. They also provide a means of breaking up large procedures into smaller ones to make it easier to

read and debug the source descriptions. This clause discusses the differences between tasks and functions,

describes how to define and invoke tasks and functions, and presents examples of each.

10.1 Distinctions between tasks and functions

The following rules distinguish tasks from functions:

— A function shall execute in one simulation time unit; a task can contain time-controlling statements.
— A function cannot enable a task; a task can enable other tasks and functions.
— A function shall have at least one input type argument and shall not have an output or inout type

argument; a task can have zero or more arguments of any type.
— A function shall return a single value; a task shall not return a value.

The purpose of a function is to respond to an input value by returning a single value. A task can support mul-

tiple goals and can calculate multiple result values. However, only the output or inout type arguments pass

result values back from the invocation of a task. A function is used as an operand in an expression; the value

of that operand is the value returned by the function.

Example:

Either a task or a function can be defined to switch bytes in a 16-bit word. The task would return the

switched word in an output argument, so the source code to enable a task called switch_bytes could

look like the following example:

switch_bytes (old_word, new_word);

The task switch_bytes would take the bytes in old_word, reverse their order, and place the reversed

bytes in new_word.

A word-switching function would return the switched word as the return value of the function. Thus, the

function call for the function switch_bytes could look like the following example:

new_word = switch_bytes (old_word);

10.2 Tasks and task enabling

A task shall be enabled from a statement that defines the argument values to be passed to the task and the

variables that receive the results. Control shall be passed back to the enabling process after the task has com-

pleted. Thus, if a task has timing controls inside it, then the time of enabling a task can be different from the

time at which the control is returned. A task can enable other tasks, which in turn can enable still other

tasks—with no limit on the number of tasks enabled. Regardless of how many tasks have been enabled, con-

trol shall not return until all enabled tasks have completed.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 153
This is an unapproved IEEE Standards Draft, subject to change.

10.2.1 Task declarations

The syntax for defining tasks is given in Syntax 10-1.

Syntax 10-1—Syntax for task declaration

task_declaration ::= (From Annex A - A.2.7)
task [automatic] task_identifier ;
{ task_item_declaration }

statement_or_null

endtask
| task [automatic] task_identifier (task_port_list) ;

{ block_item_declaration }

statement_or_null

endtask
task_item_declaration ::=

block_item_declaration

| { attribute_instance } tf_ input_declaration ;
| { attribute_instance } tf_output_declaration ;
| { attribute_instance } tf_inout_declaration ;

task_port_list ::=

task_port_item { , task_port_item }

task_port_item ::=

{ attribute_instance } tf_input_declaration

| { attribute_instance } tf_output_declaration

| { attribute_instance } tf_inout_declaration

tf_input_declaration ::=

input [reg] [signed] [range] list_of_port_identifiers

| input [task_port_type] list_of_port_identifiers

tf_output_declaration ::=

output [reg] [signed] [range] list_of_port_identifiers

| output [task_port_type] list_of_port_identifiers

tf_inout_declaration ::=

inout [reg] [signed] [range] list_of_port_identifiers

| inout [task_port_type] list_of_port_identifiers

task_port_type ::=

time | real | realtime | integer
block_item_declaration ::= (From Annex A - A.2.8)

{ attribute_instance } reg [signed] [range] list_of_block_variable_identifiers ;
| { attribute_instance } integer list_of_block_variable_identifiers ;
| { attribute_instance } time list_of_block_variable_identifiers ;
| { attribute_instance } real list_of_block_real_identifiers ;
| { attribute_instance } realtime list_of_block_real_identifiers ;
| { attribute_instance } event_declaration

| { attribute_instance } local_parameter_declaration ;
| { attribute_instance } parameter_declaration ;

list_of_block_variable_identifiers ::=

block_variable_type { , block_variable_type }

list_of_block_real_identifiers ::=

block_real_type { , block_real_type }

block_variable_type ::=

variable_identifier { dimension }

block_real_type ::=

real_identifier { dimension }

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

154 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

There are two alternate task declaration syntaxes.

The first syntax shall begin with the keyword task, followed by the optional keyword automatic, followed

by a name for the task and a semicolon, and ending with the keyword endtask. The keyword automatic
declares an automatic task that is reentrant with all the task declarations allocated dynamically for each con-

current task entry. Task item declarations can specify the following:

— Input arguments
— Output arguments
— Inout arguments
— All data types that can be declared in a procedural block

The second syntax shall begin with the keyword task, followed by a name for the task and a parenthesis

enclosed task_port_list. The task_port_list shall consist of zero or more comma separated task_port_items.

There shall be a semicolon after the close parenthesis. The task body shall follow and then the keyword end-
task.

In both syntaxes, the port declarations shall have the same syntax as defined by the tf_input_declaration,

tf_output_declaration and tf_inout_declaration, as detailed in Syntax 10-1 above.

Tasks without the optional keyword automatic are static tasks, with all declared items being statically allo-

cated. These items shall be shared across all uses of the task executing concurrently. Task with the optional

keyword automatic are automatic tasks. All items declared inside automatic tasks are allocated dynamically

for each invocation. Automatic task items can not be accessed by hierarchical references. Automatic tasks

can be invoked through use of their hierarchical name.

10.2.2 Task enabling and argument passing

The task enabling statement shall pass arguments as a comma-separated list of expressions enclosed in

parentheses. The formal syntax of the task enabling statement is given in Syntax 10-2.

Syntax 10-2—Syntax of the task enabling statement

The list of arguments for a task enabling statement shall be optional. If the list of arguments is provided, the

list shall be an ordered list of expressions that has to match the order of the list of arguments in the task def-

inition.

If an argument in the task is declared as an input, then the corresponding expression can be any expression.

The order of evaluation of the expressions in the argument list is undefined. If the argument is declared as an

output or an inout, then the expression shall be restricted to an expression that is valid on the left-hand side

of a procedural assignment (see 9.2). The following items satisfy this requirement:

— reg, integer, real, realtime, and time variables
— Memory references
— Concatenations of reg, integer, real, realtime and time variables
— Concatenations of memory references
— Bit-selects and part-selects of reg, integer, and time variables

task_enable ::= (From Annex A - A.6.9)
hierarchical_task_identifier [(expression { , expression })] ;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 155
This is an unapproved IEEE Standards Draft, subject to change.

The execution of the task enabling statement shall pass input values from the expressions listed in the

enabling statement to the arguments specified within the task. Execution of the return from the task shall

pass values from the task output and inout type arguments to the corresponding variables in the task

enabling statement. All arguments to the task shall be passed by value rather than by reference (that is, a

pointer to the value).

Examples:

Example 1—The following example illustrates the basic structure of a task definition with five arguments.

Or using the second form of a task declaration, the task could be defined as:

The following statement enables the task:

my_task (v, w, x, y, z);

The task enabling arguments (v, w, x, y, and z) correspond to the arguments (a, b, c, d, and e)
defined by the task. At task enabling time, the input and inout type arguments (a, b, and c) receive the

values passed in v, w, and x. Thus, execution of the task enabling call effectively causes the following

assignments:

a = v;
b = w;
c = x;

As part of the processing of the task, the task definition for my_task shall place the computed result values

into c, d, and e. When the task completes, the following assignments to return the computed values to the

calling process are performed:

x = c;
y = d;
z = e;

task my_task;
input a, b;
inout c;
output d, e;
begin
 . . . // statements that perform the work of the task
. . .
c = foo1; // the assignments that initialize result regs
d = foo2;
e = foo3;

end
endtask

task my_task (input a, b, inout c, output d, e);
begin
 . . . // statements that perform the work of the task
. . .
c = foo1; // the assignments that initialize result regs
d = foo2;
e = foo3;

end
endtask

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

156 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Example 2—The following example illustrates the use of tasks by describing a traffic light sequencer:

10.2.3 Task memory usage and concurrent activation

A task may be enabled more than once concurrently. All variables of an automatic task shall be replicated on

each concurrent task invocation to store state specific to that invocation. All variables of a static task shall be

static in that there shall be a single variable corresponding to each declared local variable in a module

instance, regardless of the number of concurrent activations of the task. However, static tasks in different

instances of a module shall have separate storage from each other.

Variables declared in static tasks shall retain their values between invocations. They shall be initialized to the

default initialization value as described in 3.2.2. Variables declared in automatic tasks shall be initialized to

the default initialization value whenever execution enters their scope.

Because variables declared in automatic tasks are deallocated at the end of the task invocation, they shall not

be used in certain constructs that might refer to them after that point:

module traffic_lights;
reg clock, red, amber, green;
parameter on = 1, off = 0, red_tics = 350,

amber_tics = 30, green_tics = 200;

// initialize colors.
initial red = off;
initial amber = off;
initial green = off;

always begin // sequence to control the lights.
red = on; // turn red light on
light(red, red_tics); // and wait.
green = on; // turn green light on
light(green, green_tics); // and wait.
amber = on; // turn amber light on
light(amber, amber_tics); // and wait.

end

// task to wait for ’tics’ positive edge clocks
// before turning ’color’ light off.
task light;
output color;
input [31:0] tics;
begin

repeat (tics) @ (posedge clock);
color = off; // turn light off.

end
endtask

always begin // waveform for the clock.
#100 clock = 0;
#100 clock = 1;

end
endmodule // traffic_lights.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 157
This is an unapproved IEEE Standards Draft, subject to change.

— They shall not be assigned values using nonblocking assignments or procedural continuous assign-
ments.

— They shall not be referenced by procedural continuous assignments or procedural force statements.

— They shall not be referenced in intra-assignment event controls of nonblocking assignments.
— They shall not be traced with system tasks such as $monitor and $dumpvars.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

158 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

10.3 Functions and function calling

The purpose of a function is to return a value that is to be used in an expression. The rest of this clause

explains how to define and use functions.

10.3.1 Function declarations

The syntax for defining a function is given in Syntax 10-3.

Syntax 10-3—Syntax for function declaration

A function definition shall begin with the keyword function, followed by the optional keyword automatic,

followed by the optional signed designator, followed by the range or type of the return value from the func-

tion, followed by the name of the function, and then either a semicolon, or a function port list enclosed in

parenthesis, and then a semicolon, and then shall end with the keyword endfunction. The use of a

function_declaration ::= (From Annex A - A.2.6)
function [automatic] [signed] [range_or_type]

function_identifier ;
function_item_declaration { function_item_declaration }

function_statement

endfunction
| function [automatic] [signed] [range_or_type]

function_identifier (function_port_list) ;
block_item_declaration { block_item_declaration }

function_statement

endfunction
function_item_declaration ::=

block_item_declaration

| tf_input_declaration ;
function_port_list ::=

{ attribute_instance } tf_input_declaration

{ , { attribute_instance }tf_input_declaration }

tf_input_declaration ::=

input [reg] [signed] [range] list_of_port_identifiers

| input [task_port_type] list_of_port_identifiers

range_or_type ::=

range | integer | real | realtime | time
block_item_declaration ::= (From Annex A - A.2.8)

{ attribute_instance } reg [signed] [range] list_of_block_variable_identifiers ;
| { attribute_instance } integer list_of_block_variable_identifiers ;
| { attribute_instance } time list_of_block_variable_identifiers ;
| { attribute_instance } real list_of_block_real_identifiers ;
| { attribute_instance } realtime list_of_block_real_identifiers ;
| { attribute_instance } event_declaration

| { attribute_instance } local_parameter_declaration ;
| { attribute_instance } parameter_declaration ;

list_of_block_variable_identifiers ::=

block_variable_type { , block_variable_type }

list_of_block_real_identifiers ::=

block_real_type { , block_real_type }

block_variable_type ::=

variable_identifier { dimension }

block_real_type ::=

real_identifier { dimension }

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 159
This is an unapproved IEEE Standards Draft, subject to change.

range_or_type shall be optional. A function specified without a range or type defaults to a one bit reg for the

return value. If used, range_or_type shall specify the return value of the function is a real, an integer, a

time, a realtime or a value with a range of [n:m] bits. A function shall have at least one input

declared.

The keyword automatic declares a recursive function with all the function declarations allocated dynami-

cally for each recursive call. Automatic function items can not be accessed by hierarchical references. Auto-

matic functions can be invoked through the use of their hierarchical name.

Function inputs shall be declared one of two ways. The first method shall have the name of the function fol-

lowed by a semicolon. After the semicolon one or more input declarations optionally mixed with block item

declarations shall follow. After the function item declarations there shall be a behavioral statement and then

the endfunction keyword.

The second method shall have the name of the function, followed by an open parenthesis, and one or more

input declarations, separated by commas. After all the input declarations, there shall be a close parenthesis,

and a semicolon. After the semicolon, there shall be zero or more block item declarations, followed by a

behavioral statement, and then the endfunction keyword.

Example:

The following example defines a function called getbyte, using a range specification.

Or using the second form of a function declaration, the function could be defined as:

10.3.2 Returning a value from a function

The function definition shall implicitly declare a variable, internal to the function, with the same name as the

function. This variable either defaults to a 1-bit reg or is the same type as the type specified in the function

declaration. The function definition initializes the return value from the function by assigning the function

result to the internal variable with the same name as the function.

It is illegal to declare another object with the same name as the function in the scope where the function is

declared. Inside a function, there is an implied variable with the name of the function, which may be used in

expressions within the function. It is, therefore, also illegal to declare another object with the same name as

the function inside the function scope.

The following line from the example in 10.3.1 illustrates this concept:

getbyte = result_expression;

function [7:0] getbyte;
input [15:0] address;
begin

// code to extract low-order byte from addressed word
. . .
getbyte = result_expression;

end
endfunction

function [7:0] getbyte (input [15:0] address);
begin

// code to extract low-order byte from addressed word
. . .
getbyte = result_expression;

end
endfunction

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

160 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

10.3.3 Calling a function

A function call is an operand within an expression. The function call has the syntax given in Syntax 10-4.

Syntax 10-4—Syntax for function call

The order of evaluation of the arguments to a function call is undefined.

Example:

The following example creates a word by concatenating the results of two calls to the function getbyte
(defined in 10.3.1):

word = control ? {getbyte(msbyte), getbyte(lsbyte)}:0;

10.3.4 Function rules

Functions are more limited than tasks. The following six rules govern their usage:

a) A function definition shall not contain any time-controlled statements—that is, any statements

introduced with #, @, or wait.

b) Functions shall not enable tasks.

c) A function definition shall contain at least one input argument.

d) A function definition shall not have any argument declared as output or inout.

e) A function definition shall include an assignment of the function result value to the internal variable

that has the same name as the function name.

f) A function shall not have any nonblocking assignments.

Example:

This example defines a function called factorial that returns an integer value. The factorial func-

tion is called iteratively and the results are printed.

function_call ::= (From Annex A - A.8.2)
hierarchical_function_identifier{ attribute_instance } (expression { , expression })

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 161
This is an unapproved IEEE Standards Draft, subject to change.

The simulation results are as follows:

10.3.5 Use of constant functions

Constant function calls are used to support the building of complex calculations of values at elaboration time

(see 12.1.3). A constant function call shall be a function invocation of a constant function local to the calling

module where the arguments to the function are constant expressions. Constant functions are a subset of nor-

mal Verilog functions that shall meet the following constraints:

— They shall contain no hierarchical references.
— Any function invoked within a constant function shall be a constant function local to the current

module.
— All system tasks within a constant function shall be ignored.
— All system functions within a constant function shall be illegal.
— The only system task that may be invoked is $display, and it shall be ignored when invoked at

elaboration time.

module tryfact;

// define the function
function automatic integer factorial;
input [31:0] operand;
integer i;
if (operand >= 2)

factorial = factorial (operand - 1) * operand;
else

factorial = 1;
endfunction

// test the function
integer result;
integer n;
initial begin

for (n = 0; n <= 7; n = n+1) begin
result = factorial(n);
$display("%0d factorial=%0d", n, result);

end
end
endmodule // tryfact

0 factorial=1
1 factorial=1
2 factorial=2
3 factorial=6
4 factorial=24
5 factorial=120
6 factorial=720
7 factorial=5040

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

162 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

— All parameter values used within the function shall be defined before the use of the invoking constant
function call (i.e. any parameter use in the evaluation of a constant function call constitutes a use of
that parameter at the site of the original constant function call).

— All identifiers which are not parameters or functions shall be declared locally to the current function.
— If they use any parameter value that is affected directly or indirectly by a defparam statement (see

12.2.1), the result is undefined. This can produce an error or the constant function can return an inde-
terminate value.

— They shall not be declared inside a generate scope.
— They shall not themselves use constant functions in any context requiring a constant expression.

Constant function calls are evaluated at elaboration time. Their execution has no effect on the initial values

of the variables used either at simulation time or among multiple invocations of a function at elaboration

time. In each of these cases, the variables are initialized as they would be for normal simulation.

Example:

This example defines a function called clogb2 that returns an integer which has the value of the ceiling of

the log base 2.

An instance of this ram_model with parameters assigned:

ram_model #(32,421) ram_a0(a_addr,a_wr,a_cs,a_data);

module ram_model (address, write, chip_select, data);
parameter data_width = 8;
parameter ram_depth = 256;
localparam addr_width = clogb2(ram_depth);
input [addr_width - 1:0] address;
input write, chip_select;
inout [data_width - 1:0] data;

 //define the clogb2 function
function integer clogb2;

input [31:0] value;
begin

 value = value - 1;
for (clogb2 = 0; value > 0; clogb2 = clogb2 + 1)

 value = value >> 1;
end

 endfunction

 reg [data_width - 1:0] data_store[0:ram_depth - 1];
 //the rest of the ram model

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 163
This is an unapproved IEEE Standards Draft, subject to change.

11. Disabling of named blocks and tasks

The disable statement provides the ability to terminate the activity associated with concurrently active pro-

cedures, while maintaining the structured nature of Verilog HDL procedural descriptions. The disable state-

ment gives a mechanism for terminating a task before it executes all its statements, breaking from a looping

statement, or skipping statements in order to continue with another iteration of a looping statement. It is use-

ful for handling exception conditions such as hardware interrupts and global resets.

The disable statement has the syntax form shown in Syntax 11-1.

Syntax 11-1—Syntax of disable statement

Either form of disable statement shall terminate the activity of a task or a named block. Execution shall

resume at the statement following the block or following the task enabling statement. All activities enabled

within the named block or task shall be terminated as well. If task enable statements are nested—that is, one

task enables another, and that one enables yet another—then disabling a task within the chain shall disable

all tasks downward on the chain. If a task is enabled more than once, then disabling such a task shall disable

all activations of the task.

The results of the following activities that may be initiated by a task are not specified if the task is disabled:

— Results of output and inout arguments
— Scheduled, but not executed, nonblocking assignments
— Procedural continuous assignments (assign and force statements)

The disable statement can be used within blocks and tasks to disable the particular block or task containing

the disable statement. The disable statement can be used to disable named blocks within a function, but can-

not be used to disable functions. In cases where a disable statement within a function disables a block or a

task that called the function, the behavior is undefined. Disabling an automatic task or a block inside an auto-

matic task proceeds as for regular tasks for all concurrent executions of the task.

Examples:

Example 1—This example illustrates how a block disables itself.

Example 2—This example shows the disable statement being used within a named block in a manner similar

to a forward goto. The next statement executed after the disable statement is the one following the named

block.

disable_statement ::= (From Annex A - A.6.5)
disable hierarchical_task_identifier ;

| disable hierarchical_block_identifier ;

begin : block_name
rega = regb;
disable block_name;
regc = rega; // this assignment will never execute

end

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

164 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Example 3—This example shows the disable statement being used as an early return from a task. However, a

task disabling itself using a disable statement is not a short-hand for the return statement found in program-

ming languages.

Example 4—This example shows the disable statement being used in an equivalent way to the two state-

ments continue and break in the C programming language. The example illustrates control code that would

allow a named block to execute until a loop counter reaches n iterations or until the variable a is set to the

value of b. The named block break contains the code that executes until a == b, at which point the dis-
able break; statement terminates execution of that block. The named block continue contains the

code that executes for each iteration of the for loop. Each time this code executes the disable con-
tinue; statement, the continue block terminates and execution passes to the next iteration of the for

loop. For each iteration of the continue block, a set of statements executes if (a != 0). Another set of

statements executes if(a!=b).

begin : block_name
...
...
if (a == 0)

disable block_name;
...

end // end of named block
// continue with code following named block

...

task proc_a;
begin

...

...
if (a == 0)

disable proc_a; // return if true
...
...

end
endtask

begin : break
for (i = 0; i < n; i = i+1) begin : continue

@clk
if (a == 0) // "continue" loop

disable continue;
statements
statements

@clk
if (a == b) // "break" from loop

disable break;
statements
statements

end
end

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 165
This is an unapproved IEEE Standards Draft, subject to change.

Example 5—This example shows the disable statement being used to disable concurrently a sequence of tim-

ing controls and the task action, when the reset event occurs. The example shows a fork/join block

within which is a named sequential block (event_expr) and a disable statement that waits for occurrence

of the event reset. The sequential block and the wait for reset execute in parallel. The event_expr
block waits for one occurrence of event ev1 and three occurrences of event trig. When these four events

have happened, plus a delay of d time units, the task action executes. When the event reset occurs,

regardless of events within the sequential block, the fork/join block terminates—including the task

action.

Example 6—The next example is a behavioral description of a retriggerable monostable. The named event

retrig restarts the monostable time period. If retrig continues to occur within 250 time units, then q
will remain at 1.

fork
begin : event_expr

@ev1;
repeat (3) @trig;
#d action (areg, breg);

end
@reset disable event_expr;

join

always begin : monostable
#250 q = 0;

end

always @retrig begin
disable monostable;
q = 1;

end

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

166 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

12. Hierarchical structures

The Verilog HDL supports a hierarchical hardware description structure by allowing modules to be embed-

ded within other modules. Higher-level modules create instances of lower-level modules and communicate

with them through input, output, and bidirectional ports. These module input/output ports can be scalar or

vector.

As an example of a module hierarchy, consider a system consisting of printed circuit boards (PCBs). The

system would be represented as the top-level module and would create instances of modules that represent

the boards. The board modules would, in turn, create instances of modules that represent ICs, and the ICs

could, in turn, create instances of modules such as flip-flops, mux’s, and alu’s.

To describe a hierarchy of modules, the user provides textual definitions of the various modules. Each mod-

ule definition stands alone; the definitions are not nested. Statements within the module definitions create

instances of other modules, thus describing the hierarchy.

12.1 Modules

This clause gives the formal syntax for a module definition and then gives the syntax for module instantia-

tion, along with an example of a module definition and a module instantiation.

A module definition shall be enclosed between the keywords module and endmodule. The identifier follow-

ing the keyword module shall be the name of the module being defined. The optional list of parameter defi-

nitions shall specify an ordered list of the parameters for the module. The optional list of ports or port

declarations shall specify an ordered list of the ports for the module. The order used in defining the list of

parameters in the module_parameter_port_list and in the list of ports can be significant when

instantiating the module (see 12.2.2.1 and 12.3.5). The identifiers in this list shall be declared in input, out-

put, and inout statements within the module definition. Ports declared in the list of port declarations shall not

be redeclared within the body of the module. The module items define what constitutes a module and they

include many different types of declarations and definitions, many of which have already been introduced.

The keyword macromodule can be used interchangeably with the keyword module to define a module. An

implementation can choose to treat module definitions beginning with macromodule keyword differently.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 167
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 12-1—Syntax for module

module_declaration ::= (From Annex A - A.1.3)
{ attribute_instance } module_keyword module_identifier [module_parameter_port_list]

list_of_ports ; { module_item }

endmodule
| { attribute_instance } module_keyword module_identifier [module_parameter_port_list]

[list_of_port_declarations] ; { non_port_module_item }

endmodule
module_keyword ::= module | macromodule
module_parameter_port_list ::= (From Annex A -A.1.4

(parameter_declaration { , parameter_declaration })
list_of_ports ::= (port { , port })
list_of_port_declarations ::= (port_declaration { , port_declaration }) | ()
port ::= [port_expression] | . port_identifier ([port_expression])
port_expression ::= port_reference | { port_reference { , port_reference } }
port_reference ::= port_identifier | port_identifier [constant_expression]

| port_identifier [range_expression]
port_declaration ::= {attribute_instance} inout_declaration

| {attribute_instance} input_declaration

| {attribute_instance} output_declaration

module_item ::= module_or_generate_item (From Annex A - A.1.5)
| port_declaration ;
| { attribute_instance } generated_instantiation

| { attribute_instance } local_parameter_declaration ;
| { attribute_instance } parameter_declaration ;
| { attribute_instance } specify_block

| { attribute_instance } specparam_declaration

module_or_generate_item ::= { attribute_instance } module_or_generate_item_declaration

| { attribute_instance } parameter_override

| { attribute_instance } continuous_assign

| { attribute_instance } gate_instantiation

| { attribute_instance } udp_instantiation

| { attribute_instance } module_instantiation

| { attribute_instance } initial_construct

| { attribute_instance } always_construct

module_or_generate_item_declaration ::= net_declaration

| reg_declaration

| integer_declaration

| real_declaration

| time_declaration

| realtime_declaration

| event_declaration

| genvar_declaration

| task_declaration

| function_declaration

non_port_module_item ::= { attribute_instance } generated_instantiation

| { attribute_instance } local_parameter_declaration ;

| { attribute_instance } parameter_declaration ;

| { attribute_instance } specify_block

| { attribute_instance } specparam_declaration

| { attribute_instance } module_or_generate_item

parameter_override ::= defparam list_of_defparam_assignments ;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

168 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

See 12.3 for the definitions of ports.

12.1.1 Top-level modules

Top-level modules are modules that are included in the source text but are not instantiated, as described in

12.1.2.

12.1.2 Module instantiation

Instantiation allows one module to incorporate a copy of another module into itself. Module definitions do

not nest. That is, one module definition shall not contain the text of another module definition within its

module-endmodule keyword pair. A module definition nests another module by instantiating it. The mod-
ule instantiation statement creates one or more named instances of a defined module.

For example, a counter module might instantiate a D flip-flop module to create multiple instances of the flip-

flop.

Syntax 12-2 gives the syntax for specifying instantiations of modules.

Syntax 12-2—Syntax for module instantiation

The instantiations of modules can contain a range specification. This allows an array of instances to be cre-

ated. The array of instances is described in 7.1. The syntax and semantics of arrays of instances defined for

gates and primitives apply for modules as well.

One or more module instances (identical copies of a module) can be specified in a single module instantia-

tion statement.

module_instantiation ::= (From Annex A - A.4.1)
module_identifier [parameter_value_assignment]

module_instance { , module_instance } ;
parameter_value_assignment ::=

(list_of_parameter_assignments)
list_of_parameter_assignments ::=

ordered_parameter_assignment { , ordered_parameter_assignment }

| named_parameter_assignment { , named_parameter_assignment }

ordered_parameter_assignment ::=

expression

named_parameter_assignment ::=

. parameter_identifier ([expression])
module_instance ::=

name_of_instance ([list_of_port_connections])
name_of_instance ::=

module_instance_identifier [range]

list_of_port_connections ::=

ordered_port_connection { , ordered_port_connection }

| named_port_connection { , named_port_connection }

ordered_port_connection ::=

{ attribute_instance } [expression]

named_port_connection ::=

{ attribute_instance } . port_identifier ([expression])

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 169
This is an unapproved IEEE Standards Draft, subject to change.

The list of port connections shall be provided only for modules defined with ports. The parentheses, how-

ever, are always required. When a list of port connections is given using the ordered port connection method,

the first element in the list shall connect to the first port declared in the module, the second to the second

port, and so on. See 12.3 for a more detailed discussion of ports and port connection rules.

A connection can be a simple reference to a variable or a net identifier, an expression, or a blank. An expres-

sion can be used for supplying a value to a module input port. A blank port connection shall represent the sit-

uation where the port is not to be connected.

When connecting ports by name, an unconnected port can be indicated either by omitting it in the port list,

or by providing no expression in the parentheses [i.e., .port_name ()].

Examples:

Example 1—The following example illustrates a circuit (the lower-level module) being driven by a simple

waveform description (the higher-level module) where the circuit module is instantiated inside the waveform

module.

Example 2—The following example creates two instances of the flip-flop module ffnand defined in exam-

ple 1. It connects only to the q output in one instance and only to the qbar output in the other instance.

// Lower level module:
// module description of a nand flip-flop circuit
module ffnand (q, qbar, preset, clear);
output q, qbar; //declares 2 circuit output nets
input preset, clear; //declares 2 circuit input nets

// declaration of two nand gates and their interconnections
nand g1 (q, qbar, preset),

g2 (qbar, q, clear);
endmodule

// Higher-level module:
// a waveform description for the nand flip-flop
module ffnand_wave;
wire out1, out2; //outputs from the circuit
reg in1, in2; //variables to drive the circuit
parameter d = 10;

// instantiate the circuit ffnand, name it “ff”,
// and specify the IO port interconnections
ffnand ff(out1, out2, in1, in2);

// define the waveform to stimulate the circuit
initial begin

#d in1 = 0; in2 = 1;
#d in1 = 1;
#d in2 = 0;
#d in2 = 1;

end
endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

170 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

12.1.3 Generated instantiation

After a Verilog design has been parsed, but before simulation begins, the design must have the modules

being instantiated linked to the modules being defined, the parameters propagated among the various mod-

ules, and hierarchical references resolved. This phase in understanding a Verilog description is termed

elaboration.

Generate instantiations are resolved during elaboration because that is when the parameters associated with

a module become defined, hence, allowing the definition of the generated statements and declarations. Gen-

vars are only defined during the evaluation of the generate instantiations and do not exist during simulation

of a design.

Generate statements facilitate the creation of parameterized models. When used with constant functions (see

10.3.5), parameters can be used to constrain other parameter(s) or localparam(s) in a generated design.

All generate instantiations are coded within a module scope and require the keywords generate - endgener-
ate.

Generate statements allow control over the declaration of variables, functions and tasks, as well as control

over instantiations. Generated instantiations are one or more: modules, user defined primitives, Verilog gate

primitives, continuous assignments, initial blocks and always blocks. Generated declarations and instantia-

tions can be conditionally instantiated into a design. Generated variable declarations and instantiations can

be multiply instantiated into a design. Generated instances have unique identifier names and can be refer-

enced hierarchically as described in 12.4.

To support the interconnection between structural elements and/or procedural blocks, generate statements

permit the following Verilog data types to be declared within the generate scope: net, reg, integer, real,
time, realtime, and event. Generated data types have unique identifier names and can be referenced hierar-

chically as described in 12.4 .

Parameter redefinition using ordered or named parameter = value assignment or defparam state-

ments can also be declared within the generate scope. However, a defparam statement within the generate

scope or within a hierarchy instantiated within the generate scope shall only modify the value of a parameter

declared within the generate scope or within a hierarchy instantiated within the generate scope.

// a waveform description for testing
// the nand flip-flop, without the output ports
module ffnand_wave;
reg in1, in2; //variables to drive the circuit
parameter d = 10;
// make two copies of the circuit ffnand
// ff1 has qbar unconnected, ff2 has q unconnected
ffnand ff1(out1, , in1, in2),

 ff2(.qbar(out2), .clear(in2), .preset(in1), .q());
// ff3(.q(out3),.clear(in1),,,); is illegal

// define the waveform to stimulate the circuit
initial begin

#d in1 = 0; in2 = 1;
#d in1 = 1;
#d in2 = 0;
#d in2 = 1;

end
endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 171
This is an unapproved IEEE Standards Draft, subject to change.

Task and function declarations shall also be permitted within the generate scope, however not in a generate

loop. Generated tasks and functions shall have unique identifier names and may be referenced hierarchically

as described in 12.4.

Module declarations and module items that shall not be permitted in a generate statement include: parame-

ters, local parameters, input declarations, output declarations, inout declarations and specify blocks.

Connections to generated module instances are handled the same way as they are handled with normal mod-

ule instances as described in 12.1.2.

Generated statements are created using one of the following three methods: generate-loop, generate-condi-

tional, or generate-case.

The syntax for generate instantiations is given in Syntax 12-3.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

172 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 12-3—Syntax for generate blocks

module_item ::= (From Annex A - A.1.5)
module_or_generate_item

| port_declaration ;
| { attribute_instance } generated_instantiation

| { attribute_instance } local_parameter_declaration ;
| { attribute_instance } parameter_declaration ;
| { attribute_instance } specify_block

| { attribute_instance } specparam_declaration

module_or_generate_item ::=

{ attribute_instance } module_or_generate_item_declaration

| { attribute_instance } parameter_override

| { attribute_instance } continuous_assign

| { attribute_instance } gate_instantiation

| { attribute_instance } udp_instantiation

| { attribute_instance } module_instantiation

| { attribute_instance } initial_construct

| { attribute_instance } always_construct

module_or_generate_item_declaration ::=

net_declaration

| reg_declaration

| integer_declaration

| real_declaration

| time_declaration

| realtime_declaration

| event_declaration

| genvar_declaration

| task_declaration

| function_declaration

generated_instantiation ::= (From Annex A -A.4.2)
generate { generate_item } endgenerate

generate_item_or_null ::=

generate_item | ;
generate_item ::=

generate_conditional_statement

| generate_case_statement

| generate_loop_statement

| generate_block

| module_or_generate_item

generate_conditional_statement ::=

if (constant_expression) generate_item_or_null [else generate_item_or_null]

generate_case_statement ::= case (constant_expression)
genvar_case_item { genvar_case_item } endcase

genvar_case_item ::= constant_expression { , constant_expression } :
generate_item_or_null | default [:] generate_item_or_null

generate_loop_statement ::=

for (genvar_assignment ; constant_expression ; genvar_assignment)
begin : generate_block_identifier { generate_item } end

genvar_assignment ::=

genvar_identifier = constant_expression

generate_block ::=

begin [: generate_block_identifier] { generate_item } end

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 173
This is an unapproved IEEE Standards Draft, subject to change.

12.1.3.1 genvar - generate statement index variable

An index variable that shall only be declared for use in generate statements shall be declared as a genvar and

is referred to as a genvar in the rest of this section.

The syntax for generate statement index variable declarations is given in Syntax 12-4.

Syntax 12-4—Syntax for generate statement index variable declaration

A genvar shall be declared within the module where the genvar is used. A genvar can be declared either

inside or outside of a generate scope. A genvar is an integer that is local to and shall only be used within a

generate loop that uses it as an index variable. If any bit of the genvar ever is set to an X or Z or if the genvar

is set to a negative value, this shall be an error.

Genvars are only defined during the evaluation of the generate blocks (see 12.1.3), and do not exist during

simulation of a Verilog design.

The value of a genvar shall only be defined by a generate loop. Two generate loops using the same genvar as

an index variable shall not be nested. The value of a genvar can be referenced in any context where the value

of a parameter could be referenced.

12.1.3.2 generate-loop

A generate-loop permits one or more variable declarations, modules, user defined primitives, gate primitives,

continuous assignments, initial blocks and always blocks to be instantiated multiple times using a for-loop.

The index loop variable used in a generate for-loop shall be declared as a genvar. Both genvar assignments in

the for-loop shall assign to the same genvar, which is the loop index variable. The first genvar assignment in

the for-loop shall not reference the loop index variable on the right hand side.

Examples:

Example 1—A parameterized gray-code to binary-code converter module using a loop to generate continu-

ous assignments

genvar_declaration ::= (From Annex A - A.2.1.3)
genvar list_of_genvar_identifiers ;

list_of_genvar_identifiers ::= (From Annex A - A.2.3)
genvar_identifier { , genvar_identifier }

module gray2bin1 (bin, gray);
parameter SIZE = 8; // this module is parameterizable
output [SIZE-1:0] bin;
input [SIZE-1:0] gray;

genvar i;

generate for (i=0; i<SIZE; i=i+1) begin:bit
assign bin[i] = ^gray[SIZE-1:i];

end endgenerate
endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

174 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Example 2—The same gray-code to binary-code converter module in example 1 is built using a loop to gen-

erate always blocks

The models in examples 3 and 4 are parameterized modules of ripple adders using a loop to generate Verilog

gate primitives. Example 3 uses a two-dimensional net declaration outside of the generate loop to make the

connections between the gate primitives while example 4 makes the net declaration inside of the generate

loop to generate the wires needed to connect the gate primitives for each iteration of the loop.

module gray2bin2 (bin, gray);
parameter SIZE = 8; // this module is parameterizable
output [SIZE-1:0] bin;
input [SIZE-1:0] gray;
reg [SIZE-1:0] bin;

genvar i;

generate for (i=0; i<SIZE; i=i+1) begin:bit
always @(gray[SIZE-1:i]) // fixed part-select

 bin[i] = ^gray[SIZE-1:i];
end endgenerate

endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 175
This is an unapproved IEEE Standards Draft, subject to change.

Example 3—Generated ripple adder with two-dimensional net declaration outside of the generate loop

module addergen1 (co, sum, a, b, ci);
parameter SIZE = 4;
output [SIZE-1:0] sum;
output co;
input [SIZE-1:0] a, b;
input ci;
wire [SIZE :0] c;
wire [SIZE-1:0] t [1:3];
genvar i;

assign c[0] = ci;

 // Generated instance names are:
 // xor gates: bit[0].g1 bit[1].g1 bit[2].g1 bit[3].g1
 // bit[0].g2 bit[1].g2 bit[2].g2 bit[3].g2
 // and gates: bit[0].g3 bit[1].g3 bit[2].g3 bit[3].g3
 // bit[0].g4 bit[1].g4 bit[2].g4 bit[3].g4
 // or gates: bit[0].g5 bit[1].g5 bit[2].g5 bit[3].g5
 // Generated instances are connected with
 // multi-dimensional nets t[1][3:0] t[2][3:0] t[3][3:0]
 // (12 multi-dimensional nets total)

generate
for(i=0; i<SIZE; i=i+1) begin:bit

xor g1 (t[1][i], a[i], b[i]);
xor g2 (sum[i], t[1][i], c[i]);
and g3 (t[2][i], a[i], b[i]);
and g4 (t[3][i], t[1][i], c[i]);
or g5 (c[i+1], t[2][i], t[3][i]);

end
endgenerate

assign co = c[SIZE];
endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

176 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Example 4—Generated ripple adder with net declaration inside of the generate loop

The generated instance names in a multi-level generate loop are shown in example 5. The generated name

for the scope at each generate loop is created by adding the "[genvar’s value]" string to the end of the gener-

ate block identifier for the loop. The generated names are now generated identifiers (see 2.7.2) which can be

used in hierarchical path names (see 12.4).

module addergen1 (co, sum, a, b, ci);
parameter SIZE = 4;
output [SIZE-1:0] sum;
output co;
input [SIZE-1:0] a, b;
input ci;
wire [SIZE :0] c;

genvar i;

assign c[0] = ci;

 // Generated instance names are:
 // xor gates: bit[0].g1 bit[1].g1 bit[2].g1 bit[3].g1
 // bit[0].g2 bit[1].g2 bit[2].g2 bit[3].g2
 // and gates: bit[0].g3 bit[1].g3 bit[2].g3 bit[3].g3
 // bit[0].g4 bit[1].g4 bit[2].g4 bit[3].g4
 // or gates: bit[0].g5 bit[1].g5 bit[2].g5 bit[3].g5
 // Generated instances are connected with
 // generated nets: bit[0].t1 bit[1].t1 bit[2].t1 bit[3].t1
 // bit[0].t2 bit[1].t2 bit[2].t2 bit[3].t2
 // bit[0].t3 bit[1].t3 bit[2].t3 bit[3].t3

generate
for(i=0; i<SIZE; i=i+1) begin:bit

wire t1, t2, t3; // generated net declaration

xor g1 (t1, a[i], b[i]);
xor g2 (sum[i], t1, c[i]);
and g3 (t2, a[i], b[i]);
and g4 (t3, t1, c[i]);
or g5 (c[i+1], t2, t3);

end
endgenerate

assign co = c[SIZE];
endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 177
This is an unapproved IEEE Standards Draft, subject to change.

Example 5—A multi-level generate loop

12.1.3.3 generate-conditional

A generate-conditional is an if-else-if generate construct that permits modules, user defined primitives, Ver-

ilog gate primitives, continuous assignments, initial blocks and always blocks to be conditionally instanti-

ated into another module based on an expression that is deterministic at the time the design is elaborated.

Example 6 shows the implementation of a parameterized module. If either of the multiplier’s a_width or

b_width parameters are less than 8 (bits), a CLA multiplier is instantiated. If both of the multiplier’s

a_width or b_width parameters are greater than or equal to 8 (bits), a Wallace tree multiplier is instanti-

ated.

parameter SIZE = 2;
genvar i, j, k, m;
generate

for (i=0; i<SIZE; i=i+1) begin:B1 // scope B1[i]
 M1 N1(); // instantiates B1[i].N1

for (j=0; j<SIZE; j=j+1) begin:B2 // scope B1[i].B2[j]
 M2 N2(); // instantiates B1[i].B2[j].N2

for (k=0; k<SIZE; k=k+1) begin:B3 // scope B1[i].B2[j].B3[k]
 M3 N3(); // instantiates B1[i].B2[j].B3[k].N3

end
end
if (i>0)

for (m=0; m<SIZE; m=m+1) begin:B4 // scope B1[i].B4[m]
 M4 N4(); // instantiates B1[i].B4[m].N4

end
end

endgenerate

 // some of the generated instance names are:
 // B1[0].N1 B1[1].N1
 // B1[0].B2[0].N2 B1[0].B2[1].N2
 // B1[0].B2[0].B3[0].N3 B1[0].B2[0].B3[1].N3
 // B1[0].B2[1].B3[0].N3
 // B1[1].B4[0].N4 B1[1].B4[1].N4

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

178 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Example 6—An implementation of a parameterized multiplier module

12.1.3.4 generate-case

A generate case construct permits modules, user defined primitives, Verilog gate primitives, continuous

assignments, initial blocks and always blocks to be conditionally instantiated into another module based on a

select one-of-many case construct. The selecting case expression must be deterministic at the time the design

is elaborated.

Example 7—Generate with a case to handle widths less that 3

module multiplier(a,b,product);
parameter a_width = 8, b_width = 8;
localparam product_width = a_width+b_width; // can not be modified
// directly with the defparam statement
// or the module instance statement #
input [a_width-1:0] a;
input [b_width-1:0] b;
output [product_width-1:0] product;

generate
if((a_width < 8) || (b_width < 8))

 CLA_multiplier #(a_width,b_width) u1(a, b, product);
 // instantiate a CLA multiplier

else
 WALLACE_multiplier #(a_width,b_width) u1(a, b, product);
 // instantiate a Wallace-tree multiplier
endgenerate
// The generated instance name is u1

endmodule

generate
case (WIDTH)

 1: adder_1bit x1(co, sum, a, b, ci);
// 1-bit adder implementation
 2: adder_2bit x1(co, sum, a, b, ci);
// 2-bit adder implementation

default: adder_cla #(WIDTH) x1(co, sum, a, b, ci);
// others - carry look-ahead adder

endcase
// The generated instance name is x1

endgenerate

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 179
This is an unapproved IEEE Standards Draft, subject to change.

Example 8—A module of memory dimm

module dimm(adr, ba, rasx, casx, csx, wex, cke, clk, dqm, data, dev_id);

 parameter [31:0] MEM_WIDTH = 16, MEM_SIZE = 8; // in mbytes

input [10:0] adr;
input ba;
input rasx, casx, csx, wex, cke, clk;
input [7:0] dqm;
inout [63:0] data;
input [4:0] dev_id;

genvar i;
generate
case ({MEM_SIZE, MEM_WIDTH})

 {32’d8, 32’d16}: // 8Meg x 16 bits wide.
begin
for (i=0; i<4; i=i+1) begin:word

 sms_16b216t0 p(.clk(clk), .csb(csx), .cke(cke),.ba(ba),
 .addr(adr[10:0]), .rasb(rasx), .casb(casx),
 .web(wex), .udqm(dqm[2*i+1]), .ldqm(dqm[2*i]),
 .dqi(data[15+16*i:16*i]), .dev_id(dev_id[4:0]));
 // The generated instance names are word[3].p, word[2].p,
 // word[1].p, word[0].p, and the task read_mem

end
task read_mem;

 input [31:0] address;
output [63:0] data;
begin

 word[3].p.read_mem(address, data[63:48]);
 word[2].p.read_mem(address, data[47:32]);
 word[1].p.read_mem(address, data[31:16]);
 word[0].p.read_mem(address, data[15:0]);

end
endtask

end

 {32’d16, 32’d8}: // 16Meg x 8 bits wide.
begin
for (i=0; i<8; i=i+1) begin:byte

 sms_16b208t0 p(.clk(clk), .csb(csx), .cke(cke),.ba(ba),
 .addr(adr[10:0]), .rasb(rasx), .casb(casx),
 .web(wex), .dqm(dqm[i]),
 .dqi(data[7+8*i:8*i]), .dev_id(dev_id[4:0]));
 // The generated instance names are byte[7].p, byte[6].p,
 // byte[5].p, byte[4].p, byte[3].p, byte[2].p, byte[1].p,
 // byte[0].p and the task read_mem

end
task read_mem;
input [31:0] address;
output [63:0] data;
begin

 byte[7].p.read_mem(address, data[63:56]);
 byte[6].p.read_mem(address, data[55:48]);
 byte[5].p.read_mem(address, data[47:40]);
 byte[4].p.read_mem(address, data[39:32]);
 byte[3].p.read_mem(address, data[31:24]);
 byte[2].p.read_mem(address, data[23:16]);
 byte[1].p.read_mem(address, data[15: 8]);
 byte[0].p.read_mem(address, data[7: 0]);

end
endtask

end
 // Other memory cases ...

endcase
endgenerate

endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

180 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

12.2 Overriding module parameter values

There are two different ways that parameters can be defined. The first is the module_parameter_port_list
(see 12.1), and the second is as a module_item (see 3.11). A module declaration can contain parameter defi-

nitions of either or both types, or no parameter definitions.

A module parameter can have a type specification and a range specification. The effect of parameter over-

rides on a parameter’s type and range shall be in accordance with the following rules:

— A parameter declaration with no type or range specification shall default to the type and range of the
final override value assigned to the parameter.

— A parameter with a range specification, but with no type specification, shall be the range of the
parameter declaration and shall be unsigned. An override value shall be converted to the type and
range of the parameter.

— A parameter with a type specification, but with no range specification, shall be of the type specified.
An override value shall be converted to the type of the parameter. A signed parameter shall default to
the range of the final override value assigned to the parameter.

— A parameter with a signed type specification and with a range specification shall be a signed, and
shall be the range of its declaration. An override value shall be converted to the type and range of the
parameter.

Examples:

module generic_fifo
#(parameter MSB=3, LSB=0, DEPTH=4)

 // These parameters can be overridden
 (

input [MSB:LSB] in,
input clk, read, write, reset,
output [MSB:LSB] out,
output full, empty

);

localparam FIFO_MSB = DEPTH*MSB;
localparam FIFO_LSB = LSB;
 // These parameters are local, and cannot be overridden.

 // They can be affected by altering the public parameters
// above, and the module will work correctly.

reg [FIFO_MSB:FIFO_LSB] fifo;
reg [LOG2(DEPTH):0] depth;

always @(posedge clk or reset) begin
casex ({read,write,reset})

 // implementation of fifo
endcase

end
endmodule

There are two ways to alter non-local parameter values: the defparam statement, which allows assignment to

parameters using their hierarchical names, and the module instance parameter value assignment, which

allows values to be assigned inline during module instantiation. If a defparam assignment conflicts with a

module instance parameter, the parameter in the module will take the value specified by the defparam. The

module instance parameter value assignment comes in two forms, by ordered list or by name. The next two

subclauses describe these two methods.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 181
This is an unapproved IEEE Standards Draft, subject to change.

There are two kinds of parameter declarations. The first kind of parameter declaration has a type and/or

range qualification, and the second does not. When an untyped and unranged parameter’s value is overrid-

den, the parameter takes on the size and type of the override.

When a typed and/or ranged parameter is overriden, the new value is converted to the type and size of the

destination, and assigned to that parameter.

Example:

module foo(a,b);
real r1,r2;
parameter [2:0] A = 3’h2;
parameter B = 3’h2;
initial begin

 r1 = A;
 r2 = B;

$display("r1 is %f r2 is %f",r1,r2);
end

endmodule // foo
module bar;

wire a,b;
defparam f1.A = 3.1415;
defparam f1.B = 3.1415;

 foo f1(a,b);
endmodule // bar

Parameter A is a typed and/or ranged parameter, so when its value is redefined, the parameter retains its orig-

inal type and sign. Therefore, the defparam of f1.A with the value 3.1415 is performed by converting the

floating point number 3.1415 into a fixed point number ’3’ and then the low 3 bits of 3 are assigned to A.

Parameter B is not a typed and/or ranged parameter, so when its value is redefined, the parameter type and

range take on the type and range of the new value. Therefore, the defparam of f1.B with the value 3.1415

replaces B’s current value of 3’h2 with the floating point number 3.1415.

12.2.1 defparam statement

Using the defparam statement, parameter values can be changed in any module instance throughout the

design using the hierarchical name of the parameter. However, a defparam statement in a hierarchy under a

generate scope or array of instances shall not change a parameter value outside that hierarchy. See 12.4 for

hierarchical names.

The expression on the right-hand side of the defparam assignments shall be a constant expression involving

only numbers and references to parameters. The referenced parameters (on the right-hand side of the def-
param) shall be declared in the same module as the defparam statement.

The defparam statement is particularly useful for grouping all of the parameter value override assignments

together in one module.

In the case of multiple defparams for a single parameter, the parameter takes the value of the last defparam

statement encountered in the source text. When defparams are encountered in multiple source files, e.g.,

found by library searching, the defparam from which the parameter takes its value is undefined.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

182 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Example:

The module annotate has the defparam statement which overrides size and delay parameter values

for instances m1 and m2 in the top-level module top. The modules top and annotate would both be

considered top-level modules.

12.2.2 Module instance parameter value assignment

An alternative method for assigning values to parameters within module instances is to use one of the two

forms of module instance parameter value assignment. They are assignment by ordered list and assignment

by name. The two types of module instance parameter value assignment shall not be mixed; parameter

assignments to a particular module instance shall be entirely by order or entirely by name.

Module instance parameter value assignment by ordered list is similar in appearance to the assignment of

delay values to gate instances and assignment by name is similar to connecting module ports by name. It

supplies values for particular instances of a module to any parameters that have been specified in the defini-

tion of that module.

12.2.2.1 Parameter value assignment by ordered list

The order of the assignments in the module instance parameter value assignment by ordered list shall follow

the order of declaration of the parameters within the module. It is not necessary to assign values to all of the

parameters within a module when using this method. However, it is not possible to skip over a parameter.

module top;
reg clk;
reg [0:4] in1;
reg [0:9] in2;
wire [0:4] o1;
wire [0:9] o2;

vdff m1 (o1, in1, clk);
vdff m2 (o2, in2, clk);
endmodule

module vdff (out, in, clk);
parameter size = 1, delay = 1;
input [0:size-1] in;
input clk;
output [0:size-1] out;
reg [0:size-1] out;

always @(posedge clk)
delay out = in;

endmodule

module annotate;
defparam

top.m1.size = 5,
top.m1.delay = 10,
top.m2.size = 10,
top.m2.delay = 20;

endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 183
This is an unapproved IEEE Standards Draft, subject to change.

Therefore, to assign values to a subset of the parameters declared within a module, the declarations of the

parameters that make up this subset shall precede the declarations of the remaining parameters. An alterna-

tive is to assign values to all of the parameters, but to use the default value (the same value assigned in the

declaration of the parameter within the module definition) for those parameters that do not need new values.

Example:

Consider the following example, where the parameters within module instance mod_a are changed during

instantiation.

In this example, the name of the module being instantiated is vdff. The construct #(10,15) assigns val-

ues to parameters used in the mod_a instance of vdff. The parameter size is assigned the value 10 and

the parameter delay is assigned the value 15 for the instance of module vdff called mod_a. The con-

struct #(.delay(12)) assigns the parameter delay the value 12 in the instance of module vdff called

mod_c.

12.2.2.2 Parameter value assignment by name

Parameter assignment by name consists of explicitly linking the parameter name and its new value. The

name of the parameter shall be the name specified in the instantiated module.

It is not necessary to assign values to all of the parameters within a module when using this method. Only

those parameters that are assigned new values need to be specified.

The parameter expression is optional so that the instantiating module can document the existence of a

parameter without assigning anything to it. The parentheses are required and in this case the parameter

retains its default value. Once a parameter is assigned a value, there shall not be another assignment to this

parameter name.

module m;
reg clk;
wire [0:4] out_c, in_c;
wire[1:10] out_a, in_a;
wire[1:5] out_b, in_b;

// create an instance and set parameters
vdff #(10,15) mod_a(out_a, in_a, clk);
// create an instance leaving default values
vdff mod_b(out_b, in_b, clk);
// create an instance and set one parameter
vdff #(.delay(12)) mod_c(out_c, in_c, clk);
endmodule

module vdff (out, in, clk);
parameter size = 5, delay = 1;
input [0:size-1] in;
input clk;
output [0:size-1] out;
reg [0:size-1] out;

always @(posedge clk)
delay out = in;

endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

184 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

12.2.3 Parameter dependence

A parameter (for example, memory_size) can be defined with an expression containing another parameter

(for example, word_size). Since memory_size depends on the value of word_size, a modification

of word_size changes the value of memory_size. For example, in the following parameter declaration,

an update of word_size, whether by defparam statement or in an instantiation statement for the module

that defined these parameters, automatically updates memory_size.

parameter
 word_size = 32,
 memory_size = word_size * 4096;

12.3 Ports

Ports provide a means of interconnecting a hardware description consisting of modules, primitives, and mac-

romodules. For example, module A can instantiate module B, using port connections appropriate to module

A. These port names can differ from the names of the internal nets and variables specified in the definition of

module B.

12.3.1 Port definition

The syntax for ports and a list of ports is given in Syntax 12-5.

Syntax 12-5—Syntax for port

12.3.2 List of ports

The port reference for each port in the list of ports at the top of each module declaration can be one of the

following:

— A simple identifier or escaped identifier
— A bit-select of a vector declared within the module
— A part-select of a vector declared within the module
— A concatenation of any of the above

list_of_ports ::= (From Annex A - A.1.4)
(port { , port })

list_of_port_declarations ::=

(port_declaration { , port_declaration })
| ()

port ::=

[port_expression]

| . port_identifier ([port_expression])
port_expression ::=

port_reference

| { port_reference { , port_reference } }
port_reference ::=

port_identifier

| port_identifier [constant_expression]
| port_identifier [range_expression]

port_declaration ::=

{attribute_instance} inout_declaration

| {attribute_instance} input_declaration

| {attribute_instance} output_declaration

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 185
This is an unapproved IEEE Standards Draft, subject to change.

The port expression is optional because ports can be defined that do not connect to anything internal to the

module. Once a port has been defined, there shall not be another port definition with this same name.

The first type of module port with only a port_expression is an implicit port. The second type is the

explicit port. This explicitly specifies the port_identifier used for connecting module instance ports

by name (see 12.3.6) and the port_expression which contains identifiers declared inside the module as

described in 12.3.3. Use of named port connections shall not be used for implicit ports unless the

port_expression is a simple port_identifier.

12.3.3 Port declarations

Each port_expression in the list of ports for the module declaration shall also be declared in the body of the

module as one of the following port declarations: input, output, or inout (bidirectional). This is in addition

to any other data type declaration for a particular port— for example, a reg or wire. The syntax for port dec-

larations is given in Syntax 12-6.

Syntax 12-6—Syntax for port declarations

If a port declaration includes a net or variable type, then the port is considered completely declared and it is

an error for the port to be declared again as a variable or net data type declaration. Because of this, all other

aspects of the port shall be declared in such a port declaration, including the signed and range definitions if

needed.

If a port declaration does not include a net or variable type, then the port can be again declared in a net or

variable declaration. If the net or variable is declared as a vector, the range specification between the two

declarations of a port shall be identical. Once a name is used in a port declaration it shall not be declared

again in another port declaration or in a data type declaration.

NOTE—Implementations may limit maximum number of ports in a module definition, but they will at least be 256.

Example:

input aport; // First declaration - okay.
input aport; // Error - multiple declaration, port declaration
output aport; // Error - multiple declaration, port declaration

The signed attribute can be attached either to a port declaration or to the corresponding net or reg declara-

tion, or to both. If either the port or the net/reg is declared as signed, then the other shall also be considered

signed.

inout_declaration ::= (From Annex A - A.2.1.2)
inout [net_type] [signed] [range] list_of_port_identifiers

input_declaration ::=

input [net_type] [signed] [range] list_of_port_identifiers

output_declaration ::=

output [net_type] [signed] [range]

list_of_port_identifiers

| output [reg] [signed] [range]

list_of_port_identifiers

| output reg [signed] [range]

list_of_variable_port_identifiers

| output [output_variable_type]

list_of_port_identifiers

| output output_variable_type

list_of_variable_port_identifiers

list_of_port_identifiers ::= (From Annex A - A.2.3)
port_identifier { , port_identifier }

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

186 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Implicit nets shall be considered unsigned. Nets connected to ports without an explicit net declaration shall

be considered unsigned, unless the port is declared as signed.

Example:

module test(a,b,c,d,e,f,g,h);
input [7:0] a; // no explicit declaration - net is unsigned
input [7:0] b;
input signed [7:0] c;
input signed [7:0] d; // no explicit net declaration - net is signed
output [7:0] e; // no explicit declaration - net is unsigned
output [7:0] f;
output signed [7:0] g;
output signed [7:0] h; // no explicit net declaration - net is signed

wire signed [7:0] b; // port b inherits signed attribute from net decl.
wire [7:0] c; // net c inherits signed attribute from port
reg signed [7:0] f; // port f inherits signed attribute from reg decl.
reg [7:0] g; // reg g inherits signed attribute from port

endmodule

module complex_ports ({c,d}, .e(f)); // Nets {c,d} receive the first
// port bits. Name ’f’ is declared inside the module.
// Name ’e’ is defined outside the module.
// Can’t use named port connections of first port.

module split_ports (a[7:4], a[3:0]);
 // First port is upper 4 bits of ’a’.
 // Second port is lower 4 bits of ’a’.
 // Can’t use named port connections because
 // of part-select port ’a’.

module same_port (.a(i), .b(i)); // Name ’i’ is declared inside the
 // module as a inout port. Names ’a’ and ’b’ are
 // defined for port connections.

module renamed_concat (.a({b,c}), f, .g(h[1]));
// Names ’b’, ’c’, ’f’, ’h’ are defined inside the module.
// Names ’a’, ’f’, ’g’ are defined for port connections.
// Can use named port connections.

module same_input (a,a);
input a; // This is legal. The inputs are tied together.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 187
This is an unapproved IEEE Standards Draft, subject to change.

12.3.4 List of ports declarations

An alternate syntax which minimizes the duplication of data can be used to specify the ports of a module.

Each module shall either be declared entirely with the list of ports syntax as described in 12.3.2 or entirely

using the list_of_port_declarations as described in this section.

Each declared port provides the complete information about the port. The port’s direction, width, net, or

variable type, and whether the port is signed or unsigned is completely described. The same syntax for input,

inout, and output declarations is used in the module header as would be used for the list of port style declara-

tion, except the list_of_port_declarations is included in the module header rather than separately (after the ;
which terminates the module header).

As an example, the module named test given in the previous example could alternatively be declared as:

Example:

module test (
input [7:0] a,
input signed [7:0] b, c, d, // Multiple ports that share all

 // attributes can be declared together.
output [7:0] e, // Every attribute of the declaration

 // must be in the one declaration.
output reg signed [7:0] f, g,
output signed [7:0] h) ;
// It is illegal to redeclare any ports of
// the module in the body of the module.

endmodule

The port_reference type of module port declaration shall not be done using list_of_port_declarations style

of module declarations. Also ports declared using the list_of_port_declarations shall only be simple identifi-

ers. They shall not be bit-selects, part-selects, or concatenations (as in the example complex_ports); nor

can a port be split (as in the example split_ports); nor can they be named ports (as in the example

same_port).

Designs may freely mix modules declared using each syntax; hence implementations desiring the above spe-

cial cases of port declaration can be done using the first list_of_ports syntax.

12.3.5 Connecting module instance ports by ordered list

One method of making the connection between the port expressions listed in a module instantiation and the

ports declared within the instantiated module is the ordered list—that is, the ports expressions listed for the

module instance shall be in the same order as the ports listed in the module declaration.

Example:

The following example illustrates a top-level module (topmod) that instantiates a second module (modB).

Module modB has ports that are connected by an ordered list. The connections made are as follows:

— Port wa in the modB definition connects to the bit-select v[0] in the topmod module.
— Port wb connects to v[3].
— Port c connects to w.
— Port d connects to v[4].

In the modB definition, ports wa and wb are declared as inouts while ports c and d are declared as

input.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

188 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

During simulation of the b1 instance of modb, the and gate g2 activates first to produce a value on int.

This value triggers the not gate n1 to produce output on cinvert, which then activates the tranif1 gate

g1.

12.3.6 Connecting module instance ports by name

The second way to connect module ports consists of explicitly linking the two names for each side of the

connection, the port declaration name from the module declaration to the expression — the name used in the

module declaration, followed by the name used in the instantiating module. This compound name is then

placed in the list of module connections. The port name shall be the name specified in the module declara-

tion. The port name cannot be a bit-select, a part-select, or a concatenation of ports. If the module port dec-

laration was implicit, the port_expression shall be a simple port_identifer which is used as the

port name. If the module port declaration was explicit, the explicit name is used as the name of port.

The port expression can be any valid expression.

The port expression is optional so that the instantiating module can document the existence of the port with-

out connecting it to anything. The parentheses are required.

The two types of module port connections shall not be mixed; connections to the ports of a particular module

instance shall be all by order or all by name.

Examples:

Example 1—In the following example, the instantiating module connects its signals topA and topB to the

ports In1 and Out defined by the module ALPHA. At least one port provided by ALPHA is unused; it is

named In2. There could be other unused ports not mentioned in the instantiation.

ALPHA instance1 (.Out(topB),.In1(topA),.In2());

module topmod;
wire [4:0] v;
wire a,b,c,w;

modB b1 (v[0], v[3], w, v[4]);
endmodule

module modB (wa, wb, c, d);
inout wa, wb;
input c, d;

tranif1 g1 (wa, wb, cinvert);
not #(2, 6) n1 (cinvert, int);
and #(6, 5) g2 (int, c, d);

endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 189
This is an unapproved IEEE Standards Draft, subject to change.

Example 2—This example defines the modules modB and topmod, and then topmod instantiates modB
using ports connected by name.

Since these connections are made by name, the order in which they appear is irrelevant.

Multiple module instance port connections are not allowed, e.g., the following example is illegal:

Example 3—This example shows illegal port connections.

module test;
a ia (.i (a), .i (b), // illegal connection of input port twice.

.o (c), .o (d), // illegal connection of output port twice.
.e (e), .e (f)); // illegal connection of inout port twice.

endmodule

12.3.7 Real numbers in port connections

The real data type shall not be directly connected to a port. It shall be connected indirectly, as shown in the

following example. The system functions $realtobits and $bitstoreal shall be used for passing the bit pat-

terns across module ports. (See 17.8 for a description of these system tasks.)

module topmod;
wire [4:0] v;
wire a,b,c,w;

modB b1 (.wb(v[3]),.wa(v[0]),.d(v[4]),.c(w));
endmodule

module modB(wa, wb, c, d);
inout wa, wb;
input c, d;

tranif1 g1(wa, wb, cinvert);
not #(6, 2) n1(cinvert, int);
and #(5, 6) g2(int, c, d);

endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

190 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Example:

12.3.8 Connecting dissimilar ports

A port of a module can be viewed as providing a link or connection between two items (nets, regs, expres-

sions, etc.)—one internal to the module instance and one external to the module instance.

Examination of the port connection rules described in 12.3.9 will show that the item receiving the value

through the port (the internal item for inputs, the external item for outputs) shall be a structural net expres-

sion. The item that provides the value can be any expression.

NOTE—A port that is declared as input (output) but used as an output (input) or inout may be coerced to inout. If not

coerced to inout, a warning has to be issued.

12.3.9 Port connection rules

The following rules shall govern the way module ports are declared and the way they are interconnected.

12.3.9.1 Rule 1

An input or inout port shall be of type net.

12.3.9.2 Rule 2

Each port connection shall be a continuous assignment of source to sink, where one connected item shall be

a signal source and the other shall be a signal sink. The assignment shall be a continuous assignment from

source to sink for input or output ports. The assignment is a nonstrength reducing transistor connection for

inout ports. Only nets or structural net expressions shall be the sinks in an assignment.

A structural net expression is a port expression whose operands can be the following:

— A scalar net
— A vector net
— A constant bit-select of a vector net
— A part-select of a vector net
— A concatenation of structural net expressions

module driver (net_r);
output net_r;
real r;
wire [64:1] net_r = $realtobits(r);

endmodule

module receiver (net_r);
input net_r;
wire [64:1] net_r;
real r;

initial assign r = $bitstoreal(net_r);

endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 191
This is an unapproved IEEE Standards Draft, subject to change.

The following external items shall not be connected to the output or inout ports of modules:

— Variables
— Expressions other than

i) A scalar net

ii) A vector net

iii) A constant bit-select of a vector net

iv) A part-select of a vector net

v) A concatenation of the expressions listed above

12.3.10 Net types resulting from dissimilar port connections

When different net types are connected through a module port, the nets on both sides of the port can take on

the same type. The resulting net type can be determined as shown in Table 45. In the table, external net
means the net specified in the module instantiation, and internal net means the net specified in the module

definition. The net whose type is used is said to be the dominating net. The net whose type is changed is said

to be the dominated net. It is permissible to merge the dominating and dominated nets into a single net,

whose type shall be that of the dominating net. The resulting net is called the simulated net, and the domi-

nated net is called a collapsed net.

The simulated net shall take the delay specified for the dominating net. If the dominating net is of the type

trireg, any strength value specified for the trireg net shall apply to the simulated net.

12.3.10.1 Net type resolution rule

When the two nets connected by a port are of different net type, the resulting single net can be assigned one

of the following:

— The dominating net type if one of the two nets is dominating, or
— The net type external to the module

When a dominating net type does not exist, the external net type shall be used.

12.3.10.2 Net type table

Table 45 shows the net type dictated by net type resolution rule.

The simulated net shall take the net type specified in the table and the delay specified for that net. If the sim-

ulated net selected is a trireg, any strength value specified for the trireg net applies to the simulated net.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

192 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

12.3.11 Connecting signed values via ports

The sign attribute shall not cross hierarchy. In order to have the signed type cross hierarchy, the signed key-

word must be used in the object's declaration at the different levels of hierarchy. Any expressions on a port

shall be treated as any other expression in an assignment. It shall be typed, sized, evaluated and the resulting

value assigned to the object on the other side of the port using the same rules as an assignment.

12.4 Hierarchical names

Every identifier in a Verilog HDL description shall have a unique hierarchical path name. The hierarchy of

modules and the definition of items such as tasks and named blocks within the modules shall define these

names. The hierarchy of names can be viewed as a tree structure, where each module instance, generated

instance, task, function, or named begin-end or fork-join block defines a new hierarchical level, or

scope, in a particular branch of the tree.

At the top of the name hierarchy are the names of one or more root modules of which no instances have been

created. This root or these parallel root modules make up one or more hierarchies in a design description or

description. Inside any module, each module instance (including an arrayed or generated instance), task def-

inition, function definition, and named begin-end or fork-join block shall define a new branch of the

hierarchy. Named blocks within named blocks and within tasks and functions shall create new branches.

Only non-recursively referenced automatic tasks and/or functions create visible branches that can be refer-

enced. Recursively called tasks and functions, declared using the automatic keyword and recursively called

Table 45—Net types resulting from dissimilar port connections

Internal
net

External net

wire,
 tri

wand,
 triand

wor,
trior trireg tri0 tri1 supply0 supply1

wire,

tri

ext ext ext ext ext ext ext ext

wand,

triand

int ext warn warn warn warn ext ext

wor,

trior

int warn ext warn warn warn ext ext

trireg int warn warn ext ext ext ext ext

tri0 int warn warn int ext warn ext ext

tri1 int warn warn int warn ext ext ext

supply0 int int int int int int ext warn

supply1 int int int int int int warn ext

KEY:

ext = The external net type is used

int = The internal net type is used

warn = A warning is issued and the external net type is used

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 193
This is an unapproved IEEE Standards Draft, subject to change.

from within the same task or function, do not create visible branches that can be referenced. See 10.2.1 and

10.3.1 for a discussion of automatic tasks and functions.

Each node in the hierarchical name tree shall be a separate scope with respect to identifiers. A particular

identifier can be declared at most once in any scope. See 12.6 for a discussion of scope rules and 3.12 for a

discussion of name spaces.

Any named Verilog object or hierarchical name reference can be referenced uniquely in its full form by con-

catenating the names of the modules, module instance names, tasks, functions, or named blocks that contain

it. The period character shall be used to separate each of the names in the hierarchy, except for escaped iden-

tifiers embedded in the hierarchical name reference, which are followed by separators composed of white

space and a period-character. The complete path name to any object shall start at a top-level (root) module.

This path name can be used from any level in the hierarchy or from a parallel hierarchy. The first node name

in a path name can also be the top of a hierarchy that starts at the level where the path is being used (which

allows and enables downward referencing of items) with the exceptions of items of automatic tasks and

automatic task item declarations. These declarations can not be accessed by their hierarchical names.

The syntax for hierarchical path names is given in Syntax 12-7.

Syntax 12-7—Syntax for hierarchical path names

escaped_hierarchical_identifiera ::= (From Annex A - A.9.3)
escaped_hierarchical_branch

[{ .simple_hierarchical_branch | .escaped_hierarchical_branch }]

escaped_identifier ::=

\ {Any_ASCII_character_except_white_space} white_space

hierarchical_identifier ::=

simple_hierarchical_identifier

| escaped_hierarchical_identifier

simple_hierarchical_identifierb ::=

simple_hierarchical_branch [.escaped_identifier]

simple_identifierc ::= [a-zA-Z_] { [a-zA-Z0-9_$] }

simple_hierarchical_branchb ::= (From Annex A - A.9.4)
simple_identifier [[unsigned_number]]

[{ .simple_identifier [[unsigned_number]] }]

escaped_hierarchical_brancha ::=

escaped_identifier [[unsigned_number]]
[{ .escaped_identifier [[unsigned_number]] }]

white_space ::= (From Annex A - A.9.5)
space | tab | newline | eofd

aThe period in escaped_hierarchical_identifier and escaped_hierarchical_branch shall be preceded by

white_space, but shall not be followed by white_space.
bThe period (.) in simple_hierarchical_identifier and simple_hierarchical_branch shall not be preceded or

followed by white_space.
cA simple_identifier shall start with an alpha or underscore (_) character, shall have at least one character, and

shall not have any spaces.
dEnd of file.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

194 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Examples:

Example 1—The code in this example defines a hierarchy of module instances and named blocks.

Figure 32 illustrates the hierarchy implicit in this Verilog code.

Figure 32—Hierarchy in a model

module mod (in); module cct (stim1, stim2);
input in; input stim1, stim2;

always @(posedge in) begin : keep // instantiate mod
reg hold; mod amod(stim1), bmod(stim2);

hold = in; endmodule
end
endmodule

module wave;
reg stim1, stim2;

cct a(stim1, stim2); // instantiate cct

initial begin :wave1
#100 fork :innerwave

reg hold;
join

#150 begin
stim1 = 0;

end
end
endmodule

wave1 a

amod bmod

keep keep

innerwave

wave

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 195
This is an unapproved IEEE Standards Draft, subject to change.

Figure 33 is a list of the hierarchical forms of the names of all the objects defined in the code.

Figure 33—Hierarchical path names in a model

Hierarchical name referencing allows free data access to any object from any level in the hierarchy. If the

unique hierarchical path name of an item is known, its value can be sampled or changed from anywhere

within the description.

Example 2—The next example shows how a pair of named blocks can refer to items declared within each

other.

12.5 Upwards name referencing

The name of a module or module instance is sufficient to identify the module and its location in the hierar-

chy. A lower-level module can reference items in a module above it in the hierarchy.Variables can be refer-

enced if the name of the higher-level module or its instance name is known. For tasks, functions, and named

blocks, Verilog shall look in the enclosing module for the name until it is found or until the root of the hier-

archy is reached. It shall only search in higher enclosing modules for the name, not instances.

The syntax for an upward reference is given in Syntax 12-8.

Syntax 12-8—Syntax for upward name referencing

upward_name_reference ::=

module_identifier.item_name

item_name ::=

function_identifier

| block_identifier

| net_identifier

| parameter_identifier

| port_identifier

| task_identifier

| variable_identifier

wave wave.a.bmod
wave.stim1 wave.a.bmod.in
wave.stim2 wave.a.bmod.keep
wave.a wave.a.bmod.keep.hold
wave.a.stim1 wave.wave1
wave.a.stim2 wave.wave1.innerwave
wave.a.amod wave.wave1.innerwave.hold
wave.a.amod.in
wave.a.amod.keep
wave.a.amod.keep.hold

begin
fork :mod_1

reg x;
mod_2.x = 1;

join
fork :mod_2

reg x;
mod_1.x = 0;

join
end

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

196 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Upwards name references can also be done with names of the form

module_instance_name.item_name

A name of this form shall be resolved as follows:

a) Look in the current module for a module instance named module_instance_name. If found,

this name reference shall be treated as a downward reference, and the item name shall be resolved in

the corresponding module.

b) Look in the parent module for a module instance named module_instance_name. If found, the

item name shall be resolved from that instance, which is the sibling of the module containing the ref-

erence.

c) Repeat step b), going up the hierarchy.

There shall be no spaces within the hierarchical name reference, except for escaped identifiers embedded in

the hierarchical name reference, which are followed by separators composed of white space and a period-

character.

Example:

In this example, there are four modules, a, b, c, and d. Each module contains an integer i. The highest-

level modules in this segment of a model hierarchy are a and d. There are two copies of module b because

module a and d instantiate b. There are four copies of c.i because each of the two copies of b instantiates

c twice.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 197
This is an unapproved IEEE Standards Draft, subject to change.

12.6 Scope rules

The following four elements define a new scope in Verilog:

— Modules
— Tasks
— Functions
— Named blocks

An identifier shall be used to declare only one item within a scope. This rule means it is illegal to declare two

or more variables that have the same name, or to name a task the same as a variable within the same module,

or to give a gate instance the same name as the name of the net connected to its output.

If an identifier is referenced directly (without a hierarchical path) within a task, function, or named block, it

shall be declared either locally within the task, function, or named block, or within a module, task or named

block that is higher in the same branch of the name tree that contains the task, function, or named block. If it

is declared locally, then the local item shall be used; if not, the search shall continue upward until an item by

that name is found or until a module boundary is encountered. If the item is a variable, it shall stop at a mod-

ule boundary; if the item is a task, function, or named block it continues to search higher-level modules until

module a;
integer i;
b a_b1();
endmodule

module b;
integer i;
c b_c1(), b_c2();
initial // downward path references two copies of i:

#10 b_c1.i = 2;// a.a_b1.b_c1.i, d.d_b1.b_c1.i
endmodule

module c;
integer i;
initial begin // local name references four copies of i:

i = 1; // a.a_b1.b_c1.i, a.a_b1.b_c2.i,
// d.d_b1.b_c1.i, d.d_b1.b_c2.i

b.i = 1; // upward path references two copies of i:
// a.a_b1.i, d.d_b1.i

end
endmodule

module d;
integer i;
b d_b1();
initial begin // full path name references each copy of i

a.i = 1; d.i = 5;
a.a_b1.i = 2; d.d_b1.i = 6;
a.a_b1.b_c1.i = 3; d.d_b1.b_c1.i = 7;
a.a_b1.b_c2.i = 4; d.d_b1.b_c2.i = 8;

end
endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

198 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

found. The search shall cross named block, task, and function boundaries but not module boundaries. This

fact means that tasks and functions can use and modify the variables within the containing module by name,

without going through their ports.

If an identifier is referenced with a hierarchical name, the path can start with a module name, instance name,

task, function, or named block. The names shall be searched first at the current level, then in higher-level

modules until found. Since both module names and instance names can be used, precedence is given to

instance names if there is a module named the same as an instance name.

Because of the upward searching, path names which are not strictly on a downward path can be used.

Example:

Example 1—In Figure 34, each rectangle represents a local scope. The scope available to upward searching

extends outward to all containing rectangles—with the boundary of the module A as the outer limit. Thus

block G can directly reference identifiers in F, E, and A; it cannot directly reference identifiers in H, B, C,

and D.

Figure 34—Scopes available to upward name referencing

Example 2—The following example shows an incompletely defined downward reference that can be

accessed.

block B

task C

func D

task E

block F

block G

block H

module A

Scopes available
to block G

Scopes not
available to
block G

task t;
reg r, s;
begin : b

t.b.r = 0; // poorly defined but found by upward search
t.s = 0; // fully defined downward reference

end
endtask

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 199
This is an unapproved IEEE Standards Draft, subject to change.

13. Configuring the contents of a design

13.1 Introduction

To facilitate both the sharing of Verilog designs between designers and/or design groups, and the repeatabil-

ity of the exact contents of a given simulation (or other tool) session, the concept of configurations is used in

the Verilog language. A configuration is simply an explicit set of rules to specify the exact source description

to be used to represent each instance in a design. The operation of selecting a source representation for an

instance is referred to as binding the instance.

The example below shows a simple configuration problem.

Example:

file top.v file adder.v file adder.vg
module top(); module adder(...); module adder(...);
adder a1(...); // rtl adder // gate-level adder

// description // description
adder a2(...);
endmodule endmodule endmodule

Consider using the rtl adder description in adder.v for instance a1 in module top and the gate-level

adder description in adder.vg for instance a2. In order to specify this particular set of instance bindings

and to avoid having to change the source description to specify a new set, a configuration can be used.

config cfg1; // specify rtl adder for top.a1, gate-level adder for top.a2
design rtlLib.top;
default liblist rtlLib;
instance top.a2 liblist gateLib;

endconfig

The elements of a config are explained in subsequent sections, but this simple example illustrates some

important points about configs. As evidenced by the config-endconfig syntax, the config is a design element,

similar to a module, which exists in the Verilog namespace. The config contains a set of rules which are

applied when searching for a source description to bind to a particular instance of the design.

A Verilog design description starts with a top-level module (or modules), which is not instantiated elsewhere

in the design. From this module’s source description, the instantiated modules (or children) are found, and

then the source descriptions for the module definitions of these subinstances shall be located, and so on until

every instance in the design is mapped to a source description.

13.1.1 Library notation

In order to map a Verilog instance to a source description, the concept of a symbolic library, which is simply

a logical collection of design elements (such as modules, macromodules, primitives, or configs) can be used.

These design elements can be referred to as cells. The cell name shall be the same as the name of the mod-

ule/macromodule/primitive/config being processed. Syntax 13-1 specifies a cell from a given library.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

200 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 13-1—Syntax for cell

This notation gives a symbolic method of referring to source descriptions; the method of mapping source

descriptions into libraries is shown in greater detail in 13.2.1. The optional :config extension shall be

used explicitly to refer to a config in the case where a config has the same name as a module/macromodule/

primitive.

For the purposes of this example, suppose the files top.v and adder.v, the rtl descriptions, have been

mapped into the library rtlLib, and the file adder.vg, the gate-level description of the adder, has been

mapped into the library gateLib. The actual mechanism for mapping source descriptions to libraries is

detailed in 13.2.

13.1.2 Basic configuration elements

The design statement in config cfg1 of the first example of 13.1 specifies the top-level module in the

design and what source description is to be used. In this example, the rtlLib.top notation indicates the

top-level module description shall be taken from rtlLib. Since top.v and adder.v were mapped to

this library, the actual description for the module is known to come from top.v.

The default statement coupled with the liblist clause specifies, by default, all subinstances of top (i.e.,

top.a1 and top.a2) shall be taken from rtlLib, which means the descriptions in top.v and

adder.v, which were mapped to this library, shall be used. For a basic design, which can be completely

rtl, this can be sufficient to specify completely the binding for the entire design. However, here the

top.a2 instance of adder to the gate-level description shall be bound.

The instance statement specifies, for the particular instance top.a2, the source description shall be taken

from gateLib. The instance statement overrides the default rule for this particular instance. Since

adder.vg was mapped to gateLib, this statement dictates the gate-level description in adder.vg be

used for instance top.a2.

13.2 Libraries

As mentioned in the previous section, a library is a logical collection of cells which are mapped to particular

source description files. The symbolic lib.cell[:config] notation supports the separate compilation of

source files by providing a file system-independent name to refer to source descriptions when instances in a

design are bound. It also allows multiple tools, which can have different invocation use-models, to share the

same configuration.

13.2.1 Specifying libraries - the library map file

When parsing a source description file (or files), the parser shall first read the library mapping information

from a pre-defined file prior to reading any source files. The name of this file and the mechanism for reading

it shall be tool-specific, but all compliant tools shall provide a mechanism to specify one or more library

mapping files to be used for a particular invocation of the tool. If multiple mapping files are specified, then

they shall be read in the order in which they are specified.

For the purposes of this discussion, assume the existence of a file named lib.map in the current working

directory, which is automatically read by the parser prior to parsing any source files specified on the com-

mand line. The syntax for declaring a library in the library map file is shown in Syntax 13-2.

library_cell ::=

[library_identifier.]cell_identifier[:config]

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 201
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 13-2—Syntax for declaring library in the library map file

NOTES

1—The file_path uses file system-specific notation to specify an absolute or relative path to a particular file or set of files.

The following shortcuts/wildcards can be used:

? single character wildcard (matches any single character)

* multiple character wildcard (matches any number of characters in a directory/file name)

... hierarchical wildcard (matches any number of hierarchical directories)

.. specifies the parent directory

. specifies the directory containing the lib.map

Paths which end in / shall include all files in the specified directory. Identical to /*.

Paths which do not begin with / are relative to the directory in which the current lib.map file is located.

2—The paths ./*.v and *.v are identical and both specify all files with a .v suffix in the current directory.

Any file encountered by the compiler which does not match any library’s file_path specification shall by

default be compiled into a library named work.

To perform the library mapping discussed in the example in 13.1, use the following library definitions in the

lib.map file:

library rtlLib *.v; // matches all files in the current directory with a .v suffix

library gateLib ./*.vg; // matches all files in the current directory with a .vg suffix

13.2.1.1 File path resolution

If a file name potentially matches multiple file path specifications, the path specifications shall be resolved in

the following order:

a) File path specifications which end with an explicit filename

b) File path specifications which end with a wildcarded filename

c) File path specifications which end with a directory

If a file name matches path specifications in multiple library definitions (after the above resolution rules have

been applied), it shall be an error.

library_text ::= (From Annex A - A.1.1)
{ library_descriptions }

library_descriptions ::=

library_declaration

| include_statement

| config_declaration

library_declaration ::=

library library_identifier file_path_spec [{ , file_path_spec }]

[-incdir file_path_spec [{ , file_path_spec }] ;
file_path_spec ::=

file_path

include_statement ::=

include <file_path_spec> ;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

202 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Using these rules with the library definitions in the lib.map file, all source files encountered by the parser/

compiler can be mapped to a unique library. Once the source descriptions have been mapped to libraries, the

cells defined therein are available for binding.

NOTE—Tool implementers may find it convenient to provide a command-line argument to explicitly specify the library

into which the file being parsed is to be mapped, which shall override any library definitions in the lib.map file. If

these libraries do not exist in the lib.map file, they can only be accessed via an explicit config.

If multiple cells with the same name map to the same library, then the LAST cell encountered shall be writ-

ten to the library. This is to support a “separate-compile” use-model (see 13.4.3), where it is assumed

encountering a cell after it has previously been compiled is intended to be a recompiling of the cell. In the

case where multiple modules with the same name are mapped to the same library in a single invocation of

the compiler, then a warning message shall be issued.

13.2.2 Using multiple library mapping files

In addition to specifying library mapping information, a lib.map file can also include references to other

lib.map files. The include command is used to insert the entire contents of a library mapping file in

another file during parsing. The result is as though the contents of the included mapping file appear in place

of the include command.

The syntax of a lib.map file is limited to library specifications, include statements, and standard Verilog

comment syntax. Syntax 13-3 shows the syntax for the include command.

Syntax 13-3—Syntax for include command

If the file path specification, whether in an include or library statement, describes a relative path, it shall be

relative to the location of the file which contains the file path. Library providers shall include a local library

mapping file in addition to the source contents of the library. Individual users can then simply include the

provider’s library mapping file in their own map file to gain access to the contents of the provided library.

13.2.3 Mapping source files to libraries

For each cell definition encountered during parsing/compiling, the name of the source file being parsed is

compared to the file path specifications of the library declarations in all of the library map files being used.

The cell is mapped into the library whose file path specification matches the source file name.

13.3 Configurations

As mentioned in the introduction of this chapter, a configuration is simply a set of rules to apply when

searching for library cells to which to bind instances. The syntax for configurations is shown in 13.3.1.

13.3.1 Basic configuration syntax

The configuration syntax is shown in Syntax 13-4.

include_statement ::= (From Annex A - A.1.1)
include <file_path_spec> ;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 203
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 13-4—Syntax for configuration

13.3.1.1 Design statement

The design statement names the library and cell of the top-level module or modules in the design hierarchy

configured by the config. There shall be one and only one design statement, but multiple top-level modules

can be listed in the design statement. The cell or cells identified can not be configurations themselves. It is

possible the design identified can have the same name as configs, however.

The design statement shall appear before any config rule statements in the config.

If the library identifier is omitted, then the library which contains the config shall be used to search for the

cell.

13.3.1.2 The default clause

The syntax for the default clause is specified in Syntax 13-5.

Syntax 13-5—Syntax for default clause

The default clause selects all instances which do not match a more specific selection clause. The use expan-

sion clause (see 13.3.1.6) can not be used with a default selection clause. For other expansion clauses, there

can not be more than one default clause which specifies the expansion clause.

For simple design configurations, it might be sufficient to specify a default liblist (see 13.3.1.5).

13.3.1.3 The instance clause

The instance clause is used to specify the specific instance to which the expansion clause shall apply.The

syntax for the instance clause is specified in Syntax 13-6.

config_declaration ::= (From Annex A -A.1.2)
config config_identifier ;
design_statement

{config_rule_statement}

endconfig
design_statement ::=

design { [library_identifier.]cell_identifier } ;
config_rule_statement ::=

default_clause liblist_clause

| inst_clause liblist_clause

| inst_clause use_clause

| cell_clause liblist_clause

| cell_clause use_clause

default_clause ::= (From Annex A - A.1.2)
default

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

204 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 13-6—Syntax for instance clause

The instance name associated with the instance clause is a Verilog hierarchical name, starting at the top-

level module of the config (i.e., the name of the cell in the design statement).

13.3.1.4 The cell clause

The cell selection clause names the cell to which it applies. The syntax for the cell clause is specified in

Syntax 13-7.

Syntax 13-7—Syntax for cell clause

If the optional library name is specified then the selection rule applies to any instance which is bound or is

under consideration for being bound to the selected library and cell. It is an error if a library name is

included in a cell selection clause and the corresponding expansion clause is a library list expansion clause.

13.3.1.5 The liblist clause

The liblist clause defines an ordered set of libraries to be searched to find the current instance. The syntax

for the liblist clause is specified in Syntax 13-8.

Syntax 13-8—Syntax for liblist clause

liblists are inherited hierarchically downward as instances are bound. When searching for a cell to bind to

the current unbound instance, and in the absence of an applicable binding expansion clause, the specified

library list is searched in the specified order.

The current library list is selected by the selection clauses. If no library list clause is selected, or the selected

library list is empty, then the library list contains the single name which is the library in which the cell con-

taining the unbound instance is found (i.e., the parent cell’s library).

inst_clause ::= (From Annex A - A.1.2)
instance inst_name

inst_name ::=

topmodule_identifier{.instance_identifier}

cell_clause ::= (From Annex A - A.1.2)
cell [library_identifier.]cell_identifier

liblist_clause ::= (From Annex A - A.1.2)
liblist [{library_identifier}]

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 205
This is an unapproved IEEE Standards Draft, subject to change.

13.3.1.6 The use clause

The use clause specifies a specific binding for the selected cell. The syntax for the use clause is specified in

Syntax 13-9.

Syntax 13-9—Syntax for use clause

A use clause can only be used in conjunction with an instance or cell selection clause. It specifies the exact

library and cell to which a selected cell or instance is bound.

The use clause has no effect on the current value of the library list. It can be common in practice to specify

multiple config rule statements, one of which specifies a binding and the other of which specifies a library

list.

If the lib.cell being referred to by the use clause is a config which has the same name as a module/macro-

module/primitive in the same library, then the optional :config suffix can be added to the lib.cell to

specify the config explicitly.

If the library name is omitted, the library shall be inherited from the parent cell.

NOTE—The binding statement can create situations where the unbound instance's module name and the cell name to
which it is bound are different.

13.3.2 Hierarchical configurations

For situations where it is desirable to specify a special set of configuration rules for a subsection of a design,

it is possible to bind a particular instance directly to a configuration using the binding clause:

instance top.a1.foo use lib1.foo:config;
// bind to the config foo in library lib1

specifies the instance top.a1.foo is to be replaced with the design hierarchy specified by the configura-

tion lib1.foo:config. The design statement in lib1.foo:config shall specify the actual binding

for the instance top.a1.foo, and the rules specified in the config shall determine the configuration of all

other subinstances under top.a1.foo.

It shall be an error for an instance clause to specify a hierarchical path to an instance which occurs within a

hierarchy specified by another config.

config bot;
design lib1.bot;
default liblist lib1 lib2;
instance bot.a1 liblist lib3;

endconfig

config top;
design lib1.top;
default liblist lib2 lib1;
instance top.bot use lib1.bot:config;
instance top.bot.a1 liblist lib4;
// ERROR - can’t set liblist for top.bot.a1 from this config

endconfig

use_clause ::= (From Annex A - A.1.2)
use [library_identifier.]cell_identifier[:config]

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

206 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

13.4 Using libraries and configs

The following subclause describes potential use-models for referencing configs on the command line. It is

included for clarification purposes.

The traditional Verilog simulation use-model takes a file-based approach, where the source descriptions for

all cells in the design are specified on the command line for each invocation of the tool. With the advent of

compiled-code simulators, the configuration mechanism shall also support a use-model which allows for the

source files to be pre-compiled and then for the pre-compiled design objects to be referenced on the com-

mand line. This subclause shall explain how configurations can be used in both of these scenarios.

13.4.1 Precompiling in a single-pass use-model

The single-pass use-model is the traditional use-model with which most users are familiar. In this use-model,

all of the source description files shall be provided to the simulator via the command line, and only these

source descriptions can be used to bind cell instances in the current design. A precompiling strategy in this

scenario actually parses every cell description provided on the command line and maps it into the library

without regard to whether the cell actually is used in the design. The tool can optionally check to see if the

cell already exists in the library, and if it is up-to-date (i.e. the source description has not changed since the

last time the cell was compiled) the tool can skip recompiling the cell. After all cells on the command line

have been compiled, then the tool can locate the top-level cell (discussed in Clause 12), and proceed down

the hierarchy, binding each instance as it is encountered in the hierarchy.

NOTE—With this use-model it is not necessary for library objects to persist from one tool invocation to another

(although for performance considerations it is recommended they do).

13.4.2 Elaboration-time compiling in a single-pass use-model

An alternate strategy which can be used with a single-pass tool is to parse the source files only to find the

top-level module(s), without actually compiling anything into the library during this scanning process. Once

the top-level module(s) has been found, then it can be compiled into the library, and the tool can proceed

down the hierarchy, only compiling the source descriptions necessary to bind the design successfully. Based

on the binding rules in place, only the source files which match the current library specification need to be

parsed to find the current cell’s source description to compile. As with the precompiled single-pass use-

model, it is not necessary for library cells to persist from one invocation to another using this strategy.

13.4.3 Precompiling using a separate compilation tool

When using a separate compilation tool, it is essential library cells persist, and the compiled forms shall

therefore exist somewhere in the file system. The exact format and location for holding these compiled

forms shall be vendor/tool-specific. Using this separate compiler strategy, the source descriptions shall be

parsed and compiled into the library using one or more invocations of the compiler tool. The only restriction

is all cells in a design shall be precompiled prior to binding the design (typically via an invocation of a sepa-

rate tool). Using this strategy, the tool which actually does the binding only needs to be told the top-level

module(s) of the design to be bound, and then it shall use the precompiled form of the cell description(s)

from the library to determine the subinstances and descend hierarchically down the design binding each cell

as it is located.

13.4.4 Command line considerations

In each of the three preceding strategies, the binding rules can either be specified via a config, or the default

rules (from the library map file) can be used. In the single-pass use-models, the config can be specified by

including its source description file on the command line. In the case where the config includes a design

statement, then the specified cell shall be the top-level module, regardless of the presence of any uninstanti-

ated cells in the rest of the source files. When using a separate compilation tool, the tool which actually does

the binding only needs to be given the lib.cell specification for the top-level cell(s) and/or the config to be

used. In this strategy, the config itself shall also be precompiled.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 207
This is an unapproved IEEE Standards Draft, subject to change.

13.5 Configuration examples

Consider the following set of source descriptions:

Example:

All of the examples in this section shall assume the top.v, adder.v and adder.vg files get compiled

with the given lib.map file. This yields the following library structure:

rtlLib.top // from top.v
rtlLib.foo // from top.v
aLib.adder // from adder.v
aLib.foo // rtl from adder.v
gateLib.adder // from adder.vg
gateLib.foo // from adder.vg

13.5.1 Default configuration from library map file

With no configuration, the libraries are searched according to the library declaration order in the library map

file. This means all instances of module adder shall use aLib.adder (since aLib is the first library

specified which contains a cell named adder), and all instances of module foo shall use rtlLib.foo
(since rtlLib is the first library which contains foo).

13.5.2 Using the default clause

To always use the foo definition from file adder.v, use the following simple configuration:

config cfg1;
design rtlLib.top
default liblist aLib rtlLib;

endconfig

The default liblist statement overrides the library search order in the lib.map file, so aLib is always

searched before rtlLib. Since the gateLib library is not included in the liblist, the gate-level

descriptions of adder and foo shall not be used.

To use the gate-level representations of adder and foo, add to the config as follows:

config cfg2;
design rtlLib.top
default liblist gateLib aLib rtlLib;

endconfig

file top.v
module top(...);
...
adder a1(...);
adder a2(...);
endmodule
module foo(...);
... // rtl
endmodule

file adder.v
module adder(...);
... // rtl
foo f1(...);
foo f2(...);
endmodule
module foo(...);
... // rtl
endmodule

file adder.vg
module adder(...);
... // gate-level
foo f1(...);
foo f2(...);
endmodule
module foo(...);
... // gate-level
endmodule

file lib.map
library rtlLib top.v;
library aLib adder.*;
library gateLib

adder.vg;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

208 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

This shall cause the gate representation always to be taken before the rtl representation, using the module

definitions for adder and foo from adder.vg. The rtl view of top shall be taken since there is no gate

representation available.

13.5.3 Using the cell clause

To modify the config to use the rtl view of adder and the gate-level representation of foo from

gateLib:

config cfg3;
design rtlLib.top
default liblist aLib rtlLib;

cell foo use gateLib.foo;
endconfig

The cell clause selects all cells named foo and explicitly binds them to the gate representation in gateLib.

13.5.4 Using the instance clause

To modify the config so the top.a1 adder (and its descendants) use the gate representation and the

top.a2 adder (and its descendants) use the rtl representation from aLib:

config cfg4
design rtlLib.top
default liblist gateLib rtlLib;
instance top.a2 liblist aLib;

endconfig

Since the liblist is inherited, all of the descendants of top.a2 inherit its liblist from the instance selection

clause.

13.5.5 Using a hierarchical config

Now suppose all this work has only been on the adder module by itself and a config which uses the

rtlLib.foo cell for f1, and the gateLib.foo cell for f2 has already been developed. Then use:

config cfg5;
design aLib.adder;
default liblist gateLib aLib;
instance adder.f1 liblist rtlLib;

endconfig

To use this configuration cfg5 for the top.a2 instance of adder and take the full default aLib adder
for the top.a1 instance, use the following config:

config cfg6;
design rtlLib.top;
default liblist aLib rtlLib;
instance top.a2 use work.cfg5:config

endconfig

The binding clause specifies the work.cfg5:config configuration is to be used to resolve the bindings

of instance top.a2 and its descendants. It is the design statement in config cfg5 which defines the exact

binding for the top.a2 instance itself. The rest of cfg5 defines the rules to bind the descendants of

top.a2. Notice the instance clause in cfg5 is relative to its own top-level module, adder.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 209
This is an unapproved IEEE Standards Draft, subject to change.

13.6 Displaying library binding information

It shall be possible to display the actual library binding information for module instances during simulation.

The format specifier %l or %L shall print out the library.cell binding information for the module

instance containing the display (or other textual output) command. This is similar to the %m format specifier

which prints out the hierarchical path name of the module containing it.

It shall also be able to use the VPI interface to display the binding information. The following new

vpiProperties shall exist for objects of type vpiModule:

— vpiUseBinding - the library.cell binding information for a module instance

— vpiLibrary - the library name into which the module was compiled

— vpiCell - the name of the cell bound to the module instance

— vpiConfig - the library.cell name of the config controlling the binding of the module

instance

These properties shall be of string type, similar to the vpiName and vpiFullName properties.

13.7 Library mapping examples

In the absence of a configuration, it is possible to perform basic control of the library searching order when

binding a design.

When a config is used, the config overrides the rules specified here.

13.7.1 Using the command line to control library searching

In the absence of a configuration, it shall be necessary for all compliant tools to provide a mechanism of

specifying a library search order on the command line which overrides the default order from the library

mapping file. This mechanism shall include specification of library names only, with the definitions of these

libraries to be taken from the library mapping file.

NOTE—It is recommended all compliant tools use "-L <library_name>" to specify this search order.

13.7.2 File path specification examples

Example:

Given the following set of files:

/proj/lib1/rtl/a.v
/proj/lib2/gates/a.v
/proj/lib1/rtl/b.v
/proj/lib2/gates/b.v

From the /proj library, the following absolute file_path_specs are resolved as shown:

/proj/lib*/*/a.v =/proj/lib1/rtl/a.v, /proj/lib2/gates/a.v
.../a.v =/proj/lib1/rtl/a.v, /proj/lib2/gates/a.v
/proj/.../b.v =/proj/lib1/rtl/b.v, /proj/lib2/gates/b.v
.../rtl/*.v =/proj/lib1/rtl/a.v, /proj/lib1/rtl/b.v

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

210 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

From the /proj/lib1 directory, the following relative file_path_specs are resolved as shown:

../lib2/gates/*.v = /proj/lib2/gates/a.v, /proj/lib2/gates/b.v

./rtl/?.v = /proj/lib1/rtl/a.v, /proj/lib1/rtl/b.v

./rtl/ = /proj/lib1/rtl/a.v, /proj/lib1/rtl/b.v

13.7.3 Resolving multiple path specifications

Example:

library lib1 “/proj/lib1/foo*.v”;
library lib2 “/proj/lib1/foo.v”;
library lib3 “../lib1/”;
library lib4 “/proj/lib1/*ver.v”;

When evaluated from the directory /proj/tb directory, the following source files shall map into the spec-

ified library:

../lib1/foobar.v - lib1 // potentially matches lib1 and lib3. Since lib1 includes

a filename and lib3 only specifies a directory; lib1 takes

precedence

/proj/lib1/foo.v - lib2 // takes precedence over lib1 and lib3 path specifications

/proj/lib1/bar.v - lib3
/proj/lib1/barver.v - lib4 // takes precedence over lib3 path specification

/proj/lib1/foover.v - ERROR // matches lib1 and lib4
/test/tb/tb.v - work // does not match any library specifications.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 211
This is an unapproved IEEE Standards Draft, subject to change.

14. Specify blocks

Two types of HDL constructs are often used to describe delays for structural models such as ASIC cells.

They are as follows:

— Distributed delays, which specify the time it takes events to propagate through gates and nets inside
the module (see 7.14)

— Module path delays, which describe the time it takes an event at a source (input port or inout port) to
propagate to a destination (output port or inout port)

This clause describes how paths are specified in a module and how delays are assigned to these paths.

14.1 Specify block declaration

A block statement called the specify block is the vehicle for describing paths between a source and a destina-

tion and for assigning delays to these paths. The syntax for specify block is shown in Syntax 14-1.

Syntax 14-1—Syntax of specify block

The specify block shall be bounded by the keywords specify and endspecify, and it shall appear inside a

module declaration. The specify block can be used to perform the following tasks:

— Describe various paths across the module.
— Assign delays to those paths.
— Perform timing checks to ensure that events occurring at the module inputs satisfy the timing con-

straints of the device described by the module (see Clause 15).

The paths described in the specify block, called module paths, pair a signal source with a signal destination.

The source may be unidirectional (an input port) or bidirectional (an inout port) and is referred to as the

module path source. Similarly, the destination may be unidirectional (an output port) or bidirectional (an

inout port) and is referred to as the module path destination.

Example:

specify_item ::= (From Annex A - A.7.1)
specparam_declaration

| pulsestyle_declaration

| showcancelled_declaration

| path_declaration

| system_timing_check

specify
specparam tRise_clk_q = 150, tFall_clk_q = 200;
specparam tSetup = 70;

(clk => q) = (tRise_clk_q, tFall_clk_q);

$setup(d, posedge clk, tSetup);
endspecify

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

212 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The first two lines following the keyword specify declare specify parameters, which are discussed in 3.11.3.

The line following the declarations of specify parameters describes a module path and assigns delays to that

module path. The specify parameters determine the delay assigned to the module path. Specifying module

paths is presented in 14.2. Assigning delays to module paths is discussed in 14.3. The line preceding the key-

word endspecify instantiates one of the system timing checks, which are discussed further in Clause 15.

14.2 Module path declarations

There are two steps required to set up module path delays in a specify block:

a) Describe the module paths

b) Assign delays to those paths (see 14.3)

The syntax of the module path declaration is described in Syntax 14-2.

Syntax 14-2—Syntax of the module path declaration

A module path may be described as a simple path, an edge sensitive path, or a state dependent path. A mod-

ule path shall be defined inside a specify block as a connection between a source signal and a destination sig-

nal. Module paths can connect any combination of vectors and scalars.

Example:

Figure 35 illustrates a circuit with module path delays. More than one source (A, B, C, and D) may have a

module path to the same destination (Q), and different delays may be specified for each input to output path.

Figure 35—Module path delays

path_declaration ::= (From Annex A - A.7.2)
simple_path_declaration ;

| edge_sensitive_path_declaration ;
| state_dependent_path_declaration ;

MODULE PATHS:
from A to Q
from B to Q
from C to Q
from D to Q

= module path delay
n

A

B

C
D

Q

22

10

12

18

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 213
This is an unapproved IEEE Standards Draft, subject to change.

14.2.1 Module path restrictions

Module paths have the following restrictions:

— The module path source shall be a net that is connected to a module input port or inout port.
— The module path destination shall be a net or variable that is connected to a module output port or

inout port.
— The module path destination shall have only one driver inside the module.

14.2.2 Simple module paths

The syntax for specifying a simple module path is given in Syntax 14-3.

Syntax 14-3—Syntax for simple module path

Simple path can be declared in one of the two forms:

— source *> destination
— source => destination

The symbols *> and => each represent a different kind of connection between the module path source and

the module path destination. The operator *> establishes a full connection between source and destination.

The operator => establishes a parallel connection between source and destination. Refer to 14.2.5 for a

description of full connection and parallel connection paths.

simple_path_declaration ::= (From Annex A - A.7.2)
parallel_path_description = path_delay_value

| full_path_description = path_delay_value

parallel_path_description ::=

(specify_input_terminal_descriptor [polarity_operator] =>
specify_output_terminal_descriptor)

full_path_description ::=

(list_of_path_inputs [polarity_operator] *> list_of_path_outputs)
list_of_path_inputs ::=

specify_input_terminal_descriptor { , specify_input_terminal_descriptor }

list_of_path_outputs ::=

specify_output_terminal_descriptor { , specify_output_terminal_descriptor }

specify_input_terminal_descriptor ::= (From Annex A - A.7.3)
input_identifier

| input_identifier [constant_expression]
| input_identifier [range_expression]

specify_output_terminal_descriptor ::=

output_identifier

| output_identifier [constant_expression]
| output_identifier [range_expression]

input_identifier ::=

input_port_identifier | inout_port_identifier

output_identifier ::=

output_port_identifier | inout_port_identifier

polarity_operator ::= (From Annex A - A.7.4)
+ | -

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

214 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Example:

The following three examples illustrate valid simple module path declarations.

14.2.3 Edge-sensitive paths

When a module path is described using an edge transition at the source, it is called an edge-sensitive path.

The edge-sensitive path construct is used to model the timing of input to output delays, which only occur

when a specified edge occurs at the source signal.

The syntax of the edge-sensitive path declaration is shown in Syntax 14-4.

Syntax 14-4—Syntax of the edge-sensitive path declaration

The edge identifier may be one of the keywords posedge or negedge, associated with an input terminal

descriptor, which may be any input port or inout port. If a vector port is specified as the input terminal

descriptor, the edge transition shall be detected on the least significant bit. If the edge transition is not speci-

fied, the path shall be considered active on any transition at the input terminal.

An edge-sensitive path may be specified with full connections (*>) or parallel connections (=>). For parallel

connections (=>), the destination shall be any scalar output or inout port or the bit-select of a vector output

or inout port. For full connections (*>), the destination shall be a list of one or more of the vector or scalar

output and inout ports, and bit-selects or part-selects of vector output and inout ports. Refer to 14.2.5 for a

description of parallel paths and full connection paths.

The data source expression is an arbitrary expression, which serves as a description of the flow of data to the

path destination. This arbitrary data path description does not affect the actual propagation of data or events

through the model; how an event at the data path source propagates to the destination depends on the internal

logic of the module. The polarity operator describes whether the data path is inverting or noninverting.

edge_sensitive_path_declaration ::= (From Annex A - A.7.4)
parallel_edge_sensitive_path_description = path_delay_value

| full_edge_sensitive_path_description = path_delay_value

parallel_edge_sensitive_path_description ::=

([edge_identifier] specify_input_terminal_descriptor =>
specify_output_terminal_descriptor [polarity_operator] : data_source_expression)

full_edge_sensitive_path_description ::=

([edge_identifier] list_of_path_inputs *>
list_of_path_outputs [polarity_operator] : data_source_expression)

data_source_expression ::=

expression

edge_identifier ::=

posedge | negedge

(A => Q) = 10;
(B => Q) = (12);
(C, D *> Q) = 18;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 215
This is an unapproved IEEE Standards Draft, subject to change.

Examples:

Example 1—The following example demonstrates an edge-sensitive path declaration with a positive polarity

operator:

(posedge clock => (out +: in)) = (10, 8);

In this example, at the positive edge of clock, a module path extends from clock to out using a rise

delay of 10 and a fall delay of 8. The data path is from in to out, and in is not inverted as it propagates to

out.

Example 2—The following example demonstrates an edge-sensitive path declaration with a negative polarity

operator:

(negedge clock[0] => (out -: in)) = (10, 8);

In this example, at the negative edge of clock[0], a module path extends from clock[0] to out using

a rise delay of 10 and a fall delay of 8. The data path is from in to out, and in is inverted as it propagates

to out.

Example 3—The following example demonstrates an edge-sensitive path declaration with no edge identifier:

(clock => (out : in)) = (10, 8);

In this example, at any change in clock, a module path extends from clock to out.

14.2.4 State-dependent paths

A state-dependent path makes it possible to assign a delay to a module path that affects signal propagation

delay through the path only if specified conditions are true.

A state-dependent path description includes the following items:

— A conditional expression that, when evaluated true, enables the module path
— A module path description
— A delay expression that applies to the module path

The syntax for the state-dependent path declaration is shown in Syntax 14-5.

Syntax 14-5—Syntax of state-dependent paths

14.2.4.1 Conditional expression

The operands in the conditional expression shall be constructed from the following:

— Scalar or vector module input ports or inout ports or their bit-selects or part-selects
— Locally defined variables or nets or their bit-selects or part-selects
— Compile time constants (constant numbers and specify parameters)

state_dependent_path_declaration ::= (From Annex A - A.7.4)
if (module_path_expression) simple_path_declaration

| if (module_path_expression) edge_sensitive_path_declaration

| ifnone simple_path_declaration

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

216 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Table 46 contains a list of valid operators that may be used in conditional expressions:

A conditional expression shall evaluate to true (1) for the state-dependent path to be assigned a delay value.

If the conditional expression evaluates to x or z, it shall be treated as true. If the conditional expression eval-

uates to multiple bits, the least significant bit shall represent the result. The conditional expression can have

any number of operands and operators.

14.2.4.2 Simple state-dependent paths

If the path description of a state-dependent path is a simple path, then it is called a simple state-dependent
path. The simple path description is discussed in 14.2.2.

Examples:

Example 1—The following example uses state-dependent paths to describe the timing of an XOR gate.

In this example, first two state-dependent paths describe a pair of output rise and fall delay times when the

XOR gate (x1) inverts a changing input. The last two state-dependent paths describe another pair of output

rise and fall delay times when the XOR gate buffers a changing input.

Table 46—List of valid operators in state dependent path delay expression

Operator Description Operator Description

~ bit-wise negation & reduction and

& bit-wise and | reduction or

| bit-wise or ^ reduction xor

^ bit-wise xor ~& reduction nand

^~ ~^ bit-wise xnor ~| reduction nor

== logical equality ^~ ~^ reduction xnor

!= logical inequality {} concatenation

&& logical and { {} } replication

|| logical or ?: conditional

! logical not

module XORgate (a, b, out);
input a, b:
output out;

xor x1 (out, a, b);

specify
specparam noninvrise = 1, noninvfall = 2
specparam invertrise = 3, invertfall = 4;
if (a) (b => out) = (invertrise, invertfall);
if (b) (a => out) = (invertrise, invertfall);
if (~a)(b => out) = (noninvrise, noninvfall);
if (~b)(a => out) = (noninvrise, noninvfall);

endspecify
endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 217
This is an unapproved IEEE Standards Draft, subject to change.

Example 2—The following example models a partial ALU. The state-dependent paths specify different

delays for different ALU operations.

In the preceding example, the first three path declarations declare paths extending from operand inputs i1
and i2 to the o1 output. The delays on these paths are assigned to operations on the basis of the operation

specified by the inputs on opcode. The last path declaration declares a path from the opcode input to the

o1 output.

14.2.4.3 Edge-sensitive state-dependent paths

If the path description of a state-dependent path describes an edge-dependent path, then the state-dependent

path is called an edge-sensitive state-dependent path. The edge-sensitive paths are discussed in 14.2.3.

Different delays can be assigned to the same edge-sensitive path as long as the following criteria are met:

— The edge, condition, or both make each declaration unique.
— The port is referenced in the same way in all path declarations (entire port, bit-select, or part-select).

Examples:

Example 1

In this example, if the positive edge of clock occurs when reset and clear are low, and a module path

extends from clock to out using a rise delay of 10 and a fall delay of 8.

module ALU (o1, i1, i2, opcode);
input [7:0] i1, i2;
input [2:1] opcode;
output [7:0] o1;

//functional description omitted
specify

// add operation
if (opcode == 2’b00) (i1,i2 *> o1) = (25.0, 25.0);
// pass-through i1 operation
if (opcode == 2’b01) (i1 => o1) = (5.6, 8.0);
// pass-through i2 operation
if (opcode == 2’b10) (i2 => o1) = (5.6, 8.0);
// delays on opcode changes
(opcode => o1) = (6.1, 6.5);

endspecify
endmodule

if (!reset && !clear)
(posedge clock => (out +: in)) = (10, 8) ;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

218 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Example 2—The following example shows four edge-sensitive path declarations. Note that each path has a

unique edge or condition.

Example 3—The two state-dependent path declarations shown below are not legal because even though they

have different conditions, the destinations are not specified in the same way: the first destination is a part-

select, the second is a bit-select.

14.2.4.4 The ifnone condition

The ifnone keyword is used to specify a default state-dependent path delay when all other conditions for the

path are false. The ifnone condition shall specify the same module path source and destination as the state-

dependent module paths. The following rules apply to module paths specified with the ifnone condition:

— Only simple module paths may be described with an ifnone condition.
— The state-dependent paths that correspond to the ifnone path may be either simple module paths or

edge-sensitive paths.
— If there are no corresponding state-dependent module paths to the ifnone module path, then the

ifnone module path shall be treated the same as an unconditional simple module path.
— It is illegal to specify both an ifnone condition for a module path and an unconditional simple mod-

ule path for the same module path.

specify
(posedge clk => (q[0] : data)) = (10, 5);
(negedge clk => (q[0] : data)) = (20, 12);

if (reset)
(posedge clk => (q[0] : data)) = (15, 8);

if (!reset && cntrl)
(posedge clk => (q[0] : data)) = (6, 2);

endspecify

specify
if (reset)

(posedge clk => (q[3:0]:data)) = (10,5);
if (!reset)

(posedge clk => (q[0]:data)) = (15,8);
endspecify

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 219
This is an unapproved IEEE Standards Draft, subject to change.

Examples:

Example 1—The following are valid state-dependent path combinations.

Example 2—The following module path description combination is illegal because it combines a state-

dependent path using an ifnone condition and an unconditional path for the same module path.

14.2.5 Full connection and parallel connection paths

The operator *> shall be used to establish a full connection between source and destination. In a full connec-

tion, every bit in the source shall connect to every bit in the destination. The module path source need not

have the same number of bits as the module path destination.

The full connection can handle most types of module paths, since it does not restrict the size or number of

source signals and destination signals. The following situations require the use of full connections:

— To describe a module path between a vector and a scalar
— To describe a module path between vectors of different sizes
— To describe a module path with multiple sources or multiple destinations in a single statement (see

14.2.6)

The operator => shall be used to establish a parallel connection between source and destination. In a parallel

connection, each bit in the source shall connect to one corresponding bit in the destination. Parallel module

paths can be created only between sources and destinations that contain the same number of bits.

Parallel connections are more restrictive than full connections. They only connect one source to one destina-

tion, where each signal contains the same number of bits. Therefore, a parallel connection may only be used

to describe a module path between two vectors of the same size. Since scalars are one bit wide, either *> or

=> may be used to set up bit-to-bit connections between two scalars.

if (C1) (IN => OUT) = (1,1);
ifnone (IN => OUT) = (2,2);

// add operation
if (opcode == 2’b00) (i1,i2 *> o1) = (25.0, 25.0);
// pass-through i1 operation
if (opcode == 2’b01) (i1 => o1) = (5.6, 8.0);
// pass-through i2 operation
if (opcode == 2’b10) (i2 => o1) = (5.6, 8.0);
// all other operations
ifnone (i2 => o1) = (15.0, 15.0);

(posedge CLK => (Q +: D)) = (1,1);
ifnone (CLK => Q) = (2,2);

if (a) (b => out) = (2,2);
if (b) (a => out) = (2,2);
ifnone (a => out) = (1,1);
(a => out) = (1,1);

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

220 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Examples:

Example 1—Figure 36 illustrates how a parallel connection differs from a full connection between two 4-bit

vectors.

Figure 36—The difference between parallel and full connection paths

Example 2—The following example shows module paths for a 2:1 multiplexor with two 8-bit inputs and

one 8-bit output.

The module path from s to q uses a full connection (*>) because it connects a scalar source—the 1-bit

select line—to a vector destination—the 8-bit output bus. The module paths from both input lines in1 and

in2 to q use a parallel connection (=>) because they set up parallel connections between two 8-bit buses.

14.2.6 Declaring multiple module paths in a single statement

Multiple module paths may be described in a single statement by using the symbol *> to connect a comma-

separated list of sources to a comma-separated list of destinations. When describing multiple module paths

in one statement, the lists of sources and destinations may contain a mix of scalars and vectors of any size.

 Parallel module path

0

1

2

3

0

1

2

3

Input bits Output bits
0

1

2

3

0

1

2

3

Input bits Output bits

N = number of bits = 4

Number of paths = N =

Use => to define path

4

bit-to-bit connections

Full module path

Number of paths = N * N =

Use to define path

16

bit-to-vector connections

*>

module mux8 (in1, in2, s, q) ;
output [7:0] q;
input [7:0] in1, in2;
input s;
// Functional description omitted ...
specify

(in1 => q) = (3, 4) ;
(in2 => q) = (2, 3) ;
(s *> q) = 1;

endspecify
endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 221
This is an unapproved IEEE Standards Draft, subject to change.

The connection in a multiple module path declaration is always a full connection.

Example:

(a, b, c *> q1, q2) = 10;

is equivalent to the following six individual module path assignments:

14.2.7 Module path polarity

The polarity of a module path is an arbitrary specification indicating whether or not the direction of a signal

transition is inverted as it propagates from the input to the output. This arbitrary polarity description does not

affect the actual propagation of data or events through the model; how a rise or a fall at the source propagates

to the destination depends on the internal logic of the module.

Module paths may specify any of three polarities:

— Unknown polarity
— Positive polarity
— Negative polarity

14.2.7.1 Unknown polarity

By default, module paths shall have unknown polarity—that is, a transition at the path source may propagate

to the destination in an unpredictable way, as follows:

— A rise at the source may cause either a rise transition, a fall transition, or no transition at the
destination.

— A fall at the source may cause either a rise transition, a fall transition, or no transition at the
destination.

A module path specified either as a full connection or a parallel connection, but without a polarity operator +
or -, shall be treated as a module path with unknown polarity.

14.2.7.2 Positive polarity

For module paths with positive polarity, any transition at the source may cause the same transition at the des-

tination, as follows:

— A rise at the source may cause either a rise transition or no transition at the destination.
— A fall at the source may cause either a fall transition or no transition at the destination.

A module path with positive polarity shall be specified by prefixing the + polarity operator to => or *>.

(a *> q1) = 10 ;
(b *> q1) = 10 ;
(c *> q1) = 10 ;
(a *> q2) = 10 ;
(b *> q2) = 10 ;
(c *> q2) = 10 ;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

222 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

14.2.7.3 Negative polarity

For module paths with negative polarity, any transition at the source may cause the opposite transition at the

destination, as follows:

— A rise at the source may cause either a fall transition or no transition at the destination.
— A fall at the source may cause either a rise transition or no transition at the destination.

A module path with negative polarity shall be specified by prefixing the - polarity operator to => or *>.

Examples:

The following examples show each type of path polarity:

14.3 Assigning delays to module paths

The delays that occur at the module outputs where paths terminate shall be specified by assigning delay val-

ues to the module path descriptions. The syntax for specifying delay values is shown in Syntax 14-6.

Syntax 14-6—Syntax for path delay value

path_delay_value ::= (From Annex A - A.7.4)
list_of_path_delay_expressions

| (list_of_path_delay_expressions)
list_of_path_delay_expressions ::=

t_path_delay_expression

| trise_path_delay_expression , tfall_path_delay_expression

| trise_path_delay_expression , tfall_path_delay_expression , tz_path_delay_expression

| t01_path_delay_expression , t10_path_delay_expression , t0z_path_delay_expression ,
tz1_path_delay_expression , t1z_path_delay_expression , tz0_path_delay_expression

| t01_path_delay_expression , t10_path_delay_expression , t0z_path_delay_expression ,
tz1_path_delay_expression , t1z_path_delay_expression , tz0_path_delay_expression ,
t0x_path_delay_expression , tx1_path_delay_expression , t1x_path_delay_expression ,
tx0_path_delay_expression , txz_path_delay_expression , tzx_path_delay_expression

t_path_delay_expression ::=

path_delay_expression

// Positive polarity
(In1 +=> q) = In_to_q ;
(s +*> q) = s_to_q ;

// Negative polarity
(In1 -=> q) = In_to_q ;
(s -*> q) = s_to_q ;

// Unknown polarity
(In1 => q) = In_to_q ;
(s *> q) = s_to_q ;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 223
This is an unapproved IEEE Standards Draft, subject to change.

In module path delay assignments, a module path description (see 14.2) is specified on the left-hand side,

and one or more delay values are specified on the right-hand side. The delay values may be optionally

enclosed in a pair of parentheses. There may be one, two, three, six, or twelve delay values assigned to a

module path, as described in 14.3.1. The delay values shall be constant expressions containing literals or

specparams, and there may be a delay expression of the form min:typ:max.

Example:

In the example above, the specify parameters declared following the specparam keyword specify values for

the module path delays. The module path assignments assign those module path delays to the module paths.

14.3.1 Specifying transition delays on module paths

Each path delay expression may be a single value—representing the typical delay—or a colon-separated list

of three values—representing a minimum, typical, and maximum delay, in that order. If the path delay

expression results in a negative value, it shall be treated as zero. Table 47 describes how different path delay

values shall be associated with various transitions. The path delay expression names refer to the names used

in Syntax 14-6.

Table 47—Associating path delay expressions with transitions

Number of path delay expressions specified

Transitions 1 2 3 6 12

0 -> 1 t trise trise t01 t01

1 -> 0 t tfall tfall t10 t10

0 -> z t trise tz t0z t0z

z -> 1 t trise trise tz1 tz1

1 -> z t tfall tz t1z t1z

z -> 0 t tfall tfall tz0 tz0

0 -> x * * * * t0x

x -> 1 * * * * tx1

1 -> x * * * * t1x

x -> 0 * * * * tx0

x -> z * * * * txz

z -> x * * * * tzx

* See 14.3.2.

specify
// Specify Parameters
specparam tRise_clk_q = 45:150:270, tFall_clk_q=60:200:350;
specparam tRise_Control = 35:40:45, tFall_control=40:50:65;

// Module Path Assignments
(clk => q) = (tRise_clk_q, tFall_clk_q);
(clr, pre *> q) = (tRise_control, tFall_control);

endspecify

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

224 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Example:

14.3.2 Specifying x transition delays

If the x transition delays are not explicitly specified, the calculation of delay values for x transitions is based

on the following two pessimistic rules:

— Transitions from a known state to x shall occur as quickly as possible—that is, the shortest possible
delay shall be used for any transition to x.

— Transitions from x to a known state shall take as long as possible—that is, the longest possible delay
shall be used for any transition from x.

Table 48 presents the general algorithm for calculating delay values for x transitions, along with specific

examples. The following two groups of x transitions are represented in the table:

a) Transition from a known state s to x: s -> x

b) Transition from x to a known state s: x -> s

// one expression specifies all transitions
(C => Q) = 20;
(C => Q) = 10:14:20;

// two expressions specify rise and fall delays
specparam tPLH1 = 12, tPHL1 = 25;
specparam tPLH2 = 12:16:22, tPHL2 = 16:22:25;
(C => Q) = (tPLH1, tPHL1) ;
(C => Q) = (tPLH2, tPHL2) ;

// three expressions specify rise, fall, and z transition delays
specparam tPLH1 = 12, tPHL1 = 22, tPz1 = 34;
specparam tPLH2 = 12:14:30, tPHL2 = 16:22:40, tPz2 = 22:30:34;
(C => Q) = (tPLH1, tPHL1, tPz1);
(C => Q) = (tPLH2, tPHL2, tPz2);

// six expressions specify transitions to/from 0, 1, and z
specparam t01 = 12, t10 = 16, t0z = 13,

 tz1 = 10, t1z = 14, tz0 = 34 ;
(C => Q) = (t01, t10, t0z, tz1, t1z, tz0) ;
specparam T01 = 12:14:24, T10 = 16:18:20, T0z = 13:16:30 ;
specparam Tz1 = 10:12:16, T1z = 14:23:36, Tz0 = 15:19:34 ;
(C => Q) = (T01, T10, T0z, Tz1, T1z, Tz0) ;

// twelve expressions specify all transition delays explicitly
specparam t01=10, t10=12, t0z=14, tz1=15, t1z=29, tz0=36,

 t0x=14, tx1=15, t1x=15, tx0=14, txz=20, tzx=30 ;
(c => Q) = (t01, t10, t0z, tz1, t1z, tz0,

t0x, tx1, t1x, tx0, txz, tzx) ;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 225
This is an unapproved IEEE Standards Draft, subject to change.

14.3.3 Delay selection

The simulator shall determine the proper delay to use when a specify path output must be scheduled to tran-

sition. There may be specify paths to the output from more than one input, and the simulator must decide

which specify path to use.

The simulator shall do this by first determining which specify paths to the output are active. Active specify

paths are those whose input has transitioned most recently in time, and which have either no condition or

whose conditions are true. In the presence of simultaneous input transitions, it is possible for many specify

paths to an output to be simultaneously active.

Once the active specify paths are identified, a delay must be selected from among them. This is done by

comparing the correct delay for the specific transition being scheduled from each specify path, and choosing

the smallest.

Examples:

Example 1:

(A => Y) = (6, 9);
(B => Y) = (5, 11);

Table 48—Calculating delays for x transitions

X transition Delay value

General algorithm

s -> x minimum (s -> other known signals)

x -> s maximum (other known signals -> s)

Specific transitions

0 -> x minimum (0 -> z delay, 0 -> 1 delay)

1 -> x minimum (1 -> z delay, 1 -> 0 delay)

z -> x minimum (z -> 1 delay, z -> 0 delay)

x -> 0 maximum (z -> 0 delay, 1 -> 0 delay)

x -> 1 maximum (z -> 1 delay, 0 -> 1 delay)

x -> z maximum (1 -> z delay, 0 -> z delay)

Usage: (C => Q) = (5, 12, 17, 10, 6, 22) ;

0 -> x minimum (17, 5) = 5

1 -> x minimum (6, 12) = 6

z -> x minimum (10, 22) = 10

x -> 0 maximum (22, 12) = 22

x -> 1 maximum (10, 5) = 10

x -> z maximum (6, 17) = 17

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

226 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

For a Y transition from 0 to 1, if A transitioned more recently than B a delay of 6 will be chosen. But if B
transitioned more recently than A, a delay of 5 will be chosen. And if the last time they transitioned A and B
did so simultaneously, then the smallest of the two rise delays would be chosen, which is the rise delay from

B of 5. The fall delay from A of 9 would be chosen if Y was instead to transition from 1 to 0.

Example 2:

if (MODE < 5) (A => Y) = (5, 9);
if (MODE < 4) (A => Y) = (4, 8);
if (MODE < 3) (A => Y) = (6, 5);
if (MODE < 2) (A => Y) = (3, 2);
if (MODE < 1) (A => Y) = (7, 7);

Anywhere from zero to five of these specify paths might be active depending upon the value of MODE. For

instance, when MODE is 2 the first three specify paths are active. A rise transition would select a delay of 4,

because that is the smallest rise delay among the first three. A fall transition would select a delay of 5,

because that is the smallest fall delay among the first three.

14.4 Mixing module path delays and distributed delays

If a module contains module path delays and distributed delays (delays on primitive instances within the

module), the larger of the two delays for each path shall be used.

Examples:

Example 1—Figure 37 illustrates a simple circuit modeled with a combination of distributed delays and path

delays (only the D input to Q output path is illustrated). Here, the delay on the module path from input D to

output Q = 22, while the sum of the distributed delays = 0 + 1 = 1. Therefore, a transition on Q caused by a

transition on D will occur 22 time units after the transition on D.

Figure 37—Module path delays longer than distributed delays

Example 2—In Figure 38, the delay on the module path from D to Q = 22, but the distributed delays along

that module path now add up to 10 + 20 = 30. Therefore, an event on Q caused by an event on D will occur

30 time units after the event on D.

A

B

C

D

Q1

0

0

22

 = distributed delayn

= module path delay
n

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 227
This is an unapproved IEEE Standards Draft, subject to change.

Figure 38—Module path delays shorter than distributed delays

14.5 Driving wired logic

Module path output nets shall not have more than one driver within the module. Therefore, wired logic is not

allowed at module path outputs.

Figure 39 illustrates a violation of this wired-output rule and a method of avoiding the rule violation.

Figure 39—Legal and illegal module paths

In Figure 39 (a), any module path to S is illegal because the path destination has two drivers.

Assuming signal S in Figure 39 (a) is a wired-and, this limitation can be circumvented by replacing wired

logic with gated logic to create a single driver to the output. Figure 39 (b) shows how adding a third and
gate—the shaded gate—solves the problem for the module in Figure 39 (a).

The example in Figure 40 is also illegal. In this example, when the outputs Q and R are wired together, it

creates a condition where both paths have multiple drivers from within the same module.

A

B

C

D

Q = distributed delay
20

10

10

n

22
= module path delay

n

E
F

G
H

S

(a) (b)

E
F

G
H

S

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

228 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Figure 40—Illegal module paths

Although multiple output drivers to a path destination are prohibited inside the same module, they are

allowed outside the module. The example in Figure 41 is legal since Q and R each have only one driver

within the module in which the module paths are specified.

Figure 41—Legal module paths

14.6 Detailed control of pulse filtering behavior

Two consecutive scheduled transitions closer together in time than the module path delay is deemed a pulse.

By default, pulses on a module path output are rejected. Consecutive transitions cannot be closer together

than the module path delay, and this is known as the inertial delay model of pulse propagation.

Pulse width ranges control how to handle a pulse presented at a module path output. They are:

— A pulse width range for which a pulse shall be rejected
— A pulse width range for which a pulse shall be allowed to propagate to the path destination
— A pulse width range for which a pulse shall generate a logic x on the path destination

A
B

C
D

R

Q

A
B

C
D

E
F

G
H

R

Q

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 229
This is an unapproved IEEE Standards Draft, subject to change.

Two pulse limit values define the pulse width ranges associated with each module path transition delay. The

pulse limit values are called the error limit (e-limit) and the rejection limit (r-limit). The e-limit must always

be at least as large as the r-limit. Pulses greater than or equal to the e-limit pass unfiltered. Pulses less than

the e-limit but greater than or equal to the r-limit are filtered to X. Pulses less than the r-limit are rejected and

no pulse emerges. By default, both the e-limit and the r-limit are set equal to the delay. These default values

yield full inertial pulse behavior, rejecting all pulses smaller than the delay.

Example:

The rise delay from input A to output Y is 7, and the fall delay is 9. By default, the e-limit and the r-limit for

the rise delay are both 7. The e-limit and the r-limit for the fall delay are both 9. The pulse limits associated

with the delay forming the trailing edge of the pulse determine if and how the pulse should be filtered. Wave-

form Y' shows the waveform resulting from no pulse filtering. The width of the pulse is 2, which is less than

the reject limit for the rise delay of 7, and so the pulse is filtered as shown in waveform Y.

There are three ways to modify the pulse limits from their default values. First, the Verilog language pro-

vides the PATHPULSE$ specparam to modify the pulse limits from their default values. Second, invoca-

tion options can specify percentages applying to all module path delays to form the corresponding e-limits

and r-limits. Third, SDF annotation can individually annotate the e-limit and r-limit of each module path

transition delay.

14.6.1 Specify block control of pulse limit values

Pulse limit values may be set from within the specify block with the PATHPULSE$ specparam. The syntax

for using PATHPULSE$ to specify the reject limit and error limit values is given in Syntax 14-7.

Syntax 14-7—Syntax for PATHPULSE$ pulse control

pulse_control_specparam ::= (From Annex A - A.2.4)
PATHPULSE$ = (reject_limit_value [, error_limit_value]) ;

| PATHPULSE$specify_input_terminal_descriptor$specify_output_terminal_descriptor

= (reject_limit_value [, error_limit_value]) ;
error_limit_value ::=

limit_value

reject_limit_value ::=

limit_value

limit_value ::=

constant_mintypmax_expression

(A =>Y) = 7, 9;

pulse width = 4

// Pulse considered
// at module path output

pulse width = 4

Y

Y’

A

// Pulse is filtered

// Module path
// delay for a buffer

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

230 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

If only the reject limit value is specified, it shall apply to both the reject limit and the error limit.

The reject limit and error limit may be specified for a specific module path. When no module path is speci-

fied, the reject limit and error limit shall apply to all module paths defined in a module. If both path-specific

PATHPULSE$ specparams and a non-path-specific PATHPULSE$ specparam appear in the same mod-

ule, then the path-specific specparams shall take precedence for the specified paths.

The module path input terminals and output terminals shall conform to the rules for module path inputs and

outputs, with the following restriction: the terminals may not be a bit-select or part-select of a vector.

When a module path declaration declares multiple paths, the PATHPULSE$ specparam shall only be spec-

ified for the first path input terminal and the first path output terminal. The reject limit and error limit speci-

fied shall apply to all other paths in the multiple path declaration. A PATHPULSE$ specparam which

specifies anything other than the first path input and path output terminals shall be ignored.

Example:

In the following example, the path (clk=>q) acquires a reject limit of 2 and an error limit of 9, as defined

by the first PATHPULSE$ declaration. The paths (clr*>q) and (pre*>q) receive a reject limit of 0
and an error limit of 4, as specified by the second PATHPULSE$ declaration. The path (data=>q) is not

explicitly defined in any of the PATHPULSE$ declarations, and so it acquires reject and error limit of 3, as

defined by the last PATHPULSE$ declaration.

14.6.2 Global control of pulse limit values

Two invocation options can specify percentages applying globally to all module path transition delays. The

error limit invocation option specifies the percentage of each module path transition delay used for its error

limit value. The reject limit invocation option specifies the percentage of each module path transition delay

used for its reject limit value. The percentage values shall be an integer between 0 and 100.

The default values for both the reject and error limit invocation options are 100%. When neither option is

present then 100% of each module transition delay is used as the reject and error limits.

It is an error if the error limit percentage is smaller than the reject limit percentage. In such cases the error

limit percentage is set equal to the reject limit percentage.

When both PATHPULSE$ and global pulse limit invocation options are present, the PATHPULSE$ val-

ues shall take precedence.

14.6.3 SDF annotation of pulse limit values

SDF annotation can be used to specify the pulse limit values of module path transition delays. Clause 16
describes this in greater detail.

specify
(clk => q) = 12;
(data => q) = 10;
(clr, pre *> q) = 4;

specparam
PATHPULSEclkq = (2,9),
PATHPULSEclrq = (0,4),
PATHPULSE$ = 3;

endspecify

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 231
This is an unapproved IEEE Standards Draft, subject to change.

When both PATHPULSE$, global pulse limit invocation options, and SDF annotation of pulse limit values

are present, SDF annotation values shall take precedence.

14.6.4 Detailed pulse control capabilities

The default style of pulse filtering behavior has two drawbacks. First, pulse filtering to the X state may be

insufficiently pessimistic with an X state duration too short to be useful. Second, unequal delays can result in

pulse rejection whenever the trailing edge precedes the leading edge, leaving no indication that a pulse was

rejected. This section introduces more detailed pulse control capabilities.

14.6.4.1 On-event versus on-detect pulse filtering

When an output pulse must be filtered to X, greater pessimism can be expressed if the module path output

transitions immediately to X (on-detect) instead of at the already scheduled transition time of the leading

edge of the pulse (on-event).

The on-event method of pulse filtering to X is the default. When an output pulse must be filtered to X, the

leading edge of the pulse becomes a transition to X and the trailing edge a transition from X. The times of

transition of the edges do not change.

Just like on-event, the on-detect method of pulse filtering changes the leading edge of the pulse into a transi-

tion to X and the trailing edge to a transition from X, but the time of the leading edge is changed to occur

immediately upon detection of the pulse.

Figure 42 illustrates this behavior using a simple buffer with asymmetric rise/fall times and both the r-limits

and e-limits equal to 0. An output waveform is shown for both on-detect and on-event approaches.

Figure 42—On-detect -vs.- on-event

On-detect versus on-event behavior can be selected in two different ways. First, one may be selected glo-

bally for all module path outputs through use of the on-detect or on-event invocation option. Second, one

may be selected locally through use of specify block pulse style declarations.

in

rise/fall

4/6

outin

12 14 1810

out (on-event)
(default)

out (on-detect)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

232 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The syntax for pulse style declarations is shown in Syntax 14-8.

Syntax 14-8—Syntax for pulse style declarations

It is an error if a module path output appears in a pulse style declaration after it has already appeared in a

module path declaration.

The pulse style invocation options take precedence over pulse style specify block declarations.

14.6.4.2 Negative pulse detection

When the delays to a module path output are unequal, it is possible for the trailing edge of a pulse to be

scheduled for a time earlier than the schedule time of the leading edge, yielding a pulse with a negative

width. Under normal operation, if the schedule for a trailing pulse edge is earlier than the schedule for a

leading pulse edge, then the leading edge is cancelled. No transition takes place when the initial and final

states of the pulse are the same, leaving no indication a schedule was ever present.

Negative pulses can be indicated with the X state by use of the showcancelled style of behavior. When the

trailing edge of a pulse would be scheduled before the leading edge, this style causes the leading edge to be

scheduled to X, and the trailing edge to be scheduled from X. With on-event pulse style, the schedule to X
replaces the leading edge schedule. With on-detect pulse style, the schedule to X is made immediately upon

detection of the negative pulse.

showcancelled behavior can be enabled in two different ways. First, it may be enabled globally for all mod-

ule path outputs through use of the showcancelled and noshowcancelled invocation options. Second, it may

be enabled locally through use of specify block showcancelled declarations.

The syntax for showcancelled declarations is shown in Syntax 14-9.

Syntax 14-9—Syntax for showcancelled declarations

It is an error if a module path output appears in a showcancelled declaration after it has already appeared in

a module path declaration. The showcancelled invocation options take precedence over the showcancelled

specify block declarations.

The showcancelled behavior is illustrated in Figure 43, which shows a narrow pulse presented at the input to

a buffer with unequal rise/fall delays. This causes the trailing edge of the pulse to be scheduled earlier than

leading edge. The leading edge of the input pulse schedules an output event 6 units later at the point marked

by A. The pulse trailing edge occurs one time unit later, which schedules an output event 4 units later

marked by point B. This second schedule on the output is for a time prior to the already existing schedule for

the leading output pulse edge.

pulsestyle_declaration ::= (From Annex A- A.7.1)
pulsestyle_onevent list_of_path_outputs ;

| pulsestyle_ondetect list_of_path_outputs ;

showcancelled_declaration ::= (From Annex A- A.7.1)
showcancelled list_of_path_outputs ;

| noshowcancelled list_of_path_outputs ;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 233
This is an unapproved IEEE Standards Draft, subject to change.

The output waveform is shown for three different operating modes. The first waveform shows the default

behavior with showcancelled behavior not enabled and with the default on-event style. The second wave-

form shows showcancelled behavior in conjunction with on-event. The last waveform shows showcancelled

behavior in conjunction with on-detect.

Figure 43—Current event cancellation problem and correction

This same situation can also arise with nearly simultaneous input transitions, which is defined as two inputs

transitioning closer together in time than the difference in their respective delays to the output. Figure 44
shows waveforms for a 2-input NAND gate where initially A is high and B is low. B transitions 0->1 at time

10, causing a 1->0 output schedule at time 24. A transitions 1->0 at time 12, causing a 0->1 schedule at

time 22. Arrows mark the output transitions caused by the transitions on inputs A and B.

The output waveform is shown for three different operating modes. The first waveform shows the default

behavior with showcancelled behavior not enabled and with the default on-event style. The second shows

showcancelled behavior in conjunction with on-event. The third shows showcancelled behavior in conjunc-

tion with on-detect.

in

(in=>out)=(4,6);

outin

out (default)

15 1610 11

B A

out (showcancelled with on-event)

out (showcancelled with on-detect)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

234 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Figure 44—NAND gate with nearly simultaneous input switching
 where one event is scheduled prior to another that has not matured

One drawback of the on-event style with showcancelled behavior is that as the output pulse edges draw

closer together, the duration of the resulting X state becomes smaller. Figure 45 illustrates how the on-detect

style solves this problem.

out (default)

24

.

10 2212
A

B

(A=>Q) = 10;
(B=>Q) = 14;

out (showcancelled with on-event)

out (showcancelled with on-detect)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 235
This is an unapproved IEEE Standards Draft, subject to change.

Figure 45—Input NAND gate with nearly simultaneous input switching
 with output event scheduled at same time.

Examples:

Example 1:

specify
(a=>out)=(2,3);
(b =>out)=(3,4);

endspecify

Since no pulse style or showcancelled declarations appear within the specify block, the compiler applies the

default modes of on-event and noshowcancelled.

Example 2:

specify
(a=>out)=(2,3);
showcancelled out;
(b =>out)=(3,4);

endspecify

out (default)

10

A

B

(A=>Q) = 10
(B=>Q) = 14

14 24

out (showcancelled with on-event)

out (showcancelled with on-detect)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

236 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

This showcancelled declaration is in error because it follows use of out in a module path declaration. It

would be contradictory for out to have noshowcancelled behavior from input a, but showcancelled behav-

ior from input b.

Example 2—Both these specify blocks produce the same result. Outputs out and out_b are both declared

showcancelled and on_detect.

specify
showcancelled out;
pulsestyle_ondetect out;
(a =>out)=(2,3);
(a=>out)=(4,5);
showcancelled out_b;
pulsestyle_ondetect out_b;
(b=>out_b)=(5,6);
(b=>out_b)=(3,4);

endspecify

specify
showcancelled out,out_b;
pulsestyle_ondetect out,out_b;
(a =>out)=(2,3);
(b=>out)=(3,4);
(a =>out_b)=(3,4);
(b=>out_b)=(5,6);

endspecify

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 237
This is an unapproved IEEE Standards Draft, subject to change.

15. Timing checks

This section describes how timing checks are used in specify blocks to determine if signals obey the timing

constraints.

15.1 Overview

Timing checks can be placed in specify blocks to verify the timing performance of a design by making sure

critical events occur within given time limits. The syntax for system timing checks is given in Syntax 15-1.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

238 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 15-1—Syntax for system timing checks

system_timing_check ::= (From Annex A - A.7.5.1)
$setup_timing_check

| $hold_timing_check

| $setuphold_timing_check

| $recovery_timing_check

| $removal_timing_check

| $recrem_timing_check

| $skew_timing_check

| $timeskew_timing_check

| $fullskew_timing_check

| $period_timing_check

| $width_timing_check

| $nochange_timing_check

$setup_timing_check ::=

$setup (data_event , reference_event , timing_check_limit [, [notify_reg]]) ;
$hold_timing_check ::=

$hold (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;
$setuphold_timing_check ::=

$setuphold (reference_event , data_event , timing_check_limit , timing_check_limit

[, [notify_reg] [, [stamptime_condition] [, [checktime_condition]

[, [delayed_reference] [, [delayed_data]]]]]]) ;
$recovery_timing_check ::=

$recovery (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;
$removal_timing_check ::=

$removal (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;
$recrem_timing_check ::=

$recrem (reference_event , data_event , timing_check_limit , timing_check_limit

[, [notify_reg] [, [stamptime_condition] [, [checktime_condition]

[, [delayed_reference] [, [delayed_data]]]]]]) ;
$skew_timing_check ::=

$skew (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;
$timeskew_timing_check ::=

$timeskew (reference_event , data_event , timing_check_limit

[, [notify_reg] [, [event_based_flag] [, [remain_active_flag]]]]) ;
$fullskew_timing_check ::=

$fullskew (reference_event , data_event , timing_check_limit , timing_check_limit

[, [notify_reg] [, [event_based_flag] [, [remain_active_flag]]]]) ;
$period_timing_check ::=

$period (controlled_reference_event , timing_check_limit [, [notify_reg]]) ;
$width_timing_check ::=

$width (controlled_reference_event , timing_check_limit ,
threshold [, [notify_reg]]) ;

$nochange_timing_check ::=

$nochange (reference_event , data_event , start_edge_offset ,
end_edge_offset [, [notify_reg]]) ;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 239
This is an unapproved IEEE Standards Draft, subject to change.

The syntax for check time conditions and timing check events is given in Syntax 15-2.

Syntax 15-2—Syntax for check time conditions and timing check events

checktime_condition ::= (From Annex A - A.7.5.2)
mintypmax_expression

controlled_reference_event ::=

controlled_timing_check_event

data_event ::=

timing_check_event

delayed_data ::=

terminal_identifier

| terminal_identifier [constant_mintypmax_expression]
delayed_reference ::=

terminal_identifier

| terminal_identifier [constant_mintypmax_expression]
end_edge_offset ::= mintypmax_expression

event_based_flag ::= constant_expression

notify_reg ::= variable_identifier

reference_event ::= timing_check_event

remain_active_flag ::= constant_mintypmax_expression

stamptime_condition ::= mintypmax_expression

start_edge_offset ::= mintypmax_expression

threshold ::=constant_expression

timing_check_limit ::= expression

timing_check_event ::= (From Annex A - A.7.5.3)
[timing_check_event_control] specify_terminal_descriptor [&&& timing_check_condition]

controlled_timing_check_event ::=

timing_check_event_control specify_terminal_descriptor [&&& timing_check_condition]

timing_check_event_control ::= posedge | negedge | edge_control_specifier

specify_terminal_descriptor ::=

specify_input_terminal_descriptor

| specify_output_terminal_descriptor

edge_control_specifier ::= edge [edge_descriptor { , edge_descriptor }]
edge_descriptora ::= 01 | 10 | z_or_x zero_or_one | zero_or_one z_or_x

zero_or_one ::= 0 | 1
z_or_x ::= x | X | z | Z
timing_check_condition ::=

 scalar_timing_check_condition

 | (scalar_timing_check_condition)
scalar_timing_check_condition ::=

 expression

 | ~ expression

 | expression == scalar_constant

 | expression === scalar_constant

 | expression != scalar_constant

 | expression !== scalar_constant

scalar_constant ::= 1'b0 | 1'b1 | 1'B0 | 1'B1 | 'b0 | 'b1 | 'B0 | 'B1 | 1 | 0

aEmbedded spaces are illegal.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

240 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

For ease of presentation, the timing checks are divided into two groups. The first group of timing checks are

described in terms of stability time windows:

$setup $hold $setuphold
$recovery $removal $recrem

The timing checks in the second group check clock and control signals, and are described in terms of the dif-

ference in time between two events (the $nochange check involves three events):

$skew $timeskew $fullskew
$width $period $nochange

Although they begin with a $, timing checks are not system tasks. The leading $ is present because of histor-

ical reasons, and timing checks shall not be confused with system tasks. In particular, no system task can

appear in a specify block, and no timing check can appear in procedural code.

Some timing checks can accept negative limit values. This topic is discussed in detail in 15.8.

All timing checks have both a reference event and a data event, and boolean conditions can be associated

with each. Some of the checks have two signal arguments, one of which is the reference event and the other

the data event. Other checks have only one signal argument, and the reference and data events are derived

from it. Reference events and data events shall only be detected by timing checks when their associated con-

ditions are true. See 15.6 for more information about conditions in timing checks.

Timing check evaluation is based upon the times of two events, called the timestamp event and the

timecheck event. A transition on the timestamp event signal causes the simulator to record (stamp) the time

of transition for future use in evaluating the timing check. A transition on the timecheck event signal causes

the simulator to actually evaluate the timing check to determine whether a violation has taken place.

For some checks the reference event is always the timestamp event, while the data event is always the

timecheck event, while for other checks the reverse is true. And for yet other checks the decision as to which

is the timestamp and which the timecheck event is based upon factors to be discussed later in greater detail.

Every timing check can include an optional notifier which toggles whenever the timing check detects a vio-

lation. The model can use the notifier to make behavior a function of timing check violations. Notifiers are

discussed in greater detail in 15.5.

Like expressions for module path delays, timing check limit values are constant expressions which can

include specparams.

15.2 Timing checks using a stability window

These timing checks are discussed in this section:

$setup $hold $setuphold
$recovery $removal $recrem

These checks accept two signals, the reference event and the data event, and define a time window with

respect to one signal while checking the time of transition of the other signal with respect to the window. In

general they all perform the following steps:

a) Define a time window with respect to the reference signal using the specified limit or limits;

b) Check the time of transition of the data signal with respect to the time window;

c) Report a timing violation if the data signal transitions within the time window.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 241
This is an unapproved IEEE Standards Draft, subject to change.

15.2.1 $setup

The $setup timing check syntax is shown in Syntax 15-3.

Syntax 15-3—Syntax for $setup

Table 49 defines the $setup timing check.

The data event is usually a data signal, while the reference event is usually a clock signal.

The endpoints of the time window are determined as follows:

(beginning of time window) = (timecheck time) - limit
(end of time window) = (timecheck time)

The $setup timing check reports a timing violation in the following case:

(beginning of time window) < (timestamp time) < (end of time window)

The endpoints of the time window are not part of the violation region. When the limit is zero, the $setup
check shall never issue a violation.

 $setup_timing_check ::= (From Annex A - A.7.5.1)
$setup (data_event , reference_event , timing_check_limit [, [notify_reg]]) ;

data_event ::= (From Annex A - A.7.5.2)
timing_check_event

notify_reg ::=

variable_identifier

reference_event ::=

timing_check_event

timing_check_limit ::=

expression

Table 49—$setup arguments

Argument Description

data_event Timestamp event

reference_event Timecheck event

limit Non-negative constant expression

notifier (optional) Reg

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

242 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

15.2.2 $hold

The $hold timing check syntax is shown in Syntax 15-4.

Syntax 15-4—Syntax for $hold

Table 50 defines the $hold timing check.

The data event is usually a data signal, while the reference event is usually a clock signal.

The endpoints of the time window are determined as follows:

(beginning of time window) = (timestamp time)
(end of time window) = (timestamp time) + limit

The $hold timing check reports a timing violation in the following case:

(beginning of time window) <= (timecheck time) < (end of time window)

Only the end of the time window is not part of the violation region. When the limit is zero, the $hold check

shall never issue a violation.

$hold_timing_check ::= (From Annex A - A.7.5.1)
$hold (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;

data_event ::= (From Annex A - A.7.5.2)
timing_check_event

notify_reg ::=

variable_identifier

reference_event ::=

timing_check_event

timing_check_limit ::=

expression

Table 50—$hold arguments

Argument Description

reference_event Timestamp event

data_event Timecheck event

limit Non-negative constant expression

notifier (optional) Reg

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 243
This is an unapproved IEEE Standards Draft, subject to change.

15.2.3 $setuphold

The $setuphold timing check syntax is shown in Syntax 15-5.

Syntax 15-5—Syntax for $setuphold

Table 51 defines the $setuphold timing check.

$setuphold_timing_check ::= (From Annex A - A.7.5.1)
$setuphold (reference_event , data_event , timing_check_limit , timing_check_limit

[, [notify_reg] [, [stamptime_condition] [, [checktime_condition]

[, [delayed_reference] [, [delayed_data]]]]]]) ;
checktime_condition ::= (From Annex A - A.7.5.2)

mintypmax_expression

data_event ::=

timing_check_event

delayed_data ::=

terminal_identifier

| terminal_identifier [constant_mintypmax_expression]
delayed_reference ::=

terminal_identifier

| terminal_identifier [constant_mintypmax_expression]
notify_reg ::=

variable_identifier

reference_event ::=

timing_check_event

stamptime_condition ::=

mintypmax_expression

timing_check_limit ::=

expression

Table 51—$setuphold arguments

Argument Description

reference_event Timecheck or timestamp event when setup limit is positive

Timestamp event when setup limit is negative

data_event Timecheck or timestamp event when hold limit is positive

Timestamp event when hold limit is negative

setup_limit Constant expression

hold_limit Constant expression

notifier (optional) Reg

timestamp_cond (optional) Timestamp condition for negative timing checks

timecheck_cond (optional) Timecheck condition for negative timing checks

delayed_reference (optional) Delayed reference signal for negative timing checks

delayed_data (optional) Delayed data signal for negative timing checks

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

244 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The $setuphold timing check can accept negative limit values. This is discussed in greater detail in 15.8.

The data event is usually a data signal, while the reference event is usually a clock signal.

When both the setup limit and the hold limit are positive, either the reference event or the data event can be

the timecheck event. It shall depend upon which occurs first in the simulation.

When either the setup limit or the hold limit is negative the restriction becomes:

setup_limit + hold_limit > (simulation unit of precision)

The $setuphold timing check combines the functionality of the $setup and $hold timing checks into a sin-

gle timing check. Therefore, the following invocation:

$setuphold(posedge clk, data, tSU, tHLD);

is equivalent in functionality to the following, if tSU and tHLD are not negative:

$setup(data, posedge clk, tSU);
$hold(posedge clk, data, tHLD);

When both setup and hold limits are positive and the data event occurs first, the endpoints of the time win-

dow are determined as follows:

(beginning of time window) = (timecheck time) - limit
(end of time window) = (timecheck time)

And the $setuphold timing check reports a timing violation in the following case:

(beginning of time window) < (timecheck time) <= (end of time window)

Only the beginning of the time window is not part of the violation region. The $setuphold check shall report

a timing violation when the reference and data events occur simultaneously.

When both setup and hold limits are positive and the data event occurs second, the endpoints of the time

window are determined as follows:

beginning of time window) = (timestamp time)
(end of time window) = (timestamp time) + limit

And the $setuphold timing check reports a timing violation in the following case:

(beginning of time window) <= (timecheck time) < (end of time window)

Only the end of the time window is not part of the violation region. The $setuphold check shall report a tim-

ing violation when the reference and data events occur simultaneously.

When both limits are zero, the $setuphold check shall never issue a violation.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 245
This is an unapproved IEEE Standards Draft, subject to change.

15.2.4 $removal

The $removal timing check syntax is shown in Syntax 15-6.

Syntax 15-6—Syntax for $removal

Table 52 defines the $removal timing check.

The reference event is usually a control signal like clear, reset or set, while the data event is usually a clock

signal.

The endpoints of the time window are determined as follows:

(beginning of time window) = (timecheck time) - limit
(end of time window) = (timecheck time)

The $removal timing check reports a timing violation in the following case:

(beginning of time window) < (timestamp time) < (end of time window)

The endpoints of the time window are not part of the violation region. When the limit is zero, the $removal
check shall never issue a violation.

$removal_timing_check ::= (From Annex A - A.7.5.1)
$removal (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;

data_event ::= (From Annex A - A.7.5.2)
timing_check_event

notify_reg ::=

variable_identifier

reference_event ::=

timing_check_event

timing_check_limit ::=

expression

Table 52—$removal arguments

Argument Description

reference_event Timestamp event

data_event Timecheck event

limit Non-negative constant expression

notifier (optional) Reg

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

246 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

15.2.5 $recovery

The $recovery timing check syntax is shown in Syntax 15-7.

Syntax 15-7—Syntax for $recovery

Table 53 defines the $recovery timing check.

The reference event is usually a control signal like clear, reset or set, while the data event is usually a clock

signal.

The endpoints of the time window are determined as follows:

(beginning of time window) = (timestamp time)
(end of time window) = (timestamp time) + limit

The $recovery timing check reports a timing violation in the following case:

(beginning of time window) <= (timecheck time) < (end of time window)

Only the end of the time window is not part of the violation region. When the limit is zero, the $recovery
check shall never issue a violation.

$recovery_timing_check ::= (From Annex A - A.7.5.1)
$recovery (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;

data_event ::= (From Annex A - A.7.5.2)
timing_check_event

notify_reg ::=

variable_identifier

reference_event ::=

timing_check_event

timing_check_limit ::=

expression

Table 53—$recovery arguments

Argument Description

reference_event Timestamp event

data_event Timecheck event

limit Non-negative constant expression

notifier (optional) Reg

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 247
This is an unapproved IEEE Standards Draft, subject to change.

15.2.6 $recrem

The $recrem timing check syntax is shown in Syntax 15-8.

Syntax 15-8—Syntax for $recrem

Table 54 defines the $recrem timing check.

$recrem_timing_check ::= (From Annex A - A.7.5.1)
$recrem (reference_event , data_event , timing_check_limit , timing_check_limit

[, [notify_reg] [, [stamptime_condition] [, [checktime_condition]

[, [delayed_reference] [, [delayed_data]]]]]]) ;
checktime_condition ::= (From Annex A - A.7.5.2)

mintypmax_expression

data_event ::=

timing_check_event

delayed_data ::=

terminal_identifier

| terminal_identifier [constant_mintypmax_expression]
delayed_reference ::=

terminal_identifier

| terminal_identifier [constant_mintypmax_expression]
notify_reg ::=

variable_identifier

reference_event ::=

timing_check_event

stamptime_condition ::=

mintypmax_expression

timing_check_limit ::=

expression

Table 54—$recrem arguments

Argument Description

reference_event Timecheck or timestamp event when removal limit is positive

Timestamp event when removal limit is negative

data_event Timecheck or timestamp event when recovery limit is positive

Timestamp event when recovery limit is negative

recovery_limit Constant expression

removal_limit Constant expression

notifier (optional) Reg

timestamp_cond (optional) Timestamp condition for negative timing checks

timecheck_cond (optional) Timecheck condition for negative timing checks

delayed_reference (optional) Delayed reference signal for negative timing checks

delayed_data (optional) Delayed data signal for negative timing checks

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

248 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The $recrem timing check can accept negative limit values. This is discussed in greater detail in 15.8.

When both the removal limit and the recovery limit are positive, either the reference event or the data event

can be the timecheck event. It shall depend upon which occurs first in the simulation.

When either the removal limit or the recovery limit is negative the restriction becomes:

removal_limit + recovery_limit > (simulation unit of precision)

The $recrem timing check combines the functionality of the $removal and $recovery timing checks into a

single timing check. Therefore, the following invocation:

$recrem(posedge clear, posedge clk, tREC, tREM);

is equivalent in functionality to the following, if tREC and tREM are not negative:

$removal(posedge clear, posedge clk, tREM);
$recovery(posedge clear, posedge clk, tREC);

When both removal and recovery limits are positive and the data event occurs first, the endpoints of the time

window are determined as follows:

(beginning of time window) = (timecheck time) - limit
(end of time window) = (timecheck time)

And the $recrem timing check reports a timing violation in the following case:

(beginning of time window) < (timecheck time) <= (end of time window)

Only the beginning of the time window is not part of the violation region. The $recrem check shall report a

timing violation when the reference and data events occur simultaneously.

When both removal and recovery limits are positive and the data event occurs second, the endpoints of the

time window are determined as follows:

(beginning of time window) = (timestamp time)
(end of time window) = (timestamp time) + limit

And the $recrem timing check reports a timing violation in the following case:

(beginning of time window) <= (timecheck time) < (end of time window)

Only the end of the time window is not part of the violation region. The $recrem check shall report a timing

violation when the reference and data events occur simultaneously.

When both limits are zero, the $recrem check shall never issue a violation.

15.3 Timing checks for clock and control signals

The following timing checks are discussed in this section:

$skew $timeskew $fullskew $period $width $nochange

These checks accept one or two signals and verify transitions on them are never separated by more than the

limit. For those checks specifying only one signal, the reference event and data event are derived from that

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 249
This is an unapproved IEEE Standards Draft, subject to change.

one signal. In general these checks all perform the following steps:

a) Determine the elapsed time between two events;

b) Compare the elapsed time to the specified limit;

c) Report a timing violation if the elapsed time violates the limit.

The skew checks have two different violation detection mechanisms, event-based and timer-based. Event-

based skew checking is performed only when a signal transitions, while timer-based skew checking takes

place as soon as the simulation time equal to the skew limit has elapsed.

The $nochange check involves three events rather than two.

15.3.1 $skew

The $skew timing check syntax is shown in Syntax 15-9.

Syntax 15-9—Syntax for $skew

Table 55 defines the $skew timing check.

The $skew timing check reports a violation in the following case:

(timecheck time) - (timestamp time) > limit

Simultaneous transitions on the reference and data signals can never cause $skew to report a timing viola-

tion, even when the skew limit value is zero.

$skew_timing_check ::= (From Annex A - A.7.5.1)
$skew (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;

data_event ::= (From Annex A - A.7.5.2)
timing_check_event

notify_reg ::=

variable_identifier

reference_event ::=

timing_check_event

timing_check_limit ::=

expression

Table 55—$skew arguments

Argument Description

reference_event Timestamp event

data_event Timecheck event

limit Non-negative constant expression

notifier (optional) Reg

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

250 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The $skew timing check is event-based; it is evaluated only after a data event. If there is never a data event

(i.e., the data event is infinitely late), the $skew timing check shall never be evaluated, and no timing viola-

tion shall ever be reported. In contrast, the $timeskew and $fullskew checks are timer-based by default, and

they shall be used if violation reports are absolutely required and the data event can be very late or even

absent altogether. These checks are discussed in 15.3.2 and 15.3.3.

$skew shall wait indefinitely for the data event once it has detected a reference event and it shall not report a

timing violation until the data event takes place. A second consecutive reference event shall cancel the old

wait for the data event and begin a new one.

After a reference event, the $skew timing check shall never stop checking data events for a timing violation.

$skew shall report timing violations for all data events occurring beyond the limit after a reference event.

15.3.2 $timeskew

The syntax for $timeskew is shown in Syntax 15-10.

Syntax 15-10—Syntax for $timeskew

Table 56 defines the $timeskew timing check arguments.

$timeskew_timing_check ::= (From Annex A - A.7.5.1)
$timeskew (reference_event , data_event , timing_check_limit

[, [notify_reg] [, [event_based_flag] [, [remain_active_flag]]]]) ;
data_event ::= (From Annex A - A.7.5.2)

timing_check_event

event_based_flag ::=

constant_expression

notify_reg ::=

variable_identifier

reference_event ::=

timing_check_event

remain_active_flag ::=

constant_mintypmax_expression

timing_check_limit ::=

expression

Table 56—$timeskew arguments

Argument Description

reference_event Timestamp event

data_event Timecheck event

limit Non-negative constant expression

notifier (optional) Reg

event_based_flag (optional) Constant expression

remain_active_flag (optional) Constant expression

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 251
This is an unapproved IEEE Standards Draft, subject to change.

The $timeskew timing check reports a violation only in the following cases:

(timecheck time) - (timestamp time) > limit

Simultaneous transitions on the reference and data signals can never cause $timeskew to report a timing vio-

lation, even when the skew limit value is zero.

The default behavior for $timeskew is timer-based. Violations are reported immediately upon an elapse of

time after the reference event equal to the limit, and the check shall become dormant and report no more vio-

lations (even in response to data events) until after the next reference event. This check shall also become

dormant if it detects a reference event when its condition is false.

The $timeskew check's default timer-based behavior can be altered to event-based using the event based

flag. It behaves like the $skew check when both the event based flag and the remain active flag are set. The

$timeskew check behaves like the $skew check when only the event based flag is set, except it becomes dor-

mant after reporting the first violation.

Example:

$timeskew (posedge CP &&& MODE, negedge CPN, 50);

Figure 46—Sample $timeskew

Case 1: Event based flag and remain active flag not set.

After the first reference event on CP at A, a violation is reported at B as soon as 50 time units have passed.

No further violations are reported.

Case 2: Event based flag set, remain active flag not set.

The negative transition on CPN at point C shall cause a timing violation. Subsequent negative transitions at

points D and E do not cause violations. The second reference event at F occurs while MODE is false, turning

the $timeskew check dormant, and no further violations are reported.

Case 3: Event based flag set, remain active flag set.

The first three negative transitions on CPN at points C, D and E shall cause timing violations. The second ref-

erence event at F occurs while MODE is false, turning the $timeskew check dormant, and no further viola-

tions are reported.

Case 4: Event based flag and remain active flag both set.

Every negative edge on CPN is reported as a violation, which is identical to $skew behavior.

MODE

CP

A

50 F

CPN
C D E

B

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

252 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

15.3.3 $fullskew

The syntax for $fullskew is shown in Syntax 15-11.

Syntax 15-11—Syntax for $fullskew

Table 57 defines the $fullskew timing check arguments.

$fullskew is identical to $timeskew except the reference and data events can transition in either order. The

first limit is the maximum time by which the data event can follow the reference event. The second limit is

the maximum time by which the reference event can follow the data event.

The reference event is the timestamp event and the data event is the timecheck event when the reference

event precedes the data event. The data event is the timestamp event and the reference event is the timecheck

event when the data event precedes the reference event.

The $fullskew timing check reports a violation only in the following case, where limit is set to limit1 when

the reference event transitions first, and to limit2 when the data event transitions first:

(timecheck time) - (timestamp time) > limit

$fullskew_timing_check ::= (From Annex A - A.7.5.1)
$fullskew (reference_event , data_event , timing_check_limit , timing_check_limit

[, [notify_reg] [, [event_based_flag] [, [remain_active_flag]]]]) ;
data_event ::= (From Annex A - A.7.5.2)

timing_check_event

event_based_flag ::=

constant_expression

notify_reg ::=

variable_identifier

reference_event ::=

timing_check_event

remain_active_flag ::=

constant_mintypmax_expression

timing_check_limit ::=

expression

Table 57—$fullskew arguments

Argument Description

reference_event Timestamp or timecheck event

data_event Timestamp or timecheck event

limit 1 Non-negative constant expression

limit 2 Non-negative constant expression

notifier (optional) Reg

event_based_flag (optional) Constant expression

remain_active_flag (optional) Constant expression

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 253
This is an unapproved IEEE Standards Draft, subject to change.

Simultaneous transitions on the reference and data signals shall never cause $fullskew to report a timing

violation, even when the skew limit value is zero.

The default behavior for $fullskew is timer-based. Violations shall be reported immediately upon an elapse

of time after the timestamp event equal to the limit. It then becomes dormant and reports no more violations,

even in response to timecheck events, until after the next timestamp event. This check shall also become dor-

mant if it detects a timestamp event when the associated condition is false.

The $fullskew check's default timer-based behavior can be altered to event-based using the event based flag.

It behaves like the $skew check when both the event based flag and the remain active flag are set. The

$timeskew check behaves like the $skew check when only the event based flag is set, except it becomes dor-

mant after it reports the first violation.

Example:

$fullskew (posedge CP &&& MODE, negedge CPN, 50, 70);

Figure 47—Sample $fullskew

Case 1: Event based flag and remain active flag not set.

The transition at A of CP while MODE is true begins a wait for a negative transition on CPN, and a violation

is reported at B as soon as a period of time equal to 50 time units has passed. This resets the check and read-

ies it for the next active transition.

A negative transition on CPN occurs next at C, beginning a wait for a positive transition on CP while MODE
is true. At D a time equal to 70 time units has passed without a positive edge on CP while MODE is true, so a

violation is reported and the check is again reset to await the next active transition.

A transition on CPN at E also results in a timing violation, as does the transition at F, because even though

CP transitions, MODE is no longer true. Transitions at G and H also result in timing violations, but not the

transition at I, because it is followed by a positive transition on CP while MODE is true.

Case 2: Event based flag set, remain active flag not set.

The transition at A of CP while MODE is true begins a wait for a negative transition on CPN, and a violation

is reported at C on CPN because it occurs beyond the 50 time unit limit. This transition at C also begins a

wait of 70 time units for a positive transition on CP while MODE is true. But for transitions on CPN at B

MODE

CP

A

50

B

J

B

70

D
70

C E F G H I

CPN

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

254 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

through H there is no positive transition on CP while MODE is true, and so no timing violations are reported.

The transition at I on CPN begins a wait of 70 time units, and this is satisfied by the positive transition on

CP at J while MODE is true.

Case 3: Event based flag and remain active flag both set.

The transition at A of CP while MODE is true begins a wait for a negative transition on CPN, and a violation

is reported at C on CPN, and it shall also begin a wait for a positive transition on CP while MODE is true. No

such transition on CP ever takes place after CPN transitions C through H, but no violations are reported

because CP never experiences a positive transition while MODE is true. Transition I also reports no violation

because a positive transition at I on CP while MODE is true occurs within the 70 time unit skew limit.

15.3.4 $width

The $width timing check syntax is shown in Syntax 15-12.

Syntax 15-12—Syntax for $width

If the comma before the threshold is present, the comma before the notifier shall also be present, even

though both arguments are optional.

Table 58 defines the $width timing check.

The $width timing check monitors the width of signal pulses by measuring the time from the timestamp

event to the timecheck event. Since a data event is not passed to $width, it is derived from the reference

event, as follows:

data event = reference event signal with opposite edge

$width_timing_check ::= (From Annex A - A.7.5.1)
$width (controlled_reference_event , timing_check_limit ,

threshold [, [notify_reg]]) ;
controlled_reference_event ::= (From Annex A - A.7.5.2)

controlled_timing_check_event

notify_reg ::=

variable_identifier

threshold ::=

constant_expression

timing_check_limit ::=

expression

Table 58—$width arguments

Argument Description

reference_event Timestamp edge triggered event

(data_event - implicit) Timecheck edge triggered event

limit Non-negative constant expression

threshold (optional) Non-negative constant expression

notifier (optional) Reg

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 255
This is an unapproved IEEE Standards Draft, subject to change.

Because of the way the data event is derived for $width, an edge triggered event has to be passed as the ref-

erence event. A compilation error shall occur if the reference event is not an edge specification.

While the $width timing check can be defined in terms of a time window, it is simpler to express it as the

difference between the timecheck and timestamp times. The $width timing check reports a violation in the

following case:

threshold < (timecheck time) - (timestamp time) < limit

The pulse width has to be greater than or equal to limit in order to avoid a timing violation, but no violation

is reported for glitches smaller than the threshold.

The threshold argument shall be included if the notifier argument is required. It is permissible to not specify

both the threshold and notifier arguments, making the default value for the threshold zero (0). If the notifier

is present, a non-null value for the threshold shall also be present. Here is a legal $width check when the

notifier is required and the threshold is not:

$width (posedge clk, 6, 0, ntfr_reg);

The data event and the reference event shall never occur at the same simulation time because these events are

triggered by opposite transitions.

Example:

The following example demonstrates some examples of legal and illegal calls:

15.3.5 $period

The $period timing check syntax is shown in Syntax 15-13.

Syntax 15-13—Syntax for $period

$period_timing_check ::= (From Annex A - A.7.5.1)
$period (controlled_reference_event , timing_check_limit [, [notify_reg]]) ;

controlled_reference_event ::= (From Annex A - A.7.5.2)
controlled_timing_check_event

notify_reg ::=

variable_identifier

timing_check_limit ::=

expression

// Legal Calls
$width (negedge clr, lim);
$width (negedge clr, lim, thresh, notif);
$width (negedge clr, lim, 0, notif);

// Illegal Calls
$width (negedge clr, lim, , notif);
$width (negedge clr, lim, notif);

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

256 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Table 59 defines the $period timing check.

Since the data event is not passed as an argument to $period, it is derived from the reference event, as

follows:

data event = reference event signal with the same edge

Because of the way the data event is derived for $period, an edge triggered event shall be passed as the ref-

erence event. A compilation error shall occur if the reference event is not an edge specification.

While the $period timing check can be defined in terms of a time window, it is simpler to express it as the

difference between the timecheck and timestamp times.The $period timing check reports a violation in the

following case:

(timecheck time) - (timestamp time) < limit

15.3.6 $nochange

The $nochange syntax is shown in Syntax 15-14.

Syntax 15-14—Syntax for $nochange

Table 59—$period arguments

Argument Description

reference_event Timestamp edge triggered event

(data_event - implicit) Timestamp edge triggered event

limit Non-negative constant expression

notifier (optional) Reg

$nochange_timing_check ::= (From Annex A - A.7.5.1)
$nochange (reference_event , data_event , start_edge_offset ,

end_edge_offset [, [notify_reg]]) ;
data_event ::= (From Annex A - A.7.5.2)

timing_check_event

end_edge_offset ::=

mintypmax_expression

notify_reg ::=

variable_identifier

reference_event ::=

timing_check_event

start_edge_offset ::=

mintypmax_expression

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 257
This is an unapproved IEEE Standards Draft, subject to change.

Table 60 defines the $nochange timing check arguments.

The $nochange timing check reports a timing violation if the data event occurs during the specified level of

the control signal (the reference event). The reference event can be specified with the posedge or the

negedge keyword, but the edge control specifiers (see 15.4) can not be used.

The start edge and end edge offsets can expand or shrink the timing violation region, which is defined by the

duration of the reference event signal after the edge. For example, if the reference event is a posedge, then

the duration is the period during which the reference signal is high. A positive offset for start edge extends

the region by starting the timing violation region earlier; a negative offset for start edge shrinks the region by

starting the region later. Similarly, a positive offset for the end edge extends the timing violation region by

ending it later, while a negative offset for the end edge shrinks the region by ending it earlier. If both the off-

sets are zero, the size of the region shall not change.

Unlike other timing checks, $nochange involves three, rather than two, transitions. The leading edge of the

reference event defines the beginning of the time window, while the trailing edge of the reference event

defines the end of the time window. A violation results if the data event occurs anytime within the time win-

dow.

The endpoints of the time window are determined as follows:

(beginning of time window) = (leading reference edge time) -
 start_edge_offset
(end of time window) = (trailing reference edge time) + end_edge_offset

The $nochange timing check reports a timing violation in the following case:

(beginning of time window) < (data event time) < (end of time window)

The endpoints of the time window are not included. The values of start_edge_offset and

end_edge_offset play a significant role in determining which signal, the reference event or the data

event, is the timestamp or timecheck event.

Example:

$nochange(posedge clk, data, 0, 0) ;

In this example, $nochange system task shall report a violation if the data signal changes while clk is

high. It shall not be a violation if posedge clk and a transition on data occur simultaneously.

Table 60—$nochange arguments

Argument Description

reference_event Edge triggered timestamp and/or timecheck event

data_event Timestamp or timecheck event

start_edge_offset Constant expression

end_edge_offset Constant expression

notifier (optional) Reg

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

258 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

15.4 Edge-control specifiers

The edge-control specifiers can be used to control events in timing checks based on specific edge transitions

between 0, 1, and x. Syntax 15-15 shows the syntax for edge-control specifiers.

Syntax 15-15—Syntax for edge control specifier

Edge-control specifiers contain the keyword edge followed by a square bracketed list of from one to six pairs

of edge transitions between 0, 1 and x, as follows:

01 Transition from 0 to 1
0x Transition from 0 to x
10 Transition from 1 to 0
1x Transition from 1 to x
x0 Transition from x to 0
x1 Transition from x to 1

Edge transitions involving z are treated the same way as edge transitions involving x.

The posedge and negedge keywords can be used as a shorthand for certain edge-control specifiers. For

example, the construct:

posedge clr

is equivalent to the following:

edge[01, 0x, x1] clr

Similarly, the construct

negedge clr

is the same as the following:

edge[10, x0, 1x] clr

However, edge-control specifiers offer the flexibility to declare edge transitions other than posedge and

negedge.

edge_control_specifier ::= (From Annex A - A.7.5.3)
edge [edge_descriptor { , edge_descriptor }]

edge_descriptora ::=

01
| 10
| z_or_x zero_or_one

| zero_or_one z_or_x

zero_or_one ::= 0 | 1
z_or_x ::= x | X | z | Z

aEmbedded spaces are illegal.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 259
This is an unapproved IEEE Standards Draft, subject to change.

15.5 Notifiers: user-defined responses to timing violations

Timing check notifiers detect timing check violations behaviorally, and, therefore, take an action as soon as

a violation occurs. Such notifiers can be used to print an informative error message describing the violation

or to propagate an x value at the output of the device which reported the violation.

The notifier is a reg—declared in the module where timing check tasks are invoked—which is passed as the

last argument to a system timing check. Whenever a timing violation occurs, the system task updates the

value of the notifier.

The notifier is an optional argument to all system timing checks and can be omitted from the system task call

without adversely affecting its operation.

Table 61 shows how the notifier values are toggled when timing violations occur.

Examples:

Example 1

Example 2—Consider a more complex example of how to use notifiers in a behavioral model. The following

example uses a notifier to set the D flip-flop output to x when a timing violation occurs in an edge-sensitive

UDP.

Table 61—User-defined responses to timing violations

BEFORE violation AFTER violation

x 0

0 1

1 0

z z

$setup(data, posedge clk, 10, notify_reg) ;
$width(posedge clk, 16, notify_reg) ;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

260 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

primitive posdff_udp(q, clock, data, preset, clear, notifier);
output q; reg q;
input clock, data, preset, clear, notifier;
table
//clock data p c notifier state q
//-------------------------------------

r 0 1 1 ? : ? : 0 ;
r 1 1 1 ? : ? : 1 ;

p 1 ? 1 ? : 1 : 1 ;
p 0 1 ? ? : 0 : 0 ;

n ? ? ? ? : ? : - ;
? * ? ? ? : ? : - ;

? ? 0 1 ? : ? : 1 ;
? ? * 1 ? : 1 : 1 ;

? ? 1 0 ? : ? : 0 ;
? ? 1 * ? : 0 : 0 ;
? ? ? ? * : ? : x ; // At any notifier event

// output x
endtable
endprimitive

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 261
This is an unapproved IEEE Standards Draft, subject to change.

NOTE—This model applies to edge-sensitive UDPs only; for level-sensitive models, an additional UDP for x propaga-
tion has to be generated.

15.5.1 Requirements for accurate simulation

In order to accurately model negative value timing checks:

a) A timing violation shall be triggered if the signal changes in the violation window, exclusive of the

endpoints. Violation windows smaller than two units of simulation precision can not yield timing

violations.

b) The value of the latched data shall be the one which is stable during the violation window, again,

exclusive of the endpoints.

module dff(q, qbar, clock, data, preset, clear);
output q, qbar;
input clock, data, preset, clear;
reg notifier;

and (enable, preset, clear);
not (qbar, ffout);
buf (q, ffout);
posdff_udp (ffout, clock, data, preset, clear, notifier);

specify
// Define timing check specparam values
specparam tSU = 10, tHD = 1, tPW = 25, tWPC = 10, tREC = 5;
// Define module path delay rise and fall min:typ:max values
specparam tPLHc = 4:6:9 , tPHLc = 5:8:11;
specparam tPLHpc = 3:5:6 , tPHLpc = 4:7:9;

// Specify module path delays
(clock *> q,qbar) = (tPLHc, tPHLc);
(preset,clear *> q,qbar) = (tPLHpc, tPHLpc);

// Setup time : data to clock, only when preset and clear are 1
$setup(data, posedge clock &&& enable, tSU, notifier);

// Hold time: clock to data, only when preset and clear are 1
$hold(posedge clock, data &&& enable, tHD, notifier);

// Clock period check
$period(posedge clock, tPW, notifier);
// Pulse width : preset, clear
$width(negedge preset, tWPC, 0, notifier);
$width(negedge clear, tWPC, 0, notifier);

// Recovery time: clear or preset to clock
$recovery(posedge preset, posedge clock, tREC, notifier);
$recovery(posedge clear, posedge clock, tREC, notifier);

endspecify
endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

262 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

To facilitate these modeling requirements, delayed copies of the data and reference signals are generated in

the timing checks, and these are used internally for timing check evaluation at run-time. The setup and hold

times used internally are adjusted so as to shift the violation window and make it overlap the reference sig-

nal.

Delayed data and reference signals can be declared within the timing check so they can be used in the

model's functional implementation to insure accurate simulation. If no delayed signals are declared in the

timing check, and if a negative setup or hold value is present, then implicit delayed signals are created. Since

implicit delayed signals can not be used in defining model behavior, such a model can possibly behave incor-

rectly.

Examples:

Example 1:

$setuphold(posedge CLK, DATA, -10, 20);

Implicit delayed signals shall be created for CLK and DATA, but it shall not be possible to access them. The

$setuphold check shall be properly evaluated, but functional behavior shall not always be accurate. The old

DATA value shall be incorrectly clocked in if DATA transitions between posedge CLK and 10 time units

later.

Example 2:

$setuphold(posedge CLK, DATA1, -10, 20);
$setuphold(posedge CLK, DATA2, -15, 18);

Implicit delayed signals shall be created for CLK, DATA1 and DATA2, one for each. Even though CLK is ref-

erenced in two different timing checks, only one implicit delayed signal is created, and it is used for both

timing checks.

Example 3:

If a given signal has a delayed signal in some timing checks but not in others, the delayed signal shall be

used in both cases:

$setuphold(posedge CLK, DATA1, -10, 20,,,, del_CLK, del_DATA1);
$setuphold(posedge CLK, DATA2, -15, 18);

Explicit delayed signals of del_CLK and del_DATA1 are created for CLK and DATA1, while an implicit

delayed signal is created for DATA2. In other words, CLK has only one delayed signal created for it,

del_CLK, rather than one explicit delayed signal for the first check, and another implicit delayed signal for

the second check.

The delayed versions of the signals, whether implicit or explicit, shall be used in the $setup, $hold, $setup-
hold, $recovery, $removal, $recrem, $width, $period and $nochange timing checks, and these checks

shall have their limits adjusted accordingly. This ensures the notifier shall be toggled at the proper moment.

If the adjusted limit becomes less than or equal to 0, the limit shall be set to 0 and the simulator shall issue a

warning.

The delayed versions of the signals shall not be used for the $skew, $fullskew and $timeskew timing checks

because it can possibly result in the reversal of the order of signal transitions. This causes the notifiers for

these timing checks to toggle at the wrong time relative to the rest of the model, perhaps resulting in transi-

tions to X due to a timing check violation being canceled. This issue shall be addressed in the model, possi-

bly by using separate notifiers for these checks.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 263
This is an unapproved IEEE Standards Draft, subject to change.

It is possible for a set of negative timing check values to be mutually inconsistent and produce no solution

for the delay values of delayed signals. In these situations the simulator shall issue a warning message. The

inconsistency shall be resolved by changing the smallest negative limit value to 0 and recalculating the

delays for the delayed signals, and this shall be repeated until a solution is reached. This procedure shall

always produce a solution because in the worst case all negative limit values become 0, and no delayed sig-

nals are needed.

The delayed timing check signals are only actually delayed when negative limit values are present. If a tim-

ing check signal becomes delayed by more than the propagation delay from that signal to an output, that out-

put shall take longer than its propagation delay to change. It shall instead transition at the same time which

the delayed timing check signal changes. Thus, the output shall behave as if its specify path delay were equal

to the delay applied to the timing check signal. This situation can only arise when unique setup/hold or

removal/recovery times are given for each edge of the data signal.

Example:

(CLK = Q) = 6;
$setuphold (posedge CLK, posedge D, -3, 8, , , , dCLK, dD);
$setuphold (posedge CLK, negedge D, -7, 13, , , , dCLK, dD);

The setup time of -7 (the larger in absolute value of -3 and -7) creates a delay of 7 for dCLK, and so out-

put Q shall not change until 7 time units after a positive edge on CLK, rather than the 6 time units given in

the specify path.

15.5.2 Conditions in negative timing checks

Conditions can be associated with both the reference and data signals by using the &&& operator, but when

either the setup or hold time is negative the conditions need to be paired with reference and data signals in a

more flexible way. This example illustrates why.

This pair of $setup and $hold checks work together to provide the same check as a single $setuphold:

$setup (data, clk&&&cond1, tsetup, ntfr);
$hold (clk, data&&&cond1, thold, ntfr);

clk is the timecheck event for the $setup check, while data is the timecheck event for the $hold check. This

can not be represented in a single $setuphold check, and so additional arguments are provided to make this

possible. These arguments are timestamp_cond and timecheck_cond, and they immediately follow the noti-

fier (see 15.2.3). This $setuphold check is equivalent to the separate $setup and $hold checks shown above:

$setuphold(clk, data, tsetup, thold, ntfr, , cond1);

The timestamp_cond argument is null, while the timecheck_cond argument is cond1.

The timestamp_cond and timecheck_cond arguments are associated with either the reference or data signals

based on which delayed version of these signals occurs first. timestamp_cond is associated with the delayed

signal which transitions first, while timecheck_cond is associated with the delayed signal which transitions

second.

Delayed signals are only created for the reference and data signals, and not for any condition signals associ-

ated with them. Therefore, timestamp_cond and timecheck_cond are not implicitly delayed by the simulator.

Delayed condition signals for the timestamp_cond and timecheck_cond fields can be created by making

them a function of the delayed signals.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

264 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Example:

assign TE_cond_D = (dTE !== 1’b1);
assign TE_cond_TI = (dTE !== 1’b0);
assign DXTI_cond = (dTI !== dD);

specify
$setuphold(posedge CP, D, -10, 20, notifier, ,TE_cond_D, dCP, dD);
$setuphold(posedge CP, TI, 20, -10, notifier, ,TE_cond_TI, dCP, dTI);
$setuphold(posedge CP, TE, -4, 8, notifier, ,DXTI_cond, dCP, dTE);

endspecify

The assign statements create condition signals which are functions of the delayed signals. Creating delayed

signal conditions synchronizes the conditions with the delayed versions of the reference and data signals

used to perform the checks.

The first $setuphold has a negative setup time, and so the timecheck condition TE_cond_D is associated

with data signal D. The second $setuphold has a negative hold time, and so the timecheck condition

TE_cond_TI is associated with reference signals CP. The third $setuphold has a negative setup time, and

so the timecheck condition DXTI_cond is associated with data signal TE.

The violation windows for the example are shown in Figure 48.

Figure 48—Timing check violation windows

These are the delay values calculated for the delayed signals:

dCP 10.01
dD 0.00
dTI 20.02
dTE 2.02

Use of delayed signals in creating the signals for the timestamp_cond and timecheck_cond arguments is not

required, but it is usually closer to actual device behavior.

D

TE

TI
480

CP

508

490

520510

500

504

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 265
This is an unapproved IEEE Standards Draft, subject to change.

15.5.3 Notifiers in negative timing checks

Because the reference and data signals are delayed internally, the detection of the timing violation is also

delayed. Notifier regs in negative timing checks shall be toggled when the timing check detects a timing vio-

lation, which occurs when the delayed signals as measured by the adjusted timing check values are in viola-

tion, not when the undelayed signals at the model inputs as measured by the original timing check values are

in violation.

15.5.4 Option behavior

As already mentioned, the ability of Verilog simulators to handle negative values in $setuphold and $rec-
rem timing checks shall be enabled with an invocation option. It is possible models written to accept nega-

tive timing check values with delayed reference and/or delayed data signals can be run without this

invocation option enabled. In this circumstance the delayed reference and data signals become copies of the

original reference and data signals. The same occurs if an invocation option turning off all timing checks is

used.

15.6 Enabling timing checks with conditioned events

A construct called a conditioned event ties the occurrence of timing checks to the value of a conditioning

signal. Syntax 15-16 shows the syntax for controlled timing check event.

Syntax 15-16—Syntax for controlled timing check event

The comparisons used in the condition can be deterministic, as in ===, !==, ~, or no operation, or nondeter-

ministic, as in == or !=. When comparisons are deterministic, an x value on the conditioning signal shall

not enable the timing check. For nondeterministic comparisons, an x on the conditioning signal shall enable

the timing check.

timing_check_event ::= (From Annex A - A.7.5.3)
[timing_check_event_control] specify_terminal_descriptor [&&& timing_check_condition]

controlled_timing_check_event ::=

timing_check_event_control specify_terminal_descriptor [&&& timing_check_condition]

timing_check_event_control ::=

posedge
| negedge
| edge_control_specifier

specify_terminal_descriptor ::=

specify_input_terminal_descriptor

| specify_output_terminal_descriptor

timing_check_condition ::=

scalar_timing_check_condition

| (scalar_timing_check_condition)
scalar_timing_check_condition ::=

expression

| ~ expression

| expression == scalar_constant

| expression === scalar_constant

| expression != scalar_constant

| expression !== scalar_constant

scalar_constant ::=

1'b0 | 1'b1 | 1'B0 | 1'B1 | 'b0 | 'b1 | 'B0 | 'B1 | 1 | 0

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

266 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The conditioning signal shall be a scalar net; if a vector net or an expression resulting in a multi-bit value is

used, then the least significant bit of the vector net or the expression value is used.

If more than one conditioning signal is required for conditioning timing checks, appropriate logic shall be

combined in a separate signal outside the specify block, which can be used as the conditioning signal.

Examples:

Example 1—To illustrate the difference between conditioned and unconditioned timing check events, con-

sider the following example with unconditioned timing check:

$setup(data, posedge clk, 10);

Here, a setup timing check shall occur every time there is a positive edge on the signal clk.

To trigger the setup check on the positive edge on the signal clk only when the signal clr is high, rewrite

the command as

$setup(data, posedge clk &&& clr, 10) ;

Example 2—This example shows two ways to trigger the same timing check as in example 1 (on the positive

clk edge) only when clr is low. The second method uses the === operator, which makes the comparison

deterministic.

$setup(data, posedge clk &&& (~clr), 10) ;
$setup(data, posedge clk &&& (clr===0), 10);

Example 3—To perform the previous sample setup check on the positive clk edge only when clr and set
are high, add the following statement outside the specify block:

and new_gate(clr_and_set, clr, set);

Then add the condition to the timing check using the signal clr_and_set as follows:

$setup(data, posedge clk &&& clr_and_set, 10);

15.7 Vector signals in timing checks

Either or both signals in a timing check can be a vector. This shall be interpreted as a single timing check

where the transition of one or more bits of a vector is considered a single transition of that vector.

Example:

module DFF (Q, CLK, DAT);
input CLK;
input [7:0] DAT;
output [7:0] Q;
always @(posedge clk)
Q = DAT;
specify
$setup (DAT, posedge CLK, 10);
endspecify
endmodule

If DAT transitions from 'b00101110 to 'b01010011 at time 100, and CLK transitions from 0 to 1 at

time 105, then the $setup timing check shall still only report a single timing violation.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 267
This is an unapproved IEEE Standards Draft, subject to change.

Simulators can provide an option causing vectors in timing checks to result in the creation of multiple sin-

gle-bit timing checks. For timing checks with only a single signal, such as $period or $width, a vector of

width N results in N unique timing checks. For timing checks with two signals, such as $setup, $hold, $set-
uphold, $skew, $timeskew, $fullskew, $recovery, $removal, $recrem and $nochange, where M and N are

the widths of the signals, the result is M*N unique timing checks. If there is a notifier, all the timing checks

trigger that notifier.

With such an option enabled, the above example yields six timing violation because six bits of DAT
transitioned.

15.8 Negative timing checks

Both the $setuphold and $recrem timing checks can accept negative values when the negative timing check

option is enabled. The behavior of these two timing checks is identical with respect to negative values. The

descriptions in this section are for the $setuphold timing check, but apply equally to the $recrem timing

check.

The setup and hold timing check values define a timing violation window with respect to the reference signal

edge during which the data shall remain constant. Any change of the data during the specified window

causes a timing violation. The timing violation is reported and, through the notifier reg, other actions can

take place in the model, such as forcing the output of a flip-flop to X when it detects a timing violation.

A positive value for both setup and hold times implies this violation window straddles the reference signal

shown in Figure 49.

Figure 49—Data constraint interval, positive setup/hold

A negative hold or setup time means the violation window is shifted to either before or after the reference

edge. This can happen in a real device because of disparate internal device delays between the internal clock

and data signal paths. These internal device delays are illustrated in Figure 50 showing how significant dif-

ferences in these delays can cause negative setup or hold values.

clock

data

..........Setup time (+)

..........Hold Time (+)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

268 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Figure 50—Data constraint interval, negative setup/hold

D1

D2

Seq.
Elem.

data

clock

output

ASIC Cell

clock

data

..........Setup time (+)

..........Hold Time (-)

Negative Setup time (D2>D1)

clock

data

..........Setup time (-)

..........Hold Time (+)

Negative Hold time (D1>D2)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 269
This is an unapproved IEEE Standards Draft, subject to change.

16. Backannotation using the Standard Delay Format (SDF)

SDF files contain timing values for specify path delays, specparam values, timing check constraints, and

interconnect delays. SDF files can also contain other information in addition to simulation timing, but these

need not concern Verilog simulation. The timing values in SDF files usually come from ASIC delay calcula-

tion tools that take advantage of connectivity, technology, and layout geometry information.

Verilog backannotation is the process by which timing values from the SDF file update specify path delays,

specparam values, timing constraint values, and interconnect delays.

All this information is covered further in IEEE Std 1497-1999 [B2].

16.1 The SDF annotator

The term SDF Annotator refers to any tool capable of backannotating SDF data to a Verilog simulator. It

shall report a warning for any data it is unable to annotate.

An SDF file can contain many constructs which are not related to specify path delays, specparam values,

timing check constraint values, or interconnect delays. An example is any construct in the TIMINGENV sec-

tion of the SDF file. All constructs unrelated to Verilog timing shall be ignored without any warnings issued.

Any Verilog timing value for which the SDF file does not provide a value shall not be modified during the

backannotation process, and its pre-backannotation value shall be unchanged.

16.2 Mapping of SDF constructs to Verilog

SDF timing values appear within a CELL declaration, which can contain one or more of DELAY, TIM-
INGCHECK and LABEL sections. The DELAY section contains propagation delay values for specify paths

and interconnect delays. The TIMINGCHECK section contains timing check constraint values. The LABEL
section contains new values for specparams. Backannotation into Verilog is done by matching SDF con-

structs to the corresponding Verilog declarations, then replacing the existing Verilog timing values with

those from the SDF file.

16.2.1 Mapping of SDF delay constructs to Verilog declarations

When annotating DELAY constructs that are not interconnect delays (covered in 16.2.3), the SDF annotator

looks for specify paths where the names and conditions match. When annotating TIMINGCHECK con-

structs, the SDF annotator looks for timing checks of the same type where the names and conditions match.

Table 62 shows which Verilog structures can be annotated by each SDF construct in the DELAY section.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

270 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

In this example the source SDF signal sel matches the source Verilog signal, and the destination SDF sig-

nal zout also matches the destination Verilog signal, and so the rise/fall times of 1.3 and 1.7 are

annotated to the specify path.

SDF file:

(IOPATH sel zout (1.3) (1.7))

Verilog specify path:

(sel => zout) = 0;

A conditional IOPATH delay between two ports shall annotate only to Verilog specify paths between those

same two ports with the same condition. In this example the rise/fall times of 1.3 and 1.7 are annotated

only to the second specify path.

SDF file:

(COND mode (IOPATH sel zout (1.3) (1.7)))

Verilog specify paths:

if (!mode) (sel => zout) = 0;
if (mode) (sel => zout) = 0;

A non-conditional IOPATH delay between two ports shall annotate to all Verilog specify paths between

those same two ports. In this example the rise/fall times of 1.3 and 1.7 are annotated to both specify

paths.

Table 62—Mapping of SDF delay constructs to Verilog declarations

SDF Construct Verilog annotated structure

(PATHPULSE... Conditional and non-conditional specify path pulse limits

(PATHPULSEPERCENT... Conditional and non-conditional specify path pulse limits

(IOPATH... Conditional and non-conditional specify path delays/pulse limits

(IOPATH (RETAIN... Conditional and non-conditional specify path delays/pulse limits,
RETAIN ignored without warning

(COND (IOPATH... Conditional specify path delays/pulse limits

(COND (IOPATH (RETAIN... Conditional specify path delays/pulse limits, RETAIN ignored without
warning

(CONDELSE (IOPATH... ifnone

(CONDELSE (IOPATH (RETAIN... ifnone, RETAIN ignored without warning

(DEVICE... All specify paths to module outputs. If no specify paths, all primitives
driving module outputs.

(DEVICE port_instance... If port_instance is a module instance, all specify paths to module
outputs. If no specify paths, all primitives driving module outputs. If
port_instance is a module instance output, all specify paths to that
module output. If no specify path, all primitives driving that module
output.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 271
This is an unapproved IEEE Standards Draft, subject to change.

SDF file:

(IOPATH sel zout (1.3) (1.7))

Verilog specify paths:

if (!mode) (sel => zout) = 0;
if (mode) (sel => zout) = 0;

16.2.2 Mapping of SDF timing check constructs to Verilog

Table 63 shows which Verilog timing checks are annotated to by each type of SDF timing check. v1 is the

first value of a timing check, v2 is the second value, while x indicates no value is annotated.

The reference and data signals of timing checks can have logical condition expressions and edges associated

with them. An SDF timing check with no conditions or edges on any of its signals shall match all corre-

sponding Verilog timing checks regardless of whether conditions are present or not. In this example the SDF

timing check shall annotate to all the Verilog timing checks:

SDF file:

(SETUPHOLD data clk (3) (4))

Verilog timing checks:

$setuphold (posedge clk&&& mode, data, 1, 1, ntfr);
$setuphold (negedge clk&&&!mode, data, 1, 1, ntfr);

Table 63—Mapping of SDF timing check constructs to Verilog

SDF Timing Check Annotated Verilog Timing checks

(SETUP v1... $setup(v1), $setuphold(v1,x)

(HOLD v1... $hold(v1), $setuphold(x,v1)

(SETUPHOLD v1 v2... $setup(v1), $hold(v2), $setuphold(v1,v2)

(RECOVERY v1... $recovery(v1), $recrem(v1,x)

(REMOVAL v1... $removal(v1), $recrem(x,v1)

(RECREM v1 v2... $recovery(v1), $removal(v2), $recrem(v1,v2)

(SKEW v1... $skew(v1)

(TIMESKEW v1...a

aNot part of current SDF standard

$timeskew(v1)

(FULLSKEW v1 v2... a $fullskew(v1,v2)

(WIDTH v1... $width(v1,x)

(PERIOD v1... $period(v1)

(NOCHANGE v1 v2... $nochange(v1,v2)b

bNot usually implemented in Verilog simulators

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

272 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

When conditions and/or edges are associated with the signals in an SDF timing check, then they shall match

those in any corresponding Verilog timing check before annotation shall happen. In this example the SDF

timing check shall annotate to the first Verilog timing check, but not the second:

SDF file:

(SETUPHOLD data (posedge clk) (3) (4))

Verilog timing checks:

$setuphold (posedge clk&&& mode, data, 1, 1, ntfr); // Annotated

$setuphold (negedge clk&&&!mode, data, 1, 1, ntfr); // Not annotated

Here, the SDF timing check shall not annotate to any of the Verilog timing checks:

SDF file:

(SETUPHOLD data (COND !mode (posedge clk)) (3) (4))

Verilog timing checks:

$setuphold (posedge clk&&& mode, data, 1, 1, ntfr); // Not annotated

$setuphold (negedge clk&&&!mode, data, 1, 1, ntfr); // Not annotated

16.2.3 SDF annotation of specparams

The SDF LABEL construct annotates to specparams. Any expression containing one or more specparams is

reevaluated when annotated to from an SDF file.

This example shows SDF LABEL constructs annotating to specparams in a Verilog module. The specparams

are used in procedural delays to control when the clock transitions. The SDF LABEL construct annotates the

values of dhigh and dlow, thereby setting the period and duty cycle of the clock.

SDF file:

(LABEL
(ABSOLUTE

(dhigh 60)
(dlow 40)))

Verilog file:

module clock(clk);
output clk;
reg clk;
specparam dhigh=0, dlow=0;
initial clk = 0;
always

begin
#dhigh clk = 1; // Clock remains low for time dlow

// before transitioning to 1
#dlow clk = 0; // Clock remains high for time dhigh

// before transitioning to 0
end;

endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 273
This is an unapproved IEEE Standards Draft, subject to change.

This example shows a specparam in an expression of a specify path. The SDF LABEL construct can be used

to change the value of the specparam and cause reevaluation of the expression:

specparam cap = 0;
...
specify

(A => Z) = 1.4 * cap + 0.7;
endspecify

16.2.4 SDF annotation of interconnect delays

SDF interconnect delay annotation differs from annotation of other constructs described above in that there

exists no corresponding Verilog declaration to which to annotate. In Verilog simulation, interconnect delays

are an abstraction that represents the signal propagation delay from an output or inout module port to an

input or inout module port. The INTERCONNECT construct includes a source, a load, and delay values,

while the PORT and NETDELAY constructs include only a load and delay values. Interconnect delays can

only be annotated between module ports, never between primitive pins. Table 64 shows how the SDF inter-

connect constructs in the DELAY section are annotated:

Interconnect delays can be annotated to both single source and multi-source nets.

When annotating a PORT construct, the SDF annotator shall search for the port and if it exists shall annotate

an interconnect delay to that port which shall represent the delay from all sources on the net to that port.

When annotating a NETDELAY construct, the SDF annotator shall check to see if it is annotating to a port or

a net. If it is a port then the SDF annotator shall annotate an interconnect delay to that port. If it is a net then

it shall annotate an interconnect delay to all load ports connected to that net. If the port or net has more than

one source then the delay shall represent the delay from all sources. NETDELAY delays can only be anno-

tated to input or inout module ports, or to nets.

In the case of multi-source nets, unique delays can be annotated between each source/load pair using the

INTERCONNECT construct. When annotating this construct, the SDF annotator shall find the source port

and the load port, and if both exist it shall annotate an interconnect delay between the two. If the source port

is not found, or if the source port and the load port are not actually on the same net, then a warning message

is issued, but the delay to the load port is annotated anyway. If this happens for a load port that is part of a

multi-source net, then the delay is treated as if it were the delay from all source ports, which is the same as

the annotation behavior for a PORT delay. Source ports shall be output or input ports, while load ports shall

be input or inout ports.

Interconnect delays share many of the characteristics of specify path delays. The same rules for specify path

delays for filling in missing delays and pulse limits also apply for interconnect delays. Interconnect delays

have twelve transition delays, and unique reject and error pulse limits are associated with each of the twelve.

An unlimited number of future schedules are permitted.

Table 64—SDF annotation of interconnect delays

SDF Construct Verilog annotated structure

(PORT... Interconnect delay

(NETDELAY a

aOnly OVI SDF version 1.0, 2.0, and 2.1, and IEEE SDF version 4.0

Interconnect delay

(INTERCONNECT... Interconnect delay

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

274 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

In a Verilog module, a reference to an annotated port, wherever it occurs, whether in $monitor and

$display statements or in expressions, shall provide the delayed signal value. A reference to the source

shall yield the undelayed signal value, while a reference to the load shall yield the delayed signal value. In

general, references to the signal value hierarchically before the load shall yield the undelayed signal value,

while references to the signal at or hierarchically after the load shall yield the delayed signal value. An anno-

tation to a hierarchical port shall affect all connected ports at higher or lower hierarchical levels, depending

on the direction of annotation. An annotation from a source port shall be interpreted as being from all

sources hierarchically higher or lower than that source port.

Up-hierarchy annotations shall be properly handled. This situation arises when the load is hierarchically

above the source. The delay to all ports hierarchically above the load or which connect to the net at points

hierarchically above the load is the same as the delay to that load.

Down-hierarchy annotation shall also be properly handled. This situation arises when the source is hierarchi-

cally above the load. The delay to the load is interpreted as being from all ports at or above the source or

which connect to the net at points hierarchically above the source.

Hierarchically overlapping annotations are permitted. This occurs when annotations to or from the same port

take place at different hierarchical levels, and therefore do not correspond to the same hierarchical subset of

ports. In this example, the first INTERCONNECT statement annotates to all ports of the net that are at or

hierarchically within i53/selmode, while the second annotates to a smaller subset of ports, only those at

or hierarchically within i53/u21/in:

(INTERCONNECT i14/u5/out i53/selmode (1.43) (2.17))
(INTERCONNECT i14/u5/out i53/u21/in (1.58) (1.92))

Overlapping annotations can occur in many different ways, particularly on multi-source/multi-load nets, and

SDF annotation shall properly resolve all the interactions.

16.3 Multiple annotations

SDF annotation is an ordered process. The constructs from the SDF file are annotated in their order of occur-

rence. This means that annotation of an SDF construct can be changed by annotation of a subsequent con-

struct that either modifies (INCREMENT) or overwrites (ABSOLUTE) it. These do not have to be the same

construct. This example first annotates pulse limits to an IOPATH, then annotates the entire IOPATH,

thereby overwriting the pulse limits that were just annotated:

(DELAY
(ABSOLUTE

(PATHPULSE A Z (2.1) (3.4))
(IOPATH A Z (3.5) (6.1))

Overwriting the pulse limits can be avoided by using empty parentheses to hold the current values of the

pulse limits:

(DELAY
(ABSOLUTE

(PATHPULSE A Z (2.1) (3.4))
(IOPATH A Z ((3.5) () ()) ((6.1) () ()))

The above annotation can be simplified into a single statement like this:

(DELAY
(ABSOLUTE

(IOPATH A Z ((3.5) (2.1) (3.4)) ((6.1) (2.1) (3.4)))

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 275
This is an unapproved IEEE Standards Draft, subject to change.

A PORT annotation followed by an INTERCONNECT annotation to the same load shall cause only the delay

from the INTERCONNECT source to be affected. For this net with three sources and a single load, the delay

from all sources except i13/out remains 6:

(DELAY
(ABSOLUTE

(PORT i15/in (6))
(INTERCONNECT i13/out i15/in (5))

An INTERCONNECT annotation followed by a PORT annotation shall cause the INTERCONNECT annota-

tion to be overwritten. Here, the delays from all sources to the load shall become 6.

(DELAY
(ABSOLUTE

(INTERCONNECT i13/out i15/in (5))
(PORT i15/in (6))

16.4 Multiple SDF files

More than one SDF file can be annotated. Each call to the $sdf_annotate task annotates the design with tim-

ing information from an SDF file. Annotated values either modify (INCREMENT) or overwrite (ABSO-
LUTE) values from earlier SDF files. Different regions of a design can be annotated from different SDF files

by specifying the region’s hierarchy scope as the second argument to $sdf_annotate.

16.5 Pulse limit annotation

For SDF annotation of delays (not timing constraints), the default values annotated for pulse limits shall be

calculated using the percentage settings for the reject and error limits. By default these limits are 100%, but

they can be modified through invocation options. For example, assuming invocation options have set the

reject limit to 40% and the error limit to 80%, this SDF construct shall annotate a delay of 5, a reject limit of

2, and an error limit of 4:

(DELAY
(ABSOLUTE

(IOPATH A Z (5))

Given that the specify path delay was originally 0, this annotation results in a delay of 5 and pulse limits of

0:

(DELAY
(ABSOLUTE

(IOPATH A Z ((5) () ()))

Annotations in INCREMENT mode can result in pulse limits less than 0, in which case they shall be adjusted

to 0. For example, if the specify path pulse limits were both 3, this annotation results in a 0 value for both

pulse limits:

(DELAY
(INCREMENT

(IOPATH A Z (() (-4) (-5)))

There are two SDF constructs that annotate only to pulse limits, PATHPULSE and PATHPULSEPERCENT.

They do not affect the delay. When PATHPULSE sets the pulse limits to values greater than the delay Ver-

ilog shall exhibit the same behavior as if the pulse limits had been set equal to the delay.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

276 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

16.6 SDF to Verilog delay value mapping

Verilog specify paths and interconnects can have unique delays for up to twelve state transitions (see 14.3.1).

All other constructs, such as gate primitives and continuous assignments, can have only three state transition

delays (see 7.14).

For Verilog specify path and interconnect delays, the number of transition delay values provided by SDF

might be less than twelve.

Table 65 shows how fewer than twelve SDF delays are extended to be twelve delays. The Verilog transition

types are shown down the left hand side, while the number of SDF delays provided is shown across the top.

The SDF values are given the names v1 through v12.

For other delays that can have at most three values, the expansion of less than three SDF delays into three

Verilog delays is covered in Table 39. More than three SDF delays are reduced to three Verilog delays by

simply ignoring the extra delays. The delay to the X-state is created from the minimum of the other three

delays.

Table 65—SDF to Verilog delay value mapping

Verilog transition
Number of SDF delay values provided

1 value 2 values 3 values 6 values 12 values

0 -> 1 v1 v1 v1 v1 v1

1 -> 0 v1 v2 v2 v2 v2

0 -> z v1 v1 v3 v3 v3

z -> 1 v1 v1 v1 v4 v4

1 -> z v1 v2 v3 v5 v5

z -> 0 v1 v2 v2 v6 v6

0 -> x v1 v1 min(v1,v3) min(v1,v3) v7

x -> 1 v1 v1 v1 max(v1,v4) v8

1 -> x v1 v2 min(v2,v3) min(v2,v5) v9

x -> 0 v1 v2 v2 max(v2,v6) v10

x -> z v1 max(v1,v2) v3 max(v3,v5) v11

z -> x v1 min(v1,v2) min(v1,v2) min(v4,v6) v12

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 277
This is an unapproved IEEE Standards Draft, subject to change.

17. System tasks and functions

This clause describes system tasks and functions that are considered part of the Verilog HDL. These system

tasks and functions are divided into ten categories as follows:

These utility tasks and functions provide some broadly useful capabilities. The following clauses describe

the behavior of these tasks and functions. Additional tasks for value change dump (VCD) are described in

Clause 18.

17.1 Display system tasks

The display group of system tasks are divided into three categories: the display and write tasks, strobed mon-

itoring tasks, and continuous monitoring tasks.

Display tasks [17.1]

$display $strobe

$displayb $strobeb

$displayh $strobeh

$displayo $strobeo

$monitor $write

$monitorb $writeb

$monitorh $writeh

$monitoro $writeo

$monitoroff $monitoron

File I/O tasks [17.2]

$fclose $fopen

$fdisplay $fstrobe

$fdisplayb $fstrobeb

$fdisplayh $fstrobeh

$fdisplayo $fstrobeo

$fgetc $ungetc

$fflush $ferror

$fgets $rewind

$fmonitor $fwrite

$fmonitorb $fwriteb

$fmonitorh $fwriteh

$fmonitoro $fwriteo

$readmemb $readmemh

$swrite $swriteb

$swriteo $swriteh

$sformat $sdf_annotate

$fscanf $sscanf

$fread $ftell

$fseek

Timescale tasks [17.3]

$printtimescale $timeformat

Simulation control tasks [17.4]

$finish $stop

PLA modeling tasks [17.5]

$async$and$array $async$and$plane

$async$nand$array $async$nand$plane

$async$or$array $async$or$plane

$async$nor$array $async$nor$plane

$sync$and$array $sync$and$plane

$sync$nand$array $sync$nand$plane

$sync$or$array $sync$or$plane

$sync$nor$array $sync$nor$plane

Stochastic analysis tasks [17.6]

$q_initialize $q_add

$q_remove $q_full

$q_exam

Simulation time functions [17.7]

$realtime $stime

$time

Conversion functions [17.8]

$bitstoreal $realtobits

$itor $rtoi

$signed $unsigned

Probabilistic distribution functions [17.9]

$dist_chi_square $dist_erlang

$dist_exponential $dist_normal

$dist_poisson $dist_t

$dist_uniform $random

Command line input [17.10]

$test$plusargs $value$plusargs

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

278 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

17.1.1 The display and write tasks

Syntax 17-1—Syntax for $display and $write system tasks

These are the main system task routines for displaying information. The two sets of tasks are identical

except that $display automatically adds a newline character to the end of its output, whereas the $write task

does not.

The $display and $write tasks display their arguments in the same order as they appear in the argument list.

Each argument can be a quoted string, an expression that returns a value, or a null argument.

The contents of string arguments are output literally except when certain escape sequences are inserted to

display special characters or to specify the display format for a subsequent expression.

Escape sequences are inserted into a string in three ways:

— The special character \ indicates that the character to follow is a literal or nonprintable character (see
Table 66).

— The special character % indicates that the next character should be interpreted as a format specifica-
tion that establishes the display format for a subsequent expression argument (see Table 67). For
each % character, with the exception of %m that appears in a string, a corresponding expression argu-
ment shall be supplied after the string.

— The special character string %% indicates the display of the percent sign character % (see Table 66).

Any null argument produces a single space character in the display. (A null argument is characterized by two

adjacent commas in the argument list.)

The $display task, when invoked without arguments, simply prints a newline character. A $write task sup-

plied without parameters prints nothing at all.

17.1.1.1 Escape sequences for special characters

The escape sequences given in Table 66, when included in a string argument, cause special characters to be

displayed.

display_tasks ::=
display_task_name (list_of_arguments) ;

display_task_name ::=

$display | $displayb | $displayo | $displayh
| $write | $writeb | $writeo | $writeh

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 279
This is an unapproved IEEE Standards Draft, subject to change.

Example:

17.1.1.2 Format specifications

Table 67 shows the escape sequences used for format specifications. Each escape sequence, when included

in a string argument, specifies the display format for a subsequent expression. For each % character (except

%m) that appears in a string, a corresponding expression shall follow the string in the argument list. The

value of the expression replaces the format specification when the string is displayed.

Any expression argument that has no corresponding format specification is displayed using the default deci-

mal format in $display and $write, binary format in $displayb and $writeb, octal format in $displayo and

$writeo, and hexadecimal format in $displayh and $writeh.

Table 66—Escape sequences for printing special characters

Argument Description

\n The newline character

\t The tab character

\\ The \ character

\" The " character

\ddd A character specified in 1–3 octal digits (0 ≤ d ≤ 7).

If less than three characters are used, the following character must not be an octal digit.

Implementations may issue an error if the character represented is greater than \377.

%% The % character

Table 67—Escape sequences for format specifications

Argument Description

%h or %H Display in hexadecimal format

%d or %D Display in decimal format

%o or %O Display in octal format

%b or %B Display in binary format

%c or %C Display in ASCII character format

%l or %L Display library binding information

module disp;

initial begin
$display("\\\t\\\n\"\123");

end
endmodule

Simulating this example shall display the following:

\ \

"S

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

280 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The formatting specification %l (or %L) is defined for displaying the library information of the specific mod-

ule. This information shall be displayed as "library.cell" corresponding to the library name the current

module instance was extracted from and the cell name of the current module instance. See Clause 13 for

information on libraries and configuring designs.

The formatting specification %u (or %U) is defined for writing data without formatting (binary values). The

application shall transfer the 2 value binary representation of the specified data to the output stream. This

escape sequence can be used with any of the existing display system tasks, although $fwrite should be the

preferred one to use. Any unknown or high-impedance bits in the source shall be treated as zero. This for-

matting specifier is intended to be used to support transferring data to and from external programs that have

no concept of x and z. Applications that require preservation of x and z are encouraged to use the %z I/O

format specification.

The data shall be written to the file in the native endian format of the underlying system (i.e., in the same

endian order as if the PLI was used, and the C language write (2) system call was used). The data shall be

written in units of 32 bits with the word containing the LSB written first.

NOTE—For POSIX applications: It might be necessary to open files for unformatted I/O with the wb, wb+, or w+b
specifiers, to avoid the systems implementation of I/O altering patterns in the unformatted stream that match special

characters.

The formatting specification %z (or %Z) is defined for writing data without formatting (binary values). The

application shall transfer the 4 value binary representation of the specified data to the output stream. This

escape sequence can be used with any of the existing display system tasks, although $fwrite should be the

preferred one to use.

This formatting specifier is intended to be used to support transferring data to and from external programs

that recognize and support the concept of x and z. Applications that do not require the preservation of x
and z are encouraged to use the %u I/O format specification.

The data shall be written to the file in the native endian format of the underlying system (i.e., in the same

endian order as if the PLI was used, and the data were in a s_vpi_vecval structure (See 27.14,

Figure 179), and the C language write(2) system call was used to write the structure to disk). The data

shall be written in units of 32 bits with the structure containing the LSB written first.

NOTE—For POSIX applications: It might be necessary to open files for unformatted I/O with the wb, wb+ or w+b
specifiers, to avoid the systems implementation of I/O altering patterns in the unformatted stream that match special

characters.

The format specifications in Table 68 are used with real numbers and have the full formatting capabilities

available in the C language. For example, the format specification %10.3g specifies a minimum field width

of 10 with 3 fractional digits.

%v or %V Display net signal strength

%m or %M Display hierarchical name

%s or %S Display as a string

%t or %T Display in current time format

%u or %U Unformatted 2 value data

%z or %Z Unformatted 4 value data

Table 67—Escape sequences for format specifications (continued)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 281
This is an unapproved IEEE Standards Draft, subject to change.

The net signal strength, hierarchical name, and string format specifications are described in 17.1.1.5 through

17.1.1.7.

The %t format specification works with the $timeformat system task to specify a uniform time unit, time

precision, and format for reporting timing information from various modules that use different time units

and precisions. The $timeformat task is described in 17.3.2.

Example:

17.1.1.3 Size of displayed data

For expression arguments, the values written to the output file (or terminal) are sized automatically.

For example, the result of a 12-bit expression would be allocated three characters when displayed in hexa-

decimal format and four characters when displayed in decimal format, since the largest possible value for the

expression is FFF (hexadecimal) and 4095 (decimal).

Table 68—Format specifications for real numbers

Argument Description

%e or %E Display ‘real’ in an exponential format

%f or %F Display ‘real’ in a decimal format

%g or %G Display ‘real’ in exponential or decimal format, which-

ever format results in the shorter printed output

module disp;
reg [31:0] rval;
pulldown (pd);
initial begin
 rval = 101;

$display("rval = %h hex %d decimal",rval,rval);
$display("rval = %o octal\nrval = %b bin",rval,rval);
$display("rval has %c ascii character value",rval);
$display("pd strength value is %v",pd);
$display("current scope is %m");
$display("%s is ascii value for 101",101);
$display("simulation time is %t", $time);

end
endmodule

Simulating this example shall display the following:

rval = 00000065 hex 101 decimal
rval = 00000000145 octal
rval = 00000000000000000000000001100101 bin
rval has e ascii character value
pd strength value is StX
current scope is disp
e is ascii value for 101

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

282 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

When displaying decimal values, leading zeros are suppressed and replaced by spaces. In other radices, lead-

ing zeros are always displayed.

The automatic sizing of displayed data can be overridden by inserting a zero between the % character and the

letter that indicates the radix, as shown in the following example.

$display("d=%0h a=%0h", data, addr);

Example:

In this example, the result of a 12-bit expression is displayed. The first call to $display uses the standard for-

mat specifier syntax and produces results requiring four and three columns for the decimal and hexadecimal

radices, respectively. The second $display call uses the %0 form of the format specifier syntax and produces

results requiring two columns and one column, respectively.

17.1.1.4 Unknown and high impedance values

When the result of an expression contains an unknown or high impedance value, the following rules apply to

displaying that value.

In decimal (%d) format

— If all bits are at the unknown value, a single lowercase x character is displayed.
— If all bits are at the high impedance value, a single lowercase z character is displayed.
— If some, but not all, bits are at the unknown value, the uppercase X character is displayed.
— If some, but not all, bits are at the high impedance value, the uppercase Z character is displayed.
— Decimal numerals always appear right-justified in a fixed-width field.

In hexadecimal (%h) and octal (%o) formats

— Each group of 4 bits is represented as a single hexadecimal digit; each group of 3 bits is represented
as a single octal digit.

— If all bits in a group are at the unknown value, a lowercase x is displayed for that digit.
— If all bits in a group are at a high impedance state, a lowercase z is printed for that digit.
— If some, but not all, bits in a group are unknown, an uppercase X is displayed for that digit.
— If some, but not all, bits in a group are at a high impedance state, then an uppercase Z is displayed for

that digit.

In binary (%b) format, each bit is printed separately using the characters 0, 1, x, and z.

module printval;
reg [11:0] r1;
initial begin
 r1 = 10;

$display("Printing with maximum size - :%d: :%h:", r1,r1);
$display("Printing with minimum size - :%0d: :%0h:", r1,r1);

end
endmodule

Printing with maximum size - : 10: :00a:
Printing with minimum size - :10: :a:

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 283
This is an unapproved IEEE Standards Draft, subject to change.

Example:

17.1.1.5 Strength format

The %v format specification is used to display the strength of scalar nets. For each %v specification that

appears in a string, a corresponding scalar reference shall follow the string in the argument list.

The strength of a scalar net is reported in a three-character format. The first two characters indicate the

strength. The third character indicates the current logic value of the scalar and can be any one of the values

given in Table 69.

The first two characters—the strength characters—are either a two-letter mnemonic or a pair of decimal dig-

its. Usually, a mnemonic is used to indicate strength information; however, in less typical cases, a pair of

decimal digits can be used to indicate a range of strength levels. Table 70 shows the mnemonics used to rep-

resent the various strength levels.

Table 69—Logic value component of strength format

Argument Description

0 For a logic 0 value

1 For a logic 1 value

X For an unknown value

Z For a high impedance value

L For a logic 0 or high impedance value

H For a logic 1 or high impedance value

Table 70—Mnemonics for strength levels

Mnemonic Strength name Strength level

Su Supply drive 7

St Strong drive 6

Pu Pull drive 5

La Large capacitor 4

We Weak drive 3

Me Medium capacitor 2

Sm Small capacitor 1

Hi High impedance 0

STATEMENT RESULT
$display("%d", 1’bx); x
$display("%h", 14’bx01010); xxXa
$display("%h %o", 12’b001xxx101x01,

 12’b001xxx101x01); XXX 1x5X

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

284 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Note that there are four driving strengths and three charge storage strengths. The driving strengths are asso-

ciated with gate outputs and continuous assignment outputs. The charge storage strengths are associated

with the trireg type net. (See Clause 7 for strength modeling.)

For the logic values 0 and 1, a mnemonic is used when there is no range of strengths in the signal. Other-

wise, the logic value is preceded by two decimal digits, which indicate the maximum and minimum strength

levels.

For the unknown value, a mnemonic is used when both the 0 and 1 strength components are at the same

strength level. Otherwise, the unknown value X is preceded by two decimal digits, which indicate the 0 and

1 strength levels respectively.

The high impedance strength cannot have a known logic value; the only logic value allowed for this level is

Z.

For the values L and H, a mnemonic is always used to indicate the strength level.

Examples:

always
#15 $display($time,,"group=%b signals=%v %v %v",{s1,s2,s3},s1,s2,s3);

The example below shows the output that might result from such a call, while Table 71 explains the various

strength formats that appear in the output.

Table 71—Explanation of strength formats

Argument Description

St1 Means a strong driving 1 value

Pu0 Means a pull driving 0 value

HiZ Means the high-impedance state

Me0 Means a 0 charge storage of medium capacitor strength

StX Means a strong driving unknown value

PuH Means a pull driving strength of 1 or high-impedance value

65X Means an unknown value with a strong driving 0 component

and a pull driving 1 component

520 Means an 0 value with a range of possible strength from pull

driving to medium capacitor

 0 group=111 signals=St1 Pu1 St1
15 group=011 signals=Pu0 Pu1 St1
30 group=0xz signals=520 PuH HiZ
45 group=0xx signals=Pu0 65X StX
60 group=000 signals=Me0 St0 St0

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 285
This is an unapproved IEEE Standards Draft, subject to change.

17.1.1.6 Hierarchical name format

The %m format specifier does not accept an argument. Instead, it causes the display task to print the hierar-

chical name of the module, task, function, or named block that invokes the system task containing the format

specifier. This is useful when there are many instances of the module that calls the system task. One obvious

application is timing check messages in a flip-flop or latch module; the %m format specifier shall pinpoint the

module instance responsible for generating the timing check message.

17.1.1.7 String format

The %s format specifier is used to print ASCII codes as characters. For each %s specification that appears in

a string, a corresponding parameter shall follow the string in the argument list. The associated argument is

interpreted as a sequence of 8-bit hexadecimal ASCII codes, with each 8 bits representing a single character.

If the argument is a variable, its value should be right-justified so that the rightmost bit of the value is the

least-significant bit of the last character in the string. No termination character or value is required at the end

of a string, and leading zeros are never printed.

17.1.2 Strobed monitoring

Syntax 17-2—Syntax for $strobe system tasks

The system task $strobe provides the ability to display simulation data at a selected time. That time is the

end of the current simulation time, when all the simulation events that have occurred for that simulation

time, just before simulation time is advanced. The arguments for this task are specified in exactly the same

manner as for the $display system task—including the use of escape sequences for special characters and

format specifications (see 17.1.1).

Example:

forever @(negedge clock)
$strobe ("At time %d, data is %h",$time,data);

In this example, $strobe writes the time and data information to the standard output and the log file at each

negative edge of the clock. The action shall occur just before simulation time is advanced and after all other

events at that time have occurred, so that the data written is sure to be the correct data for that simulation

time.

strobe_tasks ::=
strobe_task_name (list_of_arguments) ;

strobe_task_name ::=

$strobe | $strobeb | $strobeo | $strobeh

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

286 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

17.1.3 Continuous monitoring

Syntax 17-3—Syntax for $monitor system tasks

The $monitor task provides the ability to monitor and display the values of any variables or expressions

specified as arguments to the task. The arguments for this task are specified in exactly the same manner as

for the $display system task—including the use of escape sequences for special characters and format spec-

ifications (see 17.1.1).

When a $monitor task is invoked with one or more arguments, the simulator sets up a mechanism whereby

each time a variable or an expression in the argument list changes value—with the exception of the $time,

$stime or $realtime system functions—the entire argument list is displayed at the end of the time step as if

reported by the $display task. If two or more arguments change value at the same time, only one display is

produced that shows the new values.

Only one $monitor display list can be active at any one time; however, a new $monitor task with a new dis-

play list can be issued any number of times during simulation.

The $monitoron and $monitoroff tasks control a monitor flag that enables and disables the monitoring. Use

$monitoroff to turn off the flag and disable monitoring. The $monitoron system task can be used to turn on

the flag so that monitoring is enabled and the most recent call to $monitor can resume its display. A call to

$monitoron shall produce a display immediately after it is invoked, regardless of whether a value change

has taken place; this is used to establish the initial values at the beginning of a monitoring session. By

default, the monitor flag is turned on at the beginning of simulation.

17.2 File input-output system tasks and functions

The system tasks and functions for file-based operations are divided into three categories:

— Functions and tasks that open and close files
— Tasks that output values into files
— Tasks that output values into variables
— Tasks and functions that read values from files and load into variables or memories

17.2.1 Opening and closing files

Syntax 17-4—Syntax for $fopen and $fclose system tasks

monitor_tasks ::=

monitor_task_name [(list_of_arguments)] ;
| $monitoron ;
| $monitoroff ;

monitor_task_name ::=

$monitor | $monitorb | $monitoro | $monitorh

file_open_function ::=

integer multi_channel_descriptor = $fopen (" file_name ");
| integer fd = $fopen (" file_name ", type);

file_close_task ::=

$fclose (multi_channel_descriptor);
| $fclose (fd);

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 287
This is an unapproved IEEE Standards Draft, subject to change.

The function $fopen opens the file specified as the filename argument and returns either a 32 bit multi chan-

nel descriptor, or a 32 bit file descriptor, determined by the absence or presence of the type argument.

filename is a character string, or a reg containing a character string that names the file to be opened.

type is a character string, or a reg containing a character string of one of the following forms in the table

below, which indicates how the file should be opened. If type is omitted, the file is opened for writing, and a

multi channel descriptor mcd is returned. If type is supplied, the file is opened as specified by the value of

type, and a file descriptor fd is returned.

The multi channel descriptor mcd is a 32 bit reg in which a single bit is set indicating which file is opened.

The least significant bit (bit 0) of a mcd always refers to the standard output. Output is directed to two or

more files opened with multi channel descriptors by bitwise oring together their mcds and writing to the

resultant value.

The most significant bit (bit 32) of a multi channel descriptor is reserved, and shall always be cleared, limit-

ing an implementation to at most 31 files opened for output via multi channel descriptors.

The file descriptor fd is a 32 bit value. The most significant bit (bit 32) of a fd is reserved, and shall always

be set; this allows implementations of the file input and output functions to determine how the file was

opened. The remaining bits hold a small number indicating what file is opened. Three file descriptors are pre

opened; they are STDIN, STDOUT and STDERR, which have the values 32'h8000_0000,

32'h8000_0001 and 32'h8000_0002, respectively. STDIN is pre opened for reading, and STDOUT
and STDERR are pre opened for append.

Unlike multi channel descriptors, file descriptors can not be combined via bitwise or in order to direct output

to multiple files. Instead, files are opened via file descriptor for input, output, input and output, as well as for

append operations, based on the value of type, according to the following table:

If a file can not be opened (either the file doesn't exist, and the type specified is "r", "rb", "r+", "r+b", or

"rb+", or the permissions do not allow the file to be opened at that path, a zero is returned for either the mcd
or the fd. Applications can call $ferror to determine the cause of the most recent error (see 17.2.7).

The "b" in the above types exists to distinguish binary files from text files. Many systems (such as Unix)

make no distinction between binary and text files, and on these systems the "b" is ignored. However, some

systems (such as machines running NT or Windows) perform data mappings on certain binary values written

to and read from files that are opened for text access.

Table 72—Types for file descriptors

Argument Description

"r" or "rb" open for reading

"w" or "wb" truncate to zero length or create for writing

"a" or "ab" append; open for writing at end of file, or create for writing

"r+", "r+b", or "rb+" open for update (reading and writing)

"w+", "w+b", or "wb+" truncate or create for update

"a+", "a+b", or "ab+" append; open or create for update at end-of-file

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

288 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The $fclose system tasks closes the file specified by fd or closes the file(s) specified by the multi channel

descriptor mcd. No further output to or input from any file descriptor(s) closed by $fclose is allowed. Active

$fmonitor and/or $fstrobe operations on a file descriptor or multi channel descriptor are implicitly can-

celled by an $fclose operation. The $fopen function shall reuse channels that have been closed.

NOTE—The number of simultaneous input and output channels that can be open at any one time is dependent on the

operating system. Some operating systems do not support opening files for update.

17.2.2 File output system tasks

Syntax 17-5—Syntax for file output system tasks

Each of the four formatted display tasks—$display, $write, $monitor, and $strobe—has a counterpart that

writes to specific files as opposed to the standard output. These counterpart tasks—$fdisplay, $fwrite,
$fmonitor, and $fstrobe—accept the same type of arguments as the tasks upon which they are based, with

one exception: The first parameter shall be either a multi channel descriptor or a file descriptor, which indi-

cates where to direct the file output. Multi channel descriptors are described in detail in 17.2.1. A multichan-

nel descriptor is either a variable or the result of an expression that takes the form of a 32-bit unsigned

integer value.

The $fstrobe and $fmonitor system tasks work just like their counterparts, $strobe and $monitor, except

that they write to files using the multi channel descriptor for control. Unlike $monitor, any number of

$fmonitor tasks can be set up to be simultaneously active. However, there is no counterpart to $monitoron
and $monitoroff tasks. The task $fclose is used to cancel an active $fstrobe or $fmonitor task.

Example:

This example shows how to set up multi channel descriptors. In this example, three different channels are

opened using the $fopen function. The three multi channel descriptors that are returned by the function are

then combined in a bit-wise or operation and assigned to the integer variable messages. The mes-
sages variable can then be used as the first parameter in a file output task to direct output to all three chan-

nels at once. To create a descriptor that directs output to the standard output as well, the messages variable

is a bit-wise logical or with the constant 1, which effectively enables channel 0.

file_output_tasks ::=

file_output_task_name (multi_channel_descriptor , list_of_arguments) ;
| file_output_task_name (fd , list_of_arguments) ;

file_output_task_name ::=

$fdisplay | $fdisplayb | $fdisplayh | $fdisplayo
| $fwrite | $fwriteb | $fwriteh | $fwriteo
| $fstrobe | $fstrobeb | $fstrobeh | $fstrobeo
| $fmonitor | $fmonitorb | $fmonitorh | $fmonitoro

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 289
This is an unapproved IEEE Standards Draft, subject to change.

The following file output tasks show how the channels opened in the preceding example might be used:

17.2.3 Formatting data to a string

Syntax 17-6—Syntax for formatting data tasks

The $swrite family of tasks is based on the $fwrite family of tasks, and accept the same type of arguments

as the tasks upon which they are based, with one exception: The first parameter to $swrite shall be a reg

variable to which the resulting string shall be written, instead of a variable specifying the file to which to

write the resulting string.

The system task $sformat is similar to the system task $swrite, with one major difference.

Unlike the display and write family of output system tasks, $sformat always interprets its second argument,

and only its second argument, as a format string. This format argument can be a static string, such as ’"data

is %d"’, or can be a reg variable whose content is interpreted as the format string. No other arguments are

interpreted as format strings. $sformat supports all the format specifiers supported by $display, as docu-

mented in 17.1.1.2.

The remaining arguments to $sformat are processed using any format specifiers in the format_string, until

all such format specifiers are used up. If not enough arguments are supplied for the format specifiers, or too

many are supplied, then the application shall issue a warning, and continue execution. The application, if

string_output_tasks ::=

string_output_task_name (output_reg, list_of_arguments);
string_output_task_name ::=

$swrite | $swriteb | $swriteh | $swriteo
variable_format_string_output_task ::=

$sformat (output_reg, format_string, list_of_arguments);

integer
messages, broadcast,
cpu_chann, alu_chann, mem_chann;

initial begin
cpu_chann = $fopen("cpu.dat");
if (cpu_chann == 0) $finish;
alu_chann = $fopen("alu.dat");
if (alu_chann == 0) $finish;
mem_chann = $fopen("mem.dat");
if (mem_chann == 0) $finish;
messages = cpu_chann | alu_chann | mem_chann;
// broadcast includes standard output
broadcast = 1 | messages;

end
endmodule

$fdisplay(broadcast, "system reset at time %d",$time);

$fdisplay(messages, "Error occurred on address bus",
" at time %d, address = %h", $time, address);

forever @(posedge clock)
$fdisplay(alu_chann, "acc= %h f=%h a=%h b=%h", acc, f, a, b);

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

290 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

possible, can statically determine a mismatch in format specifiers and number of arguments, and issue a

compile time error message.

NOTE—If the format_string is a reg, it might not be possible to determine its value at compile time.

The variable output_reg is assigned using the string assignment to variable rules, as specified in 4.2.3.

17.2.4 Reading data from a file

Files opened using file descriptors can be read from only if they were opened with either the r or r+ type
values. See 17.2.1 for more information about opening files.

17.2.4.1 Reading a character at a time

c = $fgetc (fd);

Read a byte from the file specified by fd. If an error occurs reading from the file, then c is set to EOF (-1).

Define the width of the reg to be wider than 8 bits so that a return value from $fgetc of EOF (-1) can be dif-

ferentiated from the character code 0xFF. Applications can call $ferror to determine the cause of the most

recent error (see 17.2.7).

code = $ungetc (c, fd);

Insert the character specified by c into the buffer specified by file descriptor fd. The character c shall be

returned by the next $fgetc call on that file descriptor. The file itself is unchanged. Note that the features of

the underlying implementation of fileio on the host system limits the number of characters that can be

pushed back onto a stream. Note also that operations like $fseek might erase any pushed back characters. If

an error occurs pushing a character onto a file descriptor, then code is set to EOF. Otherwise code is set to

zero. Applications can call $ferror to determine the cause of the most recent error (see 17.2.7).

17.2.4.2 Reading a line at a time

integer code = $fgets (str, fd);

Read characters from the file specified by fd into the reg str until either str is filled, or a newline charac-

ter is read and transferred to str, or an end-of-file condition is encountered. If str is not an integral num-

ber of bytes in length, the most significant partial byte is not used in order to determine the size.

If an error occurs reading from the file, then code is set to zero. Otherwise the number of characters read is

returned in code. Applications can call $ferror to determine the cause of the most recent error (see 17.2.7).

17.2.4.3 Reading formatted data

integer code = $fscanf (fd, format, args);
integer code = $sscanf (str, format, args);

$fscanf reads from the files specified by the file descriptor fd.

$sscanf reads from the reg str.

Both functions read characters, interpret them according to a format, and store the results. Both expect as

arguments a control string, format, and a set of arguments specifying where to place the results. If there

are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while argu-

ments remain, the excess arguments are ignored.

If an argument is too small to hold the converted input, then in general, the least significant bits are trans-

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 291
This is an unapproved IEEE Standards Draft, subject to change.

ferred. Arguments of any length that is supported by Verilog can be used. However if the destination is a real
or realtime then the value +Inf (or -Inf) is transferred. The format can be a string constant or a reg contain-

ing a string constant. The string contains conversion specifications, which direct the conversion of input into

the arguments. The control string can contain

a) White-space characters (blanks, tabs, new-lines, or form-feeds) that, except in one case described

below, cause input to be read up to the next non-white-space character.

b) An ordinary character (not %) that must match the next character of the input stream.

c) Conversion specifications consisting of the character % an optional assignment suppression character

*, a decimal digit string that specifies an optional numerical maximum field width, and a conversion

code.

A conversion specification directs the conversion of the next input field; the result is placed in the variable

specified in the corresponding argument unless assignment suppression was indicated by the character *; in

this case no argument shall be supplied.

The suppression of assignment provides a way of describing an input field that is to be skipped. An input

field is defined as a string of non-space characters; it extends to the next inappropriate character or until the

maximum field width, if one is specified, is exhausted. For all descriptors except the character c, white space

leading an input field is ignored.

% A single % is expected in the input at this point; no assignment is done.

b Matches a binary number, consisting of a sequence from the set 0,1,X,x,Z,z,? and _.

o Matches a octal number, consisting of a sequence of characters from the set

0,1,2,3,4,5,6,7,X,x,Z,z,? and _.

d Matches an optionally signed decimal number, consisting of the optional sign from the set + or -,

followed by a sequence of characters from the set 0,1,2,3,4,5,6,7,8,9 and _, or a single value from

the set x,X,z,Z,?.

h or x Matches a hexadecimal number, consisting of a sequence of characters from the set

0,1,2,3,4,5,6,7,8,9,a,A,b,B,c,C,d,D,e,E,f,F,x,X,z,Z,? and _.

f, e or g Matches a floating point number. The format of a floating point number is an optional sign (either +

or -), followed by a string of digits from the set 0,1,2,3,4,5,6,7,8,9 optionally containing a decimal

point character (.), then an optional exponent part including e or E followed by an optional sign,

followed by a string of digits from the set 0,1,2,3,4,5,6,7,8,9.

v Matches a net signal strength, consisting of three character sequence as specified in 17.1.1.5. This

conversion is not extremely useful, as strength values are really only usefully assigned to nets and

$fscanf can only assign values to regs (if assigned to regs, the values are converted to the 4 value

equivalent).

t Matches a floating point number. The format of a floating point number is an optional sign (either +

or -), followed by a string of digits from the set 0,1,2,3,4,5,6,7,8,9 optionally containing a decimal

point character (.), then an optional exponent part including e or E followed by an optional sign,

followed by a string of digits from the set 0,1,2,3,4,5,6,7,8,9. The value matched is then scaled and

rounded according to the current time scale as set by $timeformat. For example, if the timescale is

`timescale 1ns/100ps and the time format is $timeformat(-3,2," ms",10);, then a value read with

$sscanf("10.345", "%t", t) would return 10350000.0.

c Matches a single character, whose 8 bit ASCII value is returned.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

292 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

s Matches a string, which is a sequence of non white space characters.

u Matches unformatted (binary) data. The application shall transfer sufficient data from the input to

fill the target reg. Typically the data is obtained from a matching $fwrite ("%u",data), or from

an external application written in another programming language such as C, Perl or FORTRAN.

The application shall transfer the 2 value binary data from the input stream to the destination reg,

expanding the data to the four value format. This escape sequence can be used with any of the exist-

ing input system tasks, although $fscanf should be the preferred one to use. As the input data

can not represent x or z, it is not possible to obtain an x or z in the result reg. This formatting spec-

ifier is intended to be used to support transferring data to and from external programs that have no

concept of x and z.

Applications that require preservation of x and z are encouraged to use the %z I/O format specifi-

cation.

The data shall be read from the file in the native endian format of the underlying system (i.e., in the

same endian order as if the PLI was used, and the C language read(2) system call was used).

For POSIX applications: It might be necessary to open files for unformatted I/O with the "rb",

"rb+" or "r+b" specifiers, to avoid the systems implementation of I/O altering patterns in the unfor-

matted stream that match special characters.

z The formatting specification %z (or %Z) is defined for reading data without formatting (binary val-

ues). The application shall transfer the 4 value binary representation of the specified data from the

input stream to the destination reg. This escape sequence can be used with any of the existing input

system tasks, although $fscanf should be the preferred one to use.

This formatting specifier is intended to be used to support transferring data to and from external

programs that recognize and support the concept of x and z. Applications that do not require the

preservation of x and z are encouraged to use the %u I/O format specification.

The data shall be read from the file in the native endian format of the underlying system (i.e., in the

same endian order as if the PLI was used, and the data were in a s_vpi_vecval structure (See

27.14, Figure 179), and the C language read(2) system call was used to read the data from disk).

For POSIX applications: It might be necessary to open files for unformatted I/O with the "rb",

"rb+" or "r+b" specifiers, to avoid the systems implementation of I/O altering patterns in the unfor-

matted stream that match special characters.

m Returns the current hierarchical path as a string. Does not read data from the input file or str argu-

ment.

If an invalid conversion character follows the %, the results of the operation are implementation dependent.

If the format string, or the str argument to $sscanf contains unknown bits (x or z) then the system task

shall return EOF.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 293
This is an unapproved IEEE Standards Draft, subject to change.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs before any charac-

ters matching the current directive have been read (other than leading white space, where permitted), execu-

tion of the current directive terminates with an input failure; otherwise, unless execution of the current

directive is terminated with a matching failure, execution of the following directive (if any) is terminated

with an input failure.

If conversion terminates on a conflicting input character, the offending input character is left unread in the

input stream. Trailing white space (including new-line characters) is left unread unless matched by a direc-

tive. The success of literal matches and suppressed assignments is not directly determinable.

The number of successfully matched and assigned input items is returned in code; this number can be 0 in

the event of an early matching failure between an input character and the control string. If the input ends

before the first matching failure or conversion, EOF is returned. Applications can call $ferror to determine

the cause of the most recent error (see below).

17.2.4.4 Reading binary data

integer code = $fread(myreg, fd);
integer code = $fread(mem, fd);
integer code = $fread(mem, fd, start);
integer code = $fread(mem, fd, start, count);
integer code = $fread(mem, fd, , count);

Read a binary data from the file specified by fd into the reg myreg or the memory mem.

start is an optional argument. If present, start shall be used as the address of the first element in the

memory to be loaded. If not present the lowest numbered location in the memory shall be used.

count is an optional argument. If present, count shall be the maximum number of locations in mem that

shall be loaded. If not supplied the memory shall be filled with what data is available.

start and count are ignored if $fread is loading a reg.

If no addressing information is specified within the system task, and no address specifications appear within

the data file, then the default start address is the lowest address given in the declaration of the memory. Con-

secutive words are loaded towards the highest address until either the memory is full or the data file is com-

pletely read. If the start address is specified in the task without the finish address, then loading starts at the

specified start address and continues towards the highest address given in the declaration of the memory.

start is the address in the memory. For start = 12 and the memory up[10:20], the first data would be

loaded at up[12]. For the memory down[20:10], the first location loaded would be down[12], then

down[13].

The data in the file shall be read byte by byte to fulfill the request. An 8-bit wide memory is loaded using one

byte per memory word, while a 9-bit wide memory is loaded using 2 bytes per memory word. The data is

read from the file in a big endian manner; the first byte read is used to fill the most significant location in the

memory element. If the memory width is not evenly divisible by 8 (8, 16, 24, 32), not all data in the file is

loaded into memory because of truncation.

The data loaded from the file is taken as "two value" data. A bit set in the data is interpreted as a 1, and bit

not set is interpreted as a 0. It is not possible to read a value of x or z using $fread.

If an error occurs reading from the file, then code is set to zero. Otherwise the number of characters read is

returned in code. Applications can call $ferror to determine the cause of the most recent error (see 17.2.7).

Note that there is not a "binary" mode and a "ASCII" mode; one can freely intermingle binary and formatted

read commands from the same file.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

294 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

17.2.5 File positioning

integer pos = $ftell (fd);

Returns in pos the offset from the beginning of the file of the current byte of the file fd which shall be read

or written by a subsequent operation on that file descriptor.

This value can be used by subsequent $fseek calls to reposition the file to this point. Note that any reposi-

tioning shall cancel any $ungetc operations. If an error occurs, EOF is returned. Applications can call $fer-
ror to determine the cause of the most recent error (see 17.2.7).

code = $fseek (fd, offset, operation);
code = $rewind (fd);

Sets the position of the next input or output operation on the file specified by fd. The new position is at the

signed distance offset bytes from the beginning, from the current position, or from the end of the file, accord-

ing to an operation value of 0, 1 and 2 as follows:

— 0 set position equal to offset bytes
— 1 set position to current location plus offset
— 2 set position to EOF plus offset

$rewind is equivalent to $fseek (fd,0,0);

Repositioning the current file position with $fseek or $rewind shall cancel any $ungetc operations.

$fseek() allows the file position indicator to be set beyond the end of the existing data in the file. If data is

later written at this point, subsequent reads of data in the gap shall return zero until data is actually written

into the gap. $fseek, by itself, does not extend the size of the file.

When a file is opened for append (that is, when type is "a", or "a+"), it is impossible to overwrite informa-

tion already in the file. $fseek can be used to reposition the file pointer to any position in the file, but when

output is written to the file, the current file pointer is disregarded. All output is written at the end of the file

and causes the file pointer to be repositioned at the end of the output.

If an error occurs repositioning the file, then code is set to -1. Otherwise code is set to 0. Applications can

call $ferror to determine the cause of the most recent error (see 17.2.7).

17.2.6 Flushing output

$fflush (mcd);
$fflush (fd);
$fflush ();

Writes any buffered output to the file(s) specified by mcd, the file specified by fd or if $fflush is invoked

with no arguments, writes any buffered output to all open files.

17.2.7 I/O error status

Should any error be detected by one of the fileio routines, an error code is returned. Often this is sufficient

for normal operation; (i.e., if the opening of a optional configuration file fails, the application typically

would simply continue using default values.) However sometimes it is useful to obtain more information

about the error for correct application operation. In this case the $ferror function can be used:

integer errno = $ferror (fd, str);

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 295
This is an unapproved IEEE Standards Draft, subject to change.

A string description of type of error encountered by the most recent file I/O operation is written into str
which should be at least 640 bits wide. The integral value of the error code is returned in errno. If the most

recent operation did not result in an error, then the value returned shall be zero, and the reg str shall be

cleared.

17.2.8 Loading memory data from a file

Syntax 17-7—Syntax for memory load system tasks

Two system tasks—$readmemb and $readmemh—read and load data from a specified text file into a spec-

ified memory. Either task can be executed at any time during simulation. The text file to be read shall contain

only the following:

— White space (spaces, new lines, tabs, and form-feeds)
— Comments (both types of comment are allowed)
— Binary or hexadecimal numbers

The numbers shall have neither the length nor the base format specified. For $readmemb, each number shall

be binary. For $readmemh, the numbers shall be hexadecimal. The unknown value (x or X), the high

impedance value (z or Z), and the underscore (_) can be used in specifying a number as in a Verilog HDL

source description. White space and/or comments shall be used to separate the numbers.

In the following discussion, the term “address” refers to an index into the array that models the memory.

As the file is read, each number encountered is assigned to a successive word element of the memory.

Addressing is controlled both by specifying start and/or finish addresses in the system task invocation and by

specifying addresses in the data file.

When addresses appear in the data file, the format is an “at” character (@) followed by a hexadecimal num-

ber as follows:

 @hh...h

Both uppercase and lowercase digits are allowed in the number. No white space is allowed between the @
and the number. As many address specifications as needed within the data file can be used. When the system

task encounters an address specification, it loads subsequent data starting at that memory address.

If no addressing information is specified within the system task and no address specifications appear within

the data file, then the default start address shall be the lowest address in the memory. Consecutive words

shall be loaded until either the memory is full or the data file is completely read. If the start address is speci-

fied in the task without the finish address, then loading shall start at the specified start address and shall con-

tinue upward toward the highest address in the memory.

If both start and finish addresses are specified as parameters to the task, then loading shall begin at the start

address and shall continue toward the finish address. Note that if the start address is greater than the finish

address, then the address will be decremented between consecutive loads rather than being incremented.

Loading shall continue to follow this direction even after an address specification in the data file.

When addressing information is specified both in the system task and in the data file, the addresses in the

data file shall be within the address range specified by the system task parameters; otherwise, an error mes-

sage is issued and the load operation is terminated.

load_memory_tasks ::=

$readmemb (" file_name " , memory_name [, start_addr [, finish_addr]]) ;
| $readmemh (" file_name " , memory_name [, start_addr [, finish_addr]]) ;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

296 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

A warning message shall be issued if the number of data words in the file differs from the number of words

in the range implied by the start through finish addresses and no address specifications appear within the

data file.

Example:

reg [7:0] mem[1:256];

Given this declaration, each of the following statements load data into mem in a different manner:

initial $readmemh("mem.data", mem);
initial $readmemh("mem.data", mem, 16);
initial $readmemh("mem.data", mem, 128, 1);

The first statement loads up the memory at simulation time 0 starting at the memory address 1. The second

statement begins loading at address 16 and continue on towards address 256. For the third and final state-

ment, loading begins at address 128 and continue down towards address 1.

In the third case, when loading is complete, a final check is performed to ensure that exactly 128 numbers

are contained in the file. If the check fails, a warning message is issued.

17.2.9 Loading timing data from an SDF file

The syntax for the $sdf_annotate system task is shown in Syntax 17-8.

Syntax 17-8—Syntax for $sdf_annotate system task

The $sdf_annotate system task reads timing data from an SDF file into a specified region of the design.

sdf_file is a character string, or a reg containing a character string naming the file to be opened.

module_instance is an optional argument specifying the scope to which to annotate the information in the

SDF file. The SDF annotator uses the hierarchy level of the specified instance for running

the annotation. Array indices are permitted. If the module_instance not specified, the SDF

Annotator uses the module containing the call to the $sdf_annotate system task as the

module_instance for annotation.

config_file is an optional character string argument providing the name of a configuration file.

Information in this file can be used to provide detailed control over many aspects of

annotation.

log_file is an optional character string argument providing the name of the log file used during

SDF annotation. Each individual annotation of timing data from the SDF file results in an

entry in the log file.

mtm_spec is an optional character string argument specifying which member of the min/typ/max
triples shall be annotated. The legal values for this string are described in Table 73. This

overrides any MTM_SPEC keywords in the configuration file.

sdf_annotate_task ::=

$sdf_annotate ("sdf_file" [, [module_instance] [, ["config_file"]

[, ["log_file"] [, ["mtm_spec"]

[, ["scale_factors"] [, ["scale_type"]]]]]]]);

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 297
This is an unapproved IEEE Standards Draft, subject to change.

scale_factors is an optional character string argument specifying the scale factors to be used while

annotating timing values. For example, "1.6:1.4:1.2" causes minimum values to be

multiplied by 1.6, typical values by 1.4, and maximum values by 1.2. The default

values are 1.0:1.0:1.0. The scale_factors argument overrides any SCALE_FACTORS
keywords in the configuration file.

scale_type is an optional character string argument specifying how the scale factors should be applied

to the min/typ/max triples. The legal values for this string are shown in Table 74. This

overrides any SCALE_TYPE keywords in the configuration file.

17.3 Timescale system tasks

The following system tasks display and set timescale information:

a) $printtimescale

b) $timeformat

17.3.1 $printtimescale

The $printtimescale system task displays the time unit and precision for a particular module. The syntax for

the system task is shown in Syntax 17-9.

Table 73—mtm spec argument

Keyword Description

MAXIMUM Annotate the maximum value

MINIMUM Annotate the minimum value

TOOL_CONTROL (default) Annotate the value as selected by

the simulator

TYPICAL Annotate the typical value

Table 74—scale type argument

Keyword Description

FROM_MAXIMUM Apply scale factors to maximum value

FROM_MINIMUM Apply scale factors to minimum value

FROM_MTM (default) Apply scale factors to min/typ/max

values

FROM_TYPICAL Apply scale factors to typical value

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

298 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 17-9—Syntax for $printtimescale

This system task can be specified with or without an argument.

— When no argument is specified, $printtimescale displays the time unit and precision of the module
that is the current scope.

— When an argument is specified, $printtimescale displays the time unit and precision of the module
passed to it.

The timescale information shall appear in the following format:

Time scale of (module_name) is unit / precision

Example:

In this example, module a_dat invokes the $printtimescale system task to display timescale information

about another module c_dat, which is instantiated in module b_dat.

The information about c_dat shall be displayed in the following format:

Time scale of (b_dat.c1) is 1ns / 1ns

17.3.2 $timeformat

The syntax for $timeformat system task is shown in Syntax 17-10.

printtimescale_task ::=

$printtimescale [(hierarchical_identifier)] ;

`timescale 1 ms / 1 us
module a_dat;
initial

$printtimescale(b_dat.c1);
endmodule

`timescale 10 fs / 1 fs
module b_dat;

c_dat c1 ();
endmodule

`timescale 1 ns / 1 ns
module c_dat;

.

.

.
endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 299
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 17-10—Syntax for $timeformat

The $timeformat system task performs the following two functions:

— It specifies how the %t format specification reports time information for the $write, $display,
$strobe, $monitor, $fwrite, $fdisplay, $fstrobe, and $fmonitor group of system tasks.

— It specifies the time unit for delays entered interactively.

The units number argument shall be an integer in the range from 0 to -15. This argument represents the time

unit as shown in Table 75.

The $timeformat system task performs the following two operations:

— It sets the time unit for all later-entered delays entered interactively.
— It sets the time unit, precision number, suffix string, and minimum field width for all %t formats

specified in all modules that follow in the source description until another $timeformat system task
is invoked.

The default $timeformat system task arguments are given in Table 76.

timeformat_task ::=

$timeformat [(units_number , precision_number , suffix_string , minimum_field_width)] ;

Table 75—$timeformat units_number arguments

Unit number Time unit Unit number Time unit

0 1 s -8 10 ns

-1 100 ms -9 1 ns

-2 10 ms -10 100 ps

-3 1 ms -11 10 ps

-4 100 us -12 1 ps

-5 10 us -13 100 fs

-6 1 us -14 10 fs

-7 100 ns -15 1 fs

Table 76—$timeformat default value for arguments

Argument Default

units_number The smallest time precision argument of all the `timescale com-

piler directives in the source description

precision_number 0

suffix_string A null character string

minimum_field_width 20

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

300 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Example:

The following example shows the use of %t with the $timeformat system task to specify a uniform time

unit, time precision, and format for timing information.

The contents of file a1.dat are as follows:

a1_dat: 0.00000 ns in1= x o1=x
a1_dat: 10.00000 ns in1= 0 o1=x
a1_dat: 20.00000 ns in1= 1 o1=0
a1_dat: 30.00000 ns in1= 1 o1=1

The contents of file a2.dat are as follows:

a2_dat: 0.00000 ns in2=x o2=x
a2_dat: 10.00000 ns in2=0 o2=x
a2_dat: 20.00000 ns in2=1 o2=0
a2_dat: 30.00000 ns in2=1 o2=1

`timescale 1 ms / 1 ns
module cntrl;
initial

$timeformat(-9, 5, " ns", 10);
endmodule

`timescale 1 fs / 1 fs
module a1_dat;
reg in1;
integer file;
buf #10000000 (o1,in1);
initial begin

file = $fopen("a1.dat");
#00000000 $fmonitor(file,"%m: %t in1=%d o1=%h", $realtime,in1,o1);
#10000000 in1 = 0;
#10000000 in1 = 1;

end
endmodule

`timescale 1 ps / 1 ps
module a2_dat;
reg in2;
integer file2;
buf #10000 (o2,in2);
initial begin

file2=$fopen("a2.dat");
#00000 $fmonitor(file2,"%m: %t in2=%d o2=%h",$realtime,in2,o2);
#10000 in2 = 0;
#10000 in2 = 1;

end
endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 301
This is an unapproved IEEE Standards Draft, subject to change.

In this example, the times of events written to the files by the $fmonitor system task in modules a1_dat
and a2_dat are reported as multiples of 1 ns—even though the time units for these modules are 1 fs
and 1 ps respectively—because the first argument of the $timeformat system task is -9 and the %t for-

mat specification is included in the arguments to $fmonitor. This time information is reported after the

module names with five fractional digits, followed by an ns character string in a space wide enough for 10

ASCII characters.

17.4 Simulation control system tasks

There are two simulation control system tasks:

a) $finish

b) $stop

17.4.1 $finish

Syntax 17-11 shows the syntax for $finish system task.

Syntax 17-11—Syntax for $finish

The $finish system task simply makes the simulator exit and pass control back to the host operating system.

If an expression is supplied to this task, then its value (0, 1, or 2) determines the diagnostic messages that

are printed before the prompt is issued. If no argument is supplied, then a value of 1 is taken as the default.

17.4.2 $stop

The syntax for $stop system task is shown in Syntax 17-12.

Syntax 17-12—Syntax for $stop

finish_task ::=

$finish [(n)] ;

Table 77—Diagnostics for $finish

Parameter value Diagnostic message

0 Prints nothing

1 Prints simulation time and location

2 Prints simulation time, location, and statistics about the memory

and CPU time used in simulation

stop_task ::=

$stop [(n)] ;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

302 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The $stop system task causes simulation to be suspended. This task takes an optional expression argument

(0, 1, or 2) that determines what type of diagnostic message is printed. The amount of diagnostic messages

output increases with the value of the optional argument passed to $stop.

17.5 PLA modeling system tasks

The modeling of PLA devices is provided in the Verilog HDL by a group of system tasks. This clause

describes the syntax and use of these system tasks and the formats of the logic array personality file.The syn-

tax for PLA modeling system task is shown in Syntax 17-13.

Syntax 17-13 —Syntax for PLA modeling system task

NOTE—The input terms can be nets or variables whereas the output terms shall only be variables.

The PLA syntax allows for the system tasks as shown in Table 78.

17.5.1 Array types

The modeling of both synchronous and asynchronous arrays is provided by the PLA system tasks. The syn-

chronous forms control the time at which the logic array shall be evaluated and the outputs shall be updated.

For the asynchronous forms, the evaluations are automatically performed whenever an input term changes

value or any word in the personality memory is changed.

For both the synchronous and asynchronous forms, the output terms are updated without any delay.

pla_system_task ::=

$array_type$logic$format (memory_type , input_terms , output_terms) ;
array_type ::=

sync | async
logic ::=

and | or | nand | nor
format ::=

array | plane
input_terms ::=

expression

output_terms ::=

variable_lvalue

Table 78—PLA modeling system tasks

$async$and$array $sync$and$array $async$and$plane $sync$and$plane

$async$nand$array $sync$nand$array $async$nand$plane $sync$nand$plane

$async$or$array $sync$or$array $async$or$plane $sync$or$plane

$async$nor$array $sync$nor$array $async$nor$plane $sync$nor$plane

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 303
This is an unapproved IEEE Standards Draft, subject to change.

Examples:

An example of an asynchronous system call is as follows:

wire a1, a2, a3, a4, a5, a6, a7;
reg b1, b2, b3;
wire [1:7] awire;
reg [1:3] breg;

$async$and$array(mem,{a1,a2,a3,a4,a5,a6,a7},{b1,b2,b3});
or
$async$and$array(mem,awire, breg);

An example of a synchronous system call is as follows:

$sync$or$plane(mem,{a1,a2,a3,a4,a5,a6,a7}, {b1,b2,b3});

17.5.2 Array logic types

The logic arrays are modeled with and, or, nand, and nor logic planes. This applies to all array types and

formats.

Examples:

An example of a nor plane system call is as follows:

$async$nor$plane(mem,{a1,a2,a3,a4,a5,a6,a7},{b1,b2,b3});

An example of a nand plane system call is as follows:

$sync$nand$plane(mem,{a1,a2,a3,a4,a5,a6,a7}, {b1,b2,b3});

17.5.3 Logic array personality declaration and loading

The logic array personality is declared as an array of regs that is as wide as the number of input terms and as

deep as the number of output terms.

The personality of the logic array is normally loaded into the memory from a text data file using the system

tasks $readmemb or $readmemh. Alternatively, the personality data can be written directly into the mem-

ory using the procedural assignment statements. PLA personalities can be changed dynamically at any time

during simulation simply by changing the contents of the memory. The new personality shall be reflected on

the outputs of the logic array at the next evaluation.

Example:

The following example shows a logic array with n input terms and m output terms.

reg [1:n] mem[1:m];

NOTE—Put PLA input terms, output terms, and memory in ascending order, as shown in examples in this clause.

17.5.4 Logic array personality formats

Two separate personality formats are supported by the Verilog HDL and are differentiated by using either an

array system call or a plane system call. The array system call allows for a 1 or 0 in the memory that has

been declared. A 1 means take the input value and a 0 means do not take the input value.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

304 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The plane system call complies with the University of California at Berkeley format for Espresso. Each bit

of the data stored in the array has the following meaning:

0 Take the complemented input value

 1 Take the true input value

x Take the “worst case” of the input value

z Don’t-care; the input value is of no significance

 ? Same as z

Examples:

Example 1—The following example illustrates an array with logic equations:

b1 = a1 & a2
b2 = a3 & a4 & a5
b3 = a5 & a6 & a7

The PLA personality is as follows:

1100000 in mem[1]
0011100 in mem[2]
0000111 in mem[3]

The module for the PLA is as follows:

Where the file array.dat contains the binary data for the PLA personality:

 1100000
 0011100
 0000111

A synchronous version of this example has the following description:

module async_array(a1,a2,a3,a4,a5,a6,a7,b1,b2,b3);
input a1, a2, a3, a4, a5, a6, a7 ;
output b1, b2, b3;
reg [1:7] mem[1:3]; // memory declaration for array personality
reg b1, b2, b3;
initial begin

// setup the personality from the file array.dat
$readmemb("array.dat", mem);
// setup an asynchronous logic array with the input
// and output terms expressed as concatenations
$async$and$array(mem,{a1,a2,a3,a4,a5,a6,a7},{b1,b2,b3});

end
endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 305
This is an unapproved IEEE Standards Draft, subject to change.

Example 2—An example of the usage of the plane format tasks follows. The logical function of this PLA is

shown first, followed by the PLA personality in the new format, the Verilog HDL description using the

$async$and$plane system task, and finally the result of running the simulation.

The logical function of the PLA is as follows:

b[1] = a[1] & ~a[2];
b[2] = a[3];
b[3] = ~a[1] & ~a[3];
b[4] = 1;

The PLA personality is as follows:

3’b10?
3’b??1
3’b0?0
3’b???

module sync_array(a1,a2,a3,a4,a5,a6,a7,b1,b2,b3,clk);
input a1, a2, a3, a4, a5, a6, a7, clk;
output b1, b2, b3;
reg [1:7] mem[1:3]; // memory declaration
reg b1, b2, b3;
initial begin

// setup the personality
$readmemb("array.dat", mem);
// setup a synchronous logic array to be evaluated

 // when a positive edge on the clock occurs
forever @(posedge clk)

$async$and$array(mem,{a1,a2,a3,a4,a5,a6,a7},{b1,b2,b3});
end
endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

306 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The output is as follows:

111 -> 0101
000 -> 0011
xxx -> xxx1
101 -> 1101

17.6 Stochastic analysis tasks

This clause describes a set of system tasks and functions that manage queues and generate random numbers

with specific distributions. These tasks facilitate implementation of stochastic queueing models.

The set of tasks and functions that create and manage queues follow:

$q_initialize (q_id, q_type, max_length, status) ;

$q_add (q_id, job_id, inform_id, status) ;

$q_remove (q_id, job_id, inform_id, status) ;

$q_full (q_id, status) ;

$q_exam (q_id, q_stat_code, q_stat_value, status) ;

17.6.1 $q_initialize

The $q_initialize system task creates new queues. The q_id parameter is an integer input that shall

uniquely identify the new queue. The q_type parameter is an integer input. The value of the q_type
parameter specifies the type of the queue as shown in Table 79.

module pla;
`define rows 4
`define cols 3
reg [1:`cols] a, mem[1:`rows];
reg [1:`rows] b;
initial begin

// PLA system call
$async$and$plane(mem,a[1:3],b[1:4]);
mem[1] = 3’b10?;
mem[2] = 3’b??1;
mem[3] = 3’b0?0;
mem[4] = 3’b???;
// stimulus and display
#10 a = 3’b111;
#10 $displayb(a, " -> ", b);
#10 a = 3’b000;
#10 $displayb(a, " -> ", b);
#10 a = 3’bxxx;
#10 $displayb(a, " -> ", b);
#10 a = 3’b101;
#10 $displayb(a, " -> ", b);

end
endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 307
This is an unapproved IEEE Standards Draft, subject to change.

The maximum length parameter is an integer input that specifies the maximum number of entries allowed on

the queue. The success or failure of the creation of the queue is returned as an integer value in status. The

error conditions and corresponding values of status are described in Table 81.

17.6.2 $q_add

The $q_add system task places an entry on a queue. The q_id parameter is an integer input that indicates to

which queue to add the entry. The job_id parameter is an integer input that identifies the job.

The inform_id parameter is an integer input that is associated with the queue entry. Its meaning is user-

defined. For example, inform_id parameter can represent execution time for an entry in a CPU model.

The status parameter reports on the success of the operation or error conditions as described in Table 81.

17.6.3 $q_remove

The $q_remove system task receives an entry from a queue. The q_id parameter is an integer input that

indicates from which queue to remove. The job_id parameter is an integer output that identifies the entry

being removed. The inform_id parameter is an integer output that the queue manager stored during

$q_add. Its meaning is user-defined. The status parameter reports on the success of the operation or error

conditions as described in Table 81.

17.6.4 $q_full

The $q_full system function checks whether there is room for another entry on a queue. It returns 0 when

the queue is not full and 1 when the queue is full.

17.6.5 $q_exam

The $q_exam system task provides statistical information about activity at the queue q_id. It returns a

value in q_stat_value depending on the information requested in q_stat_code. The values of

q_stat_code and the corresponding information returned in q_stat_value are described in Table 80.

Table 79—Types of queues of $q_type values

q_type value Type of queue

1 first-in, first-out

2 last-in, first-out

Table 80—Parameter values for $q_exam system task

Value requested in
q_stat_code

 Information received back
from q_stat_value

1 Current queue length

2 Mean interarrival time

3 Maximum queue length

4 Shortest wait time ever

5 Longest wait time for jobs still in the queue

6 Average wait time in the queue

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

308 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

17.6.6 Status codes

All of the queue management tasks and functions return an output status parameter. The status parameter

values and corresponding information are described in Table 81.

17.7 Simulation time system functions

The following system functions provide access to current simulation time:

$time $stime $realtime

17.7.1 $time

The syntax for $time system function is shown in Syntax 17-14.

Syntax 17-14—Syntax for $time

The $time system function returns an integer that is a 64-bit time, scaled to the timescale unit of the module

that invoked it.

Table 81—Status parameter values

Status parameter
values What it means

0 OK

1 Queue full, cannot add

2 Undefined q_id

3 Queue empty, cannot remove

4 Unsupported queue type, cannot create queue

5 Specified length <= 0, cannot create queue

6 Duplicate q_id, cannot create queue

7 Not enough memory, cannot create queue

time_function ::=

$time

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 309
This is an unapproved IEEE Standards Draft, subject to change.

Example:

In this example, the reg set is assigned the value 0 at simulation time 16 ns, and the value 1 at simulation

time 32 ns. Note that these times do not match the times reported by $time. The time values returned by the

$time system function are determined by the following steps:

a) The simulation times 16ns and 32 ns are scaled to 1.6 and 3.2 because the time unit for the module

is 10 ns, so time values reported by this module are multiples of 10 ns.

b) The value 1.6 is rounded to 2, and 3.2 is rounded to 3 because the $time system function returns

an integer. The time precision does not cause rounding of these values.

17.7.2 $stime

The syntax for $stime system function is shown in Syntax 17-15.

Syntax 17-15—Syntax for $stime

The $stime system function returns an unsigned integer that is a 32-bit time, scaled to the timescale unit of

the module that invoked it. If the actual simulation time does not fit in 32 bits, the low order 32 bits of the

current simulation time are returned.

17.7.3 $realtime

The syntax for $realtime system function is shown in Syntax 17-16.

Syntax 17-16—Syntax for $realtime

stime_function ::=

$stime

realtime_function ::= $realtime

`timescale 10 ns / 1 ns
module test;
reg set;
parameter p = 1.55;
initial begin

$monitor($time,,"set=",set);
#p set = 0;
#p set = 1;

end
endmodule

// The output from this example is as follows:
// 0 set=x
// 2 set=0
// 3 set=1

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

310 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The $realtime system function returns a real number time that, like $time, is scaled to the time unit of the

module that invoked it.

Example:

In this example, the event times in the reg set are multiples of 10 ns because 10 ns is the time unit of the

module. They are real numbers because $realtime returns a real number.

17.8 Conversion functions

The following functions handle real values:

integer $rtoi(real_val) ;
real $itor(int_val) ;
[63:0] $realtobits(real_val) ;
real $bitstoreal(bit_val) ;

$rtoi converts real values to integers by truncating the real value (for example, 123.45 becomes

123)

$itor converts integers to real values (for example, 123 becomes 123.0)

$realtobits passes bit patterns across module ports; converts from a real number to the 64-bit

representation (vector) of that real number

$bitstoreal is the reverse of $realtobits; converts from the bit pattern to a real number.

The real numbers accepted or generated by these functions shall conform to the IEEE Std 754-1985 [B1]
representation of the real number. The conversion shall round the result to the nearest valid representation.

Example:

The following example shows how the $realtobits and $bitstoreal functions are used in port connections:

`timescale 10 ns / 1 ns
module test;
reg set;
parameter p = 1.55;
initial begin

$monitor($realtime,,"set=",set);
#p set = 0;
#p set = 1;

end
endmodule

// The output from this example is as follows:
// 0 set=x
// 1.6 set=0
// 3.2 set=1

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 311
This is an unapproved IEEE Standards Draft, subject to change.

See 4.5 for a description of $signed and $unsigned.

17.9 Probabilistic distribution functions

There are a set of random number generators that return integer values distributed according to standard

probabilistic functions.

17.9.1 $random function

The syntax for the system function $random is shown in Syntax 17-17.

Syntax 17-17—Syntax for $random

The system function $random provides a mechanism for generating random numbers. The function returns

a new 32-bit random number each time it is called. The random number is a signed integer; it can be positive

or negative. For further information on probabilistic random number generators, see 17.9.2.

The seed parameter controls the numbers that $random returns such that different seeds generate different

random streams. The seed parameter shall be either a reg, an integer, or a time variable. The seed value

should be assigned to this variable prior to calling $random.

Examples:

Example 1—Where b is greater than 0, the expression ($random % b) gives a number in the following

range: [(-b+1): (b-1)].

The following code fragment shows an example of random number generation between -59 and 59:

reg [23:0] rand;
rand = $random % 60;

random_function ::=

$random [(seed)] ;

module driver (net_r);
output net_r;
real r;
wire [64:1] net_r = $realtobits(r);
endmodule

module receiver (net_r);
input net_r;
wire [64:1] net_r;
real r;
initial assign r = $bitstoreal(net_r);
endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

312 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Example 2—The following example shows how adding the concatenation operator to the preceding example

gives rand a positive value from 0 to 59.

reg [23:0] rand;
rand = {$random} % 60;

17.9.2 $dist_ functions

Syntax 17-18—Syntax for the probabilistic distribution functions

All parameters to the system functions are integer values. For the exponential, poisson, chi-
square, t, and erlang functions, the parameters mean, degree of freedom, and k_stage shall be

greater than 0.

Each of these functions returns a pseudo-random number whose characteristics are described by the function

name. That is, $dist_uniform returns random numbers uniformly distributed in the interval specified by its

parameters.

For each system function, the seed parameter is an in-out parameter; that is, a value is passed to the function

and a different value is returned. The system functions shall always return the same value given the same

seed. This facilitates debugging by making the operation of the system repeatable. The argument for the

seed parameter should be an integer variable that is initialized by the user and only updated by the system

function. This ensures the desired distribution is achieved.

In the $dist_uniform function, the start and end parameters are integer inputs that bound the values

returned. The start value should be smaller than the end value.

The mean parameter, used by $dist_normal, $dist_exponential, $dist_poisson, and $dist_erlang, is an

integer input that causes the average value returned by the function to approach the value specified.

The standard deviation parameter used with the $dist_normal function is an integer input that helps deter-

mine the shape of the density function. Larger numbers for standard deviation spread the returned values

over a wider range.

The degree of freedom parameter used with the $dist_chi_square and $dist_t functions is an integer input

that helps determine the shape of the density function. Larger numbers spread the returned values over a

wider range.

dist_functions ::=

$dist_uniform (seed , start , end) ;
| $dist_normal (seed , mean , standard_deviation) ;
| $dist_exponential (seed , mean) ;
| $dist_poisson (seed , mean) ;
| $dist_chi_square (seed , degree_of_freedom) ;
| $dist_t (seed , degree_of_freedom) ;
| $dist_erlang (seed , k_stage , mean) ;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 313
This is an unapproved IEEE Standards Draft, subject to change.

17.9.3 Algorithm for probabilistic distribution functions

Table 82 shows the Verilog probabilistic distribution functions listed with their corresponding C functions.

The algorithm for these functions is defined by the following C code.

/*
* Algorithm for probabilistic distribution functions.
*
* IEEE Std 1364-2001 Verilog Hardware Description Language (HDL).
*/

#include <limits.h>

static double uniform(long *seed, long start, long end);
static double normal(long *seed, long mean, long deviation);
static double exponential(long *seed, long mean);
static long poisson(long *seed, long mean);
static double chi_square(long *seed, long deg_of_free);
static double t(long *seed, long deg_of_free);
static double erlangian(long *seed, long k, long mean);

long
rtl_dist_chi_square(seed, df)
 long *seed;
 long df;
{
 double r;
 long i;

if(df>0)
 {
 r=chi_square(seed,df);

if(r>=0)
 {
 i=(long)(r+0.5);

Table 82—Verilog to C function cross-listing

Verilog function C function

$dist_uniform rtl_dist_uniform

$dist_normal rtl_dist_normal

$dist_exponential rtl_dist_exponential

$dist_poisson rtl_dist_poisson

$dist_chi_square rtl_dist_chi_square

$dist_t rtl_dist_t

$dist_erlang rtl_dist_erlang

$random rtl_dist_uniform(seed,

LONG_MIN, LONG_MAX)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

314 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

 }
 else
 {
 r = -r;
 i=(long)(r+0.5);
 i = -i;
 }
 }
 else

 {
print_error("WARNING: Chi_square distribution must ",

 "have positive degree of freedom\n");
 i=0;
 }

 return (i);
}

long
rtl_dist_erlang(seed, k, mean)
 long *seed;
 long k, mean;
{
 double r;
 long i;

if(k>0)
 {
 r=erlangian(seed,k,mean);

if(r>=0)
 {
 i=(long)(r+0.5);
 }

else
 {
 r = -r;
 i=(long)(r+0.5);
 i = -i;
 }
 }

else
 {

print_error("WARNING: k-stage erlangian distribution ",
"must have positive k\n");

 i=0;
 }

return (i);
}

long
rtl_dist_exponential(seed, mean)
 long *seed;
 long mean;
{

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 315
This is an unapproved IEEE Standards Draft, subject to change.

 double r;
 long i;

if(mean>0)
 {
 r=exponential(seed,mean);

if(r>=0)

 {
 i=(long)(r+0.5);
 }

else

 {
 r = -r;
 i=(long)(r+0.5);
 i = -i;
 }
 }

else
 {
 print_error("WARNING: Exponential distribution must ",

"have a positive mean\n");
 i=0;
 }

 return (i);
}

long
rtl_dist_normal(seed, mean, sd)
 long *seed;
 long mean, sd;
{
 double r;
 long i;

 r=normal(seed,mean,sd);
 if(r>=0)
 {
 i=(long)(r+0.5);
 }

else
 {
 r = -r;
 i=(long)(r+0.5);
 i = -i;
 }

 return (i);
}

long
rtl_dist_poisson(seed, mean)
 long *seed;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

316 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

 long mean;
{
 long i;

if(mean>0)
 {
 i=poisson(seed,mean);
 }

else
 {

print_error("WARNING: Poisson distribution must have a ",
"positive mean\n");

 i=0;
 }
 return (i);
}

long
rtl_dist_t(seed, df)
 long *seed;
 long df;
{
 double r;
 long i;

if(df>0)
 {
 r=t(seed,df);

if(r>=0)
 {
 i=(long)(r+0.5);
 }

else
 {
 r = -r;
 i=(long)(r+0.5);
 i = -i;
 }
 }

else
 {

print_error("WARNING: t distribution must have positive ",
 "degree of freedom\n");
 i=0;
 }
 return (i);
}

long
rtl_dist_uniform(seed, start, end)
 long *seed;
 long start, end;
{
 double r;
 long i;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 317
This is an unapproved IEEE Standards Draft, subject to change.

if (start >= end) return(start);

if (end != LONG_MAX)
 {

end++;
 r = uniform(seed, start, end);

if (r >= 0)

 {
 i = (long) r;
 }

else
 {
 i = (long) (r-1);
 }

if (i<start) i = start;
if (i>=end) i = end-1;

 }
else if (start!=LONG_MIN)

 {
 start--;
 r = uniform(seed, start, end) + 1.0;

if (r>=0)
 {
 i = (long) r;
 }

else
 {
 i = (long) (r-1);
 }

if (i<=start) i = start+1;
if (i>end) i = end;

 }
else

 {
 r =(uniform(seed,start,end)+
 2147483648.0)/4294967295.0);
 r = r*4294967296.0-2147483648.0;

if (r>=0)
 {
 i = (long) r;
 }

else
 {
 i = (long) (r-1);
 }
 }

 return (i);
}

static double
uniform(seed, start, end)
 long *seed, start, end;
{

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

318 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

 union u_s
 {
 float s;
 unsigned stemp;
 } u;

 double d = 0.00000011920928955078125;
 double a,b,c;

if ((*seed) == 0)
 *seed = 259341593;

if (start >= end)
 {
 a = 0.0;
 b = 2147483647.0;
 }

else
 {
 a = (double) start;
 b = (double) end;
 }
 *seed = 69069 * (*seed) + 1;
 u.stemp = *seed;

 /*
 * This relies on IEEE floating point format
 */
 u.stemp = (u.stemp >> 9) | 0x3f800000;

 c = (double) u.s;

 c = c+(c*d);
 c = ((b - a) * (c - 1.0)) + a;

 return (c);
}

static double
normal(seed,mean,deviation)
long *seed,mean,deviation;
{
 double v1,v2,s;
 double log(), sqrt();

 s = 1.0;
while((s >= 1.0) || (s == 0.0))

 {
 v1 = uniform(seed,-1,1);
 v2 = uniform(seed,-1,1);
 s = v1 * v1 + v2 * v2;
 }
 s = v1 * sqrt(-2.0 * log(s) / s);
 v1 = (double) deviation;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 319
This is an unapproved IEEE Standards Draft, subject to change.

 v2 = (double) mean;
 return(s * v1 + v2);
}

static double
exponential(seed,mean)
long *seed,mean;
{
 double log(),n;
 n = uniform(seed,0,1);

if(n != 0)
 {
 n = -log(n) * mean;
 }
 return(n);
}

static long
poisson(seed,mean)
long *seed,mean;
{
 long n;
 double p,q;
 double exp();

 n = 0;
 q = -(double)mean;
 p = exp(q);
 q = uniform(seed,0,1);

while(p < q)
 {
 n++;
 q = uniform(seed,0,1) * q;
 }
 return(n);
}

static double
chi_square(seed,deg_of_free)
long *seed,deg_of_free;
{
 double x;
 long k;
 if(deg_of_free % 2)
 {
 x = normal(seed,0,1);
 x = x * x;
 }
 else
 {
 x = 0.0;

}
 for(k = 2; k <= deg_of_free; k = k + 2)
 {
 x = x + 2 * exponential(seed,1);
 }

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

320 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

 return(x);
}

static double
t(seed,deg_of_free)
long *seed,deg_of_free;

{
 double sqrt(),x;
 double chi2 = chi_square(seed,deg_of_free);
 double div = chi2 / (double)deg_of_free;
 double root = sqrt(div);
 x = normal(seed,0,1) / root;
 return(x);
}

static double
erlangian(seed,k,mean)
long *seed,k,mean;
{
 double x,log(),a,b;
 long i;

 x=1.0;
for(i=1;i<=k;i++)

 {
 x = x * uniform(seed,0,1);
 }
 a=(double)mean;
 b=(double)k;
 x= -a*log(x)/b;
 return(x);
}

17.10 Command line input

An alternative to reading a file to obtain information for use in the simulation is specifying information with

the command to invoke the simulator. This information is in the form of a optional argument provided to the

simulation. These arguments are visually distinguished from other simulator arguments by their starting with

the plus (+) character.

These arguments, referred to below as plusargs, are accessible through the system functions described in

17.10.1 and 17.10.2.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 321
This is an unapproved IEEE Standards Draft, subject to change.

17.10.1 $test$plusargs (string)

This system function searches the list of plusargs for a user specified plusarg_string. The string is specified

in the argument to the system function as either a string or a non-real variable that is interpreted as a string.

This string shall not include the leading plus sign of the command line argument. The plusargs present on

the command line are searched in the order provided. If the prefix of one of the supplied plusargs matches all

characters in the provided string, the function returns a non-zero integer. If no plusarg from the command

line matches the string provided, the function returns the integer value zero.

Examples:

Run simulator with command: +HELLO

The Verilog code is:

initial begin
if ($test$plusargs("HELLO")) $display("Hello argument found.")
if ($test$plusargs("HE")) $display("The HE subset string is detected.");
if ($test$plusargs("H")) $display("Argument starting with H found.");
if ($test$plusargs("HELLO_HERE"))$display("Long argument.");
if ($test$plusargs("HI")) $display("Simple greeting.");
if ($test$plusargs("LO")) $display("Does not match.");

end

This would produce the following output:

Hello argument found.
The HE subset string is detected.
Argument starting with H found.

17.10.2 $value$plusargs (user_string, variable)

This system function searches the list of plusargs (like the $test$plusargs system function) for a user speci-

fied plusarg_string. The string is specified in the first argument to the system function as either a string or a

non-real variable that is interpreted as a string. This string shall not include the leading plus sign of the com-

mand line argument. The plusargs present on the command line are searched in the order provided. If the

prefix of one of the supplied plusargs matches all characters in the provided string, the function returns a

non-zero integer, the remainder of the string is converted to the type specified in the user_string and the

resulting value is stored in the variable provided. If no string is found matching, the function returns the inte-

ger value zero and the variable provided is not modified. No warnings shall be generated when the function

returns zero (0).

The user_string shall be of the form: "plusarg_string format_string". The format strings are the same as the

$display system tasks. These are the only valid ones (upper and lower case as well as leading 0 forms are

valid):

%d decimal conversion
%o octal conversion
%h hexadecimal conversion
%b binary conversion
%e real exponential conversion
%f real decimal conversion
%g real decimal or exponential conversion
%s string (no conversion)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

322 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The first string from the list of plusargs provided to the simulator, which matches the plusarg_string portion

of the user_string specified shall be the plusarg string available for conversion. The remainder string of the

matching plusarg (the remainder is the part of the plusarg string after the portion which matches the user’s

plusarg_string) shall be converted from a string into the format indicated by the format string and stored in

the variable provided. If there is no remaining string, the value stored into the variable shall either be a zero

(0) or an empty string value.

If the size of the variable is larger than the value after conversion, the value stored is zero-padded to the

width of the variable. If the variable can not contain the value after conversion, the value shall be truncated.

If the value is negative, the value shall be considered larger than the variable provided. If characters exist in

the string available for conversion, which are illegal for the specified conversion, the variable shall be written

with the value ’bx.

Examples:

+FINISH=10000 +TESTNAME=this_test +FREQ+5.6666 +FREQUENCY +TEST12

// Get clock to terminate simulation if specified.
real frequency;
reg [8*32:1] testname;
integer stop_clock;
if ($value$plusargs("FINISH=%d", stop_clock))

begin
repeat (stop_clock) @(posedge clk);
$finish;
end

// Get testname from plusarg.
if ($value$plusargs("TESTNAME=%s", testname))

begin
$display("Running test %0s.", testname);

 startTest();
end

// Get frequency from command line; set default if not specified.
if (!$value$plusargs("FREQ+%0F", frequency))
 frequency = 8.33333; // 166MHz;

forever
begin
 #frequency clk = 0;
 #frequency clk = 1;
end

reg [64*8:1] pstring;
pstring = "+TEST%d";
if ($value$plusargs(pstring, test[31:0))

begin
$display("Running test number %0d.", test);

 startTest();
end

This code would have the following effects:

— The variable test would get the value ’d12.
— The variable stop_clock obtains the value 10000.
— The variable testname obtains the value this_test.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 323
This is an unapproved IEEE Standards Draft, subject to change.

— The variable frequency obtains the value 5.6666; note the final plusarg +FREQUENCY does not
affect the value of the variable frequency.

The output is:

Running test this_test.
Running test number 12.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

324 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

18. Value change dump (VCD) files

A value change dump (VCD) file contains information about value changes on selected variables in the

design stored by value change dump system tasks. Two types of VCD files exist:

a) Four state: to represent variable changes in 0, 1, x, and z with no strength information.

b) Extended: to represent variable changes in all states and strength information.

This clause describes how to generate both types of VCD files and their format.

18.1 Creating the four state value change dump file

The steps involved in creating the four state VCD file are listed below and illustrated in Figure 51.

a) Insert the VCD system tasks in the Verilog source file to define the dump file name and to specify the

variables to be dumped.

b) Run the simulation.

Figure 51—Creating the four state VCD file

A VCD file is an ASCII file which contains header information, variable definitions, and the value changes

for all variables specified in the task calls.

Several system tasks can be inserted in the source description to create and control the VCD file.

18.1.1 Specifying the name of the dump file ($dumpfile)

The $dumpfile task shall be used to specify the name of the VCD file. The syntax for the task is given in

Syntax 18-1.

initial

$dumpfile(“dump1.dump”);
 .
 .
 .
$dumpvars(...)
 .
 .
 .

simulation

Verilog Source File Four State VCD File
dump1.dump

(Header
Information)

(Node
Information)

(Value
Changes)

User
Postprocessing

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 325
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 18-1—Syntax for $dumpfile task

The filename syntax is given in Syntax 18-2.

Syntax 18-2—Syntax for filename

The filename is optional and defaults to the literal string dump.vcd if not specified.

Example:

initial $dumpfile ("module1.dump") ;

18.1.2 Specifying the variables to be dumped ($dumpvars)

The $dumpvars task shall be used to list which variables to dump into the file specified by $dumpfile. The

$dumpvars task can be invoked as often as desired throughout the model (for example, within various

blocks), but the execution of all the $dumpvars tasks shall be at the same simulation time.

The $dumpvars task can be used with or without arguments. The syntax for the $dumpvars task is given in

Syntax 18-3.

Syntax 18-3—Syntax for $dumpvars task

When invoked with no arguments, $dumpvars dumps all the variables in the model to the VCD file.

dumpfile_task ::=

$dumpfile (filename) ;

filename ::=

literal_string

| variable

| expression

dumpvars_task ::= (Not in the Annex A BNF)
$dumpvars ;

| $dumpvars (levels [, list_of_modules_or_variables]) ;
list_of_modules_or_variables ::= (Not in the Annex A BNF)

module_or_variable { , module_or_variable }

module_or_variable ::=

module_identifier

| variable_identifier

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

326 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

When the $dumpvars task is specified with arguments, the first argument indicates how many levels of the

hierarchy below each specified module instance to dump to the VCD file. Subsequent arguments specify

which scopes of the model to dump to the VCD file. These arguments can specify entire modules or individ-

ual variables within a module.

Setting the first argument to 0 causes a dump of all variables in the specified module and in all module

instances below the specified module. The argument 0 applies only to subsequent arguments which specify

module instances, and not to individual variables.

Examples:

Example 1

$dumpvars (1, top);

Because the first argument is a 1, this invocation dumps all variables within the module top; it does not

dump variables in any of the modules instantiated by module top.

Example 2

$dumpvars (0, top);

In this example, the $dumpvars task shall dump all variables in the module top and in all module instances

below module top in the hierarchy.

Example 3—This example shows how the $dumpvars task can specify both modules and individual vari-

ables:

$dumpvars (0, top.mod1, top.mod2.net1);

This call shall dump all variables in module mod1 and in all module instances below mod1, along with vari-

able net1 in module mod2. The argument 0 applies only to the module instance top.mod1 and not to the

individual variable top.mod2.net1.

18.1.3 Stopping and resuming the dump ($dumpoff/$dumpon)

Executing the $dumpvars task causes the value change dumping to start at the end of the current simulation

time unit. To suspend the dump, the $dumpoff task can be invoked. To resume the dump, the $dumpon task

can be invoked. The syntax of these two tasks is given in Syntax 18-4.

Syntax 18-4—Syntax for $dumpoff and $dumpon tasks

When the $dumpoff task is executed, a checkpoint is made in which every selected variable is dumped as an

x value. When the $dumpon task is later executed, each variable is dumped with its value at that time. In the

interval between $dumpoff and $dumpon, no value changes are dumped.

dumpoff_task ::=

$dumpoff ;
dumpon_task ::=

$dumpon ;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 327
This is an unapproved IEEE Standards Draft, subject to change.

The $dumpoff and $dumpon tasks provide the mechanism to control the simulation period during which

the dump shall take place.

Example:

This example starts the value change dump after 10 time units, stops it 200 time units later (at time 210),

restarts it again 800 time units later (at time 1010), and stops it 900 time units later (at time 1910).

18.1.4 Generating a checkpoint ($dumpall)

The $dumpall task creates a checkpoint in the VCD file which shows the current value of all selected vari-

ables. The syntax is given in Syntax 18-5.

Syntax 18-5—Syntax for $dumpall task

When dumping is enabled, the value change dumper records the values of the variables which change during

each time increment. Values of variables which do not change during a time increment are not dumped.

18.1.5 Limiting the size of the dump file ($dumplimit)

The $dumplimit task can be used to set the size of the VCD file. The syntax for this task is given in

Syntax 18-6.

Syntax 18-6—Syntax fro $dumplimit task

The filesize argument which specifies the maximum size of the VCD file in bytes. When the size of the VCD

file reaches this number of bytes, the dumping stops and a comment is inserted in the VCD file indicating the

dump limit was reached.

dumpall_task ::=

$dumpall ;

dumplimit_task ::=

$dumplimit (filesize) ;

initial begin
#10 $dumpvars(. . .);

#200 $dumpoff;

#800 $dumpon;

#900 $dumpoff;
end

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

328 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

18.1.6 Reading the dump file during simulation ($dumpflush)

The $dumpflush task can be used to empty the VCD file buffer of the operating system to ensure all the data

in that buffer is stored in the VCD file. After executing a $dumpflush task, dumping is resumed as before so

no value changes are lost. The syntax for the task is given in Syntax 18-7.

Syntax 18-7—Syntax for $dumpflush task

A common application is to call $dumpflush to update the dump file so an application program can read the

VCD file during a simulation.

Examples:

Example 1—This example shows how the $dumpflush task can be used in a Verilog HDL source file:

Example 2—The following is a simple source description example to produce a VCD file.

In this example, the name of the dump file is verilog.dump. It dumps value changes for all variables in

the model. Dumping begins when an event do_dump occurs. The dumping continues for 500 clock cycles,

then stops and waits for the event do_dump to be triggered again. At every 10000 time steps, the current

values of all VCD variables are dumped.

dumpflush_task ::=

$dumpflush ;

initial begin
$dumpvars ;

.

.

.

$dumpflush ;

$(applications program) ;

end

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 329
This is an unapproved IEEE Standards Draft, subject to change.

18.2 Format of the four state VCD file

The dump file is structured in a free format. White space is used to separate commands and to make the file

easily readable by a text editor.

18.2.1 Syntax of the four state VCD file

The syntax of the four state VCD file is given in Syntax 18-8.

module dump;
event do_dump;

initial $dumpfile("verilog.dump");
initial @do_dump

$dumpvars; //dump variables in the design

always @do_dump //to begin the dump at event do_dump
begin

$dumpon; //no effect the first time through
repeat (500) @(posedge clock); //dump for 500 cycles
$dumpoff; //stop the dump

end

initial @(do_dump)
forever #10000 $dumpall; //checkpoint all variables

endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

330 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 18-8—Syntax of the output four state VCD file

The VCD file starts with header information giving the date, the version number of the simulator used for the

simulation, and the timescale used. Next, the file contains definitions of the scope and type of variables being

dumped, followed by the actual value changes at each simulation time increment. Only the variables which

change value during a time increment are listed.

The simulation time recorded in VCD file is the absolute value of the simulation time for the changes in vari-

able values which follow.

Value changes for real variables are specified by real numbers.Value changes for all other variables are spec-

ified in binary format by 0, 1, x, or z values. Strength information and memories are not dumped.

A real number is dumped using a %.16g printf() format. This preserves the precision of that number

by outputting all 53 bits in the mantissa of a 64-bit IEEE Std 754-1985 [B1] double-precision number.

Application programs can read a real number using a %g format to scanf().

value_change_dump_definitions ::=

{ declaration_command }{ simulation_command }

declaration_command ::=

declaration_keyword

[command_text]

$end
simulation_command ::=

simulation_keyword { value_change } $end
| $comment [comment_text] $end
| simulation_time

| value_change

declaration_keyword ::=

$comment | $date | $enddefinitions | $scope | $timescale | $upscope
| $var | $version

simulation_keyword ::=

$dumpall | $dumpoff | $dumpon | $dumpvars
simulation_time ::=

decimal_number

value_change ::=

scalar_value_change

| vector_value_change

scalar_value_change ::=

value identifier_code

value ::=

0 | 1 | x | X | z | Z
vector_value_change ::=

b binary_number identifier_code

| B binary_number identifier_code

| r real_number identifier_code

| R real_number identifier_code

identifier_code ::=

{ ASCII character }

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 331
This is an unapproved IEEE Standards Draft, subject to change.

The value change dumper generates character identifier codes to represent variables. The identifier code is a

code composed of the printable characters which are in the ASCII character set from ! to ~ (decimal 33 to

126).

NOTES:

1) The VCD format does not support a mechanism to dump part of a vector. For example, bits 8 to 15 (8:15) of a 16-bit

vector cannot be dumped in VCD file; instead, the entire vector (0:15) has to be dumped. In addition, expressions, such

as a + b, cannot be dumped in the VCD file.

2) Data in the VCD file is case sensitive.

18.2.2 Formats of variable values

Variables can be either scalars or vectors. Each type is dumped in its own format. Dumps of value changes to

scalar variables shall not have any white space between the value and the identifier code.

Dumps of value changes to vectors shall not have any white space between the base letter and the value dig-

its, but they shall have one white space between the value digits and the identifier code.

The output format for each value is right-justified. Vector values appear in the shortest form possible: redun-

dant bit values which result from left-extending values to fill a particular vector size are eliminated.

The rules for left-extending vector values are given in Table 83.

Table 84 shows how the VCD can shorten values.

Events are dumped in the same format as scalars; for example, 1*%. For events, however, the value (1 in this

example) is irrelevant. Only the identifier code (*% in this example) is significant. It appears in the VCD file

as a marker to indicate the event was triggered during the time step.

Table 83—Rules for left-extending vector values

When the value is VCD left-extends with

1 0

0 0

Z Z

X X

Table 84—How the VCD can shorten values

The binary value Extends to fill a
4-bit reg as

Appears in the
VCD file as

10 0010 b10

X10 XX10 bX10

ZX0 ZZX0 bZX0

0X10 0X10 b0X10

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

332 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Examples:

1*@ No space between the value 1 and the identifier code *@

b1100x01z (k No space between the b and 1100x01z,
but a space between b1100x01z and (k

18.2.3 Description of keyword commands

The general information in the VCD file is presented as a series of sections surrounded by keywords. Key-

word commands provide a means of inserting information in the VCD file. Keyword commands can be

inserted either by the dumper or manually.

This sub clause deals with the keyword commands given in Table 85.

18.2.3.1 $comment

The $comment section provides a means of inserting a comment in the VCD file. The syntax for the section

is given in Syntax 18-9.

Syntax 18-9—Syntax for $comment section

Examples:

$comment This is a single-line comment $end
$comment This is a
multiple-line comment
$end

18.2.3.2 $date

The $date section indicates the date on which the VCD file was generated.The syntax for the section is given

in Syntax 18-10.

Table 85—Keyword commands

Declaration keywords Simulation keywords

$comment $timescale $dumpall

$date $upscope $dumpoff

$enddefinitions $var $dumpon

$scope $version $dumpvars

vcd_declaration_comment ::=

$comment comment_text $end

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 333
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 18-10—Syntax for $date section

Example:

$date
June 25, 1989 09:24:35

$end

18.2.3.3 $enddefinitions

The $enddefinitions section marks the end of the header information and definitions.The syntax for the

section is given in Syntax 18-11.

.

Syntax 18-11—Syntax for $enddefinitions section

18.2.3.4 $scope

The $scope section defines the scope of the variables being dumped.The syntax for the section is given in

Syntax 18-12.

Syntax 18-12—Syntax for $scope section

The scope type indicates one of the following scopes:

module Top-level module and module instances

task Tasks

function Functions

begin Named sequential blocks

fork Named parallel blocks

vcd_declaration_date ::=

$date date_text $end

vcd_declaration_enddefinitions ::=

$enddefinitions $end

vcd_declaration_scope ::=

$scope scope_type scope_identifier $end
scope_type ::=

begin
| fork
| function
| module
| task

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

334 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Example:

$scope
module top

$end

18.2.3.5 $timescale

The $timescale keyword specifies what timescale was used for the simulation.The syntax for the keyword is

given in Syntax 18-13.

Syntax 18-13—Syntax for $timescale

Example:

$timescale 10 ns $end

18.2.3.6 $upscope

The $upscope section indicates a change of scope to the next higher level in the design hierarchy. The syn-

tax for the section is given in Syntax 18-14.

Syntax 18-14—Syntax for $upscope section

18.2.3.7 $version

The $version section indicates which version of the VCD writer was used to produce the VCD file and the

$dumpfile system task used to create the file. If a variable or an expression was used to specify the filename
within $dumpfile, the unevaluated variable or expression literal shall appear in the $version string. The syn-

tax for the $version section is given in Syntax 18-15.

Syntax 18-15—Syntax for $version section

vcd_declaration_timescale ::=

$timescale time_number time_unit $end
time_number ::=

1 | 10 | 100
time_unit ::=

s | ms | us | ns | ps | fs

vcd_declaration_upscope ::=

$upscope $end

vcd_declaration_version ::=

$version version_text system_task $end

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 335
This is an unapproved IEEE Standards Draft, subject to change.

Example:

$version
 VERILOG-SIMULATOR 1.0a

$dumpfile(“dump1.dump”)
$end

18.2.3.8 $var

The $var section prints the names and identifier codes of the variables being dumped. The syntax for the

section is given in Syntax 18-16.

Syntax 18-16—Syntax for $var section

Size specifies how many bits are in the variable.

The identifier code specifies the name of the variable using printable ASCII characters, as previously

described.

a) The msb index indicates the most significant index; the lsb index indicates the least significant

index.

b) More than one reference name can be mapped to the same identifier code. For example, net10 and

net15 can be interconnected in the circuit and therefore have the same identifier code.

c) The individual bits of vector nets can be dumped individually.

d) The identifier is the name of the variable being dumped in the model.

Example:

$var
integer 32 (2 index

$end

vcd_declaration_vars ::=

$var var_type size identifier_code reference $end
var_type ::=

event | integer | parameter | real | reg | supply0 | supply1 | time
| tri | triand | trior | trireg | tri0 | tri1 | wand | wire | wor

size ::=

decimal_number

reference ::=

identifier

| identifier [bit_select_index]
| identifier [msb_index : lsb_index]

index ::=

decimal_number

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

336 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

18.2.3.9 $dumpall

The $dumpall keyword specifies current values of all variables dumped. The syntax for the keyword is

given in Syntax 18-17.

Syntax 18-17—Syntax for $dumpall keyword

Example:

$dumpall 1*@ x*# 0*$ bx (k $end

18.2.3.10 $dumpoff

The $dumpoff keyword indicates all variables dumped with X values. The syntax for the keyword is given

in Syntax 18-18.

Syntax 18-18—Syntax for $dumpoff keyword

Example:

$dumpoff x*@ x*# x*$ bx (k $end

18.2.3.11 $dumpon

The $dumpon keyword indicates resumption of dumping and lists current values of all variables dumped.

The syntax for the keyword is given in Syntax 18-19.

Syntax 18-19—Syntax for $dumpon keyword

Example:

$dumpon x*@ 0*# x*$ b1 (k $end

vcd_simulation_dumpall ::=

$dumpall { value_changes } $end

vcd_simulation_dumpoff ::=

$dumpoff { value_changes } $end

vcd_simulation_dumpon ::=

$dumpon { value_changes } $end

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 337
This is an unapproved IEEE Standards Draft, subject to change.

18.2.3.12 $dumpvars

The section beginning with $dumpvars keyword lists initial values of all variables dumped. The syntax for

the keyword is given in Syntax 18-20.

Syntax 18-20—Syntax for $dumpvars keyword

Example:

$dumpvars x*@ z*$ b0 (k $end

vcd_simulation_dumpvars ::=

$dumpvars { value_changes } $end

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

338 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

18.2.4 Four state VCD file format example

The following example illustrates the format of the four state VCD file.

$date June 26, 1989 10:05:41
$end
$version VERILOG-SIMULATOR 1.0a
$end
$timescale 1 ns
$end
$scope module top $end
$scope module m1 $end
$var trireg 1 *@ net1 $end
$var trireg 1 *# net2 $end
$var trireg 1 *$ net3 $end
$upscope $end
$scope task t1 $end
$var reg 32 (k accumulator[31:0] $end
$var integer 32 {2 index $end
$upscope $end
$upscope $end
$enddefinitions $end
$comment
 Note: $dumpvars was executed at time ’#500’.
 All initial values are dumped at this time.
$end

#500
$dumpvars
x*@
x*#
x*$
bx (k
bx {2
$end
#505
0*@
1*#
1*$
b10zx1110x11100 (k
b1111000101z01x {2
#510
0*$
#520
1*$
#530
0*$
bz (k
#535
$dumpall 0*@ 1*# 0*$

bz (k
b1111000101z01x {2
$end
#540
1*$
#1000
$dumpoff
x*@
x*#
x*$
bx (k
bx {2
$end
#2000
$dumpon
z*@
1*#
0*$
b0 (k
bx {2
$end
#2010
1*$

(Continued in right column)

(Continued from left column)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 339
This is an unapproved IEEE Standards Draft, subject to change.

18.3 Creating the extended value change dump file

The steps involved in creating the extended VCD file are listed below and illustrated in Figure 52.

Figure 52—Creating the extended VCD file

a) Insert the extended VCD system tasks in the Verilog source file to define the dump file name and to

specify the variables to be dumped.

b) Run the simulation.

The four state VCD file rules and syntax apply to the extended VCD file unless otherwise stated in this

section.

18.3.1 Specifying the dumpfile name and the ports to be dumped ($dumpports)

The $dumpports task shall be used to specify the name of the VCD file and the ports to be dumped. The

syntax for the task is given in Syntax 18-21.

Syntax 18-21—Syntax for $dumpports task

Where the arguments are optional and are defined as:

scope_list one or more module identifiers. Only modules are allowed (not variables). If more than

one module_identifier is specified, they shall be separated by a comma. Pathnames to

modules are allowed, using the period hierarchy separator. Literal strings are not allowed

for the module_identifier.

dumpports_task ::=

$dumpports (scope_list , file_pathname) ;
scope_list ::=

module_identifier { , module_identfier }

file_pathname ::=

literal_string
| variable
| expression

initial

$dumpports(“dump2.dump”);
 .
 .
 .

 .
 .
 .

simulation

Verilog Source File Extended VCD File
dump2.dump

(Header
Information)

(Node
Information)

(Value
Changes)

User
Postprocessing

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

340 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

If no scope_list value is provided, the scope shall be the module from which $dumpports
is called.

file_pathname can be a double quoted pathname (literal string), a reg type variable, or an expression

which denotes the file which shall contain the port VCD information. If no file_pathname
is provided, the file shall be written to the current working directory with the name

dumpports.vcd. If that file already exists, it shall be silently overwritten. All file writing

checks shall be made by the simulator (write rights, correct pathname, etc.) and

appropriate errors or warnings issued.

The following rules apply to the use of the $dumpports system task:

— All the ports in the model from the point of the $dumpports call are considered primary I/O pins and
shall be included in the VCD file. However, any ports which exist in instantiations below scope_list
are not dumped.

— If no arguments are specified for the task, $dumpports; and $dumpports() are allowed. In both of
these cases, the default values for the arguments shall be used.

— If the first argument is null, a comma shall be used before specifying the second argument in the
argument list.

— Each scope specified in the scope_list shall be unique. If multiple calls to $dumpports are specified,
the scope_list values in these calls shall also be unique.

— The $dumpports task can be used in source code which also contains the $dumpvars task.
— When $dumpports executes, the associated value change dumping shall start at the end of the cur-

rent simulation time unit.
— The $dumpports task can be invoked multiple times throughout the model, but the execution of all

$dumpports tasks shall be at the same simulation time. Specifying the same file_pathname multiple
times is not allowed.

18.3.2 Stopping and resuming the dump ($dumpportsoff/$dumpportson)

The $dumpportsoff and $dumpportson system tasks provide a means to control the simulation period for

dumping port values. The syntax for these system tasks is given in Syntax 18-22.

Syntax 18-22—Syntax for $dumpportsoff and $dumpportson system tasks

The file_pathname argument can be a double quoted pathname (literal string), a reg type variable, or an

expression which denotes the file_pathname specified in the $dumpports system task.

$dumpportsoff. When this task is executed, a checkpoint is made in the file_pathname where each specified

port is dumped with an X value. Port values are no longer dumped from that simulation time forward. If

file_pathname is not specified, all dumping to files opened by $dumpports calls shall be suspended.

dumpportsoff_task ::=

$dumpportsoff (file_pathname) ;
dumpportson_task ::=

$dumpportson (file_pathname) ;
file_pathname ::=

literal_string
| variable
| expression

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 341
This is an unapproved IEEE Standards Draft, subject to change.

$dumpportson. When this task is executed, all ports specified by the associated $dumpports call shall have

their values dumped. This system task is typically used to resume dumping after the execution of $dump-
portsoff. If file_pathname is not specified, dumping shall resume for all files specified by $dumpports calls,

if dumping to those files was stopped.

If $dumpportson is executed while ports are already being dumped to file_pathname, the system task is

ignored. If $dumpportsoff is executed while port dumping is already suspended for file_pathname, the sys-

tem task is ignored.

18.3.3 Generating a checkpoint ($dumpportsall)

The $dumpportsall system task creates a checkpoint in the VCD file which shows the value of all selected

ports at that time in the simulation, regardless of whether the port values have changed since the last

timestep. The syntax for this system task is given in Syntax 18-23.

Syntax 18-23—Syntax for $dumpportsall system task

The file_pathname argument can be a double quoted pathname (literal string), a reg type variable, or an

expression which denotes the file_pathname specified in the $dumpports system task.

If the file_pathname is not specified, checkpointing occurs for all files opened by calls to $dumpports.

18.3.4 Limiting the size of the dump file ($dumpportslimit)

The $dumpportslimit system task allows control of the VCD file size. The syntax for this system task is

given in Syntax 18-24.

Syntax 18-24—Syntax for $dumpportslimit system task

dumpportsall_task ::=

$dumpportsall (file_pathname) ;
file_pathname ::=

literal_string
| variable
| expression

dumpportslimit_task ::=

$dumpportslimit (filesize , file_pathname) ;
file_size ::=

integer

file_pathname ::=

literal_string
| variable
| expression

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

342 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The filesize argument is required and it specifies the maximum size in bytes for the associated

file_pathname. When this filesize is reached, the dumping stops and a comment is inserted into

file_pathname indicating the size limit was attained.

The file_pathname argument can be a double quoted pathname (literal string), a reg type variable, or an

expression which denotes the file_pathname specified in the $dumpports system task.

If the file_pathname is not specified, the filesize limit applies to all files opened for dumping due to calls to

$dumpports.

18.3.5 Reading the dump file during simulation ($dumpportsflush)

To facilitate performance, simulators often buffer VCD output and write to the file at intervals, instead of

line by line. The $dumpportsflush system task writes all port values to the associated file, clearing a simu-

lator’s VCD buffer.

The syntax for this system task is given in Syntax 18-25.

Syntax 18-25—Syntax for $dumpportsflush system task

The file_pathname argument can be a double quoted pathname (literal string), a reg type variable, or an

expression which denotes the file_pathname specified in the $dumpports system task.

If the file_pathname is not specified, the VCD buffers shall be flushed for all files opened by calls to $dump-
ports.

18.3.6 Description of keyword commands

The general information in the extended VCD file is presented as a series of sections surrounded by key-

words. Keyword commands provide a means of inserting information in the extended VCD file. Keyword

commands can be inserted either by the dumper or manually. Extended VCD provides one additional key-

word command to that of the four state VCD.

18.3.6.1 $vcdclose

The $vcdclose keyword indicates the final simulation time at the time the extended VCD file is closed. This

allows accurate recording of the end simulation time, regardless of the state of signal changes, in order to

assist parsers which require this information. The syntax for the keyword is given in Syntax 18-26.

dumpportsflush_task ::=

$dumpportsflush (file_pathname) ;
file_pathname ::=

literal_string
| variable
| expression

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 343
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 18-26—Syntax for $vcdclose keyword

Example:

$vcdclose #13000 $end

18.3.7 General rules for extended VCD system tasks

For each extended VCD system task, the following rules apply:

— If a file_pathname is specified which does not match a file_pathname specified in a $dumpports call,
the control task shall be ignored.

— If no arguments are specified for the tasks which have only optional arguments, the system task name
can be used with no arguments or the name followed by () can be specified. For example: $dump-
portsflush; or $dumpportsflush(). In both of these cases, the default actions for the arguments shall
be executed.

18.4 Format of the extended VCD file

The format of the extended VCD file is similar to that of the four state VCD file, as it is also structured in a

free format. White space is used to separate commands and to make the file easily readable by a text editor.

18.4.1 Syntax of the extended VCD file

The syntax of the extended VCD file is given in Syntax 18-27. A four state VCD construct name which

matches an extended VCD construct shall be considered equivalent, except if preceded by an *.

vcdclose_task ::=

$vcdclose final_simulation_time $end

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

344 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 18-27—Syntax of the output extended VCD file

value_change_dump_definitions ::={declaration_command} {simulation_command}

declaration_command ::= declaration_keyword [command_text] $end
simulation_command ::= (Not in the Annex A BNF)

simulation_keyword { value_change } $end
| $comment [comment_text] $end
| simulation_time

| value_change

* declaration_keyword ::=

$comment | $date | $enddefinitions | $scope | $timescale | $upscope | $var
| $vcdclose | $version

command_text ::=

comment_text | close_text | date_section | scope_section | timescale_section

| var_section | version_section

* simulation_keyword ::= $dumpports | $dumpportsoff | $dumpportson |

$dumpportsall
simulation_time ::= #decimal_number
value_change ::= value identifier_code

value ::= pport_value 0_strength_component 1_strength_component

port_value ::= input_value | output_value | unknown_direction_value

input_value ::= D | U | N | Z | d | u
output_value ::= L | H | X | T | l | h
unknown_direction_value ::= 0 | 1 | ? | F | A | a | B | b | C | c | f
strength_component ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
* identifier_code ::= <{integer}

comment_text ::= {ASCII_character}

close_text ::= final_simulation_time

date_section ::= date_text

date_text :: = day month date time year
scope_section ::= scope_type scope_identifier

* scope_type ::= module
timescale_section ::= number time_unit

number ::= 1 | 10 | 100
time_unit ::= fs | ps | ns | us | ms | s
var_section ::= var_type size identifier_code reference

* var_type ::= port
* size ::= 1 | vector_index

vector_index ::= [msb_index : lsb_index]
index ::= decimal_number
* reference ::= port_identifier

identifier ::= {printable_ASCII_character}

version_section ::= version_text

* version_text ::= version_identifier {dumpports_command}

dumpports_command ::=

$dumpports (scope_identifier , string_literal
| variable
| expression)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 345
This is an unapproved IEEE Standards Draft, subject to change.

The extended VCD file starts with header information giving the date, the version number of the simulator

used for the simulation, and the timescale used. Next, the file contains definitions of the scope of the ports

being dumped, followed by the actual value changes at each simulation time increment. Only the ports

which change value during a time increment are listed.

The simulation time recorded in the extended VCD file is the absolute value of the simulation time for the

changes in port values which follow.

Value changes for all ports are specified in binary format by 0, 1, x, or z values and include strength infor-

mation.

A real number is dumped using a %.16g printf() format. This preserves the precision of that number

by outputting all 53 bits in the mantissa of a 64-bit IEEE Std 754-1985 [B1] double-precision number.

Application programs can read a real number using a %g format to scanf().

NOTES:

1) The extended VCD format does not support a mechanism to dump part of a vector. For example, bits 8 to 15 (8:15) of

a 16-bit vector cannot be dumped in VCD file; instead, the entire vector (0:15) has to be dumped. In addition, expres-

sions, such as a + b, cannot be dumped in the VCD file.

2) Data in the extended VCD file is case sensitive.

18.4.2 Extended VCD node information

The node information section (also referred to as the variable definitions section) is affected by the $dump-
ports task as Syntax 18-28 shows.

Syntax 18-28—Syntax of extended VCD node information

$var var_type size < identifier_code reference $end
var_type ::=

port
size ::=

1
| vector_index

vector_index ::=

[msb_index : lsb_index]

index ::=

decimal_number
identifier_code ::=

integer
reference ::=

port_identifier

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

346 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The constructs are defined as:

var_type the keyword port. No other keyword is allowed.

size a decimal number indicating the number of bits in the port. If the port is a single bit, the

value shall be 1. If the port is a bus, the actual index is printed. The msb indicates the most

significant index; lsb the least significant index.

identifier_code an integer preceded by < which starts at zero and ascends in one unit increments for each

port, in the order found in the module declaration.

reference identifier indicating the port name.

Example:

module test_device(count_out, carry, data, reset)
output count_out, carry ;
input [0:3] data;
input reset;
. . .
initial

begin
$dumpports(testbench.DUT, "testoutput.vcd");

. . .
end

This example produces the following node information in the VCD file:

$scope module testbench.DUT $end
$var port 1 <0 count_out $end
$var port 1 <1 carry $end
$var port [0:3] <2 data $end
$var port 1 <3 reset $end
$upscope $end

At least one space shall separate each syntactical element. However, the formatting of the information is the

choice of the simulator vendor. All four state VCD syntax rules for the vector_index apply.

If the vector_index appears in the port declaration, this shall be the index dumped. If the vector_index is not

in the port declaration, the vector_index in the net or reg declaration matching the port name shall be

dumped. If no vector_index is found, the port is considered scalar (1 bit wide).

Concatenated ports shall appear in the extended VCD file as separate entries.

Example:

module addbit ({A, b}, ci, sum, co);
input A, b, ci;
output sum, co;

. . .

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 347
This is an unapproved IEEE Standards Draft, subject to change.

The VCD file output looks like:

$scope module addbit $end
$var port 1 <0 A $end
$var port 1 <1 b $end
$var port 1 <2 ci $end
$enddefinitions $end
. . .

18.4.3 Value changes

The value change section of the VCD file is also affected by $dumpports, as Syntax 18-29 shows.

Syntax 18-29—Syntax of value change section

Where the constructs are defined as:

p key character which indicates a port. There is no space between the p and the

port_value.

port_value state character (described below).

0_strength_component one of the 8 Verilog strengths which indicates the strength0 specification for

the port.

1_strength_component one of the 8 Verilog strengths which indicates the strength1 specification for

the port.

The Verilog strength values are (append keyword with 0 or 1 as appropriate for the strength component):

0 highz

1 small

2 medium

3 weak

4 large

5 pull

6 strong

7 supply

identifier_code the integer preceded by the < character as defined in the $var construct for the port.

18.4.3.1 State characters

The following state information is listed in terms of input values from a test fixture, the output values of the

device under test (DUT), and the states representing unknown direction:

INPUT (TESTFIXTURE)

D low

U high

N unknown

Z three-state

d low (two or more drivers active)

u high (two or more drivers active)

pport_value 0_strength_component 1_strength_component identifier_code

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

348 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

OUTPUT (DUT)

L low

H high

X unknown (don't care)

T three-state

l low (two or more drivers active)

h high (two or more drivers active)

UNKNOWN DIRECTION

0 low (both input and output are active with 0 value)

1 high (both input and output are active with 1 value)

? unknown

F three-state (input and output unconnected)

A unknown (input 0 and output 1)

a unknown (input 0 and output X)

B unknown (input 1 and output 0)

b unknown (input 1 and output X)

C unknown (input X and output 0)

c unknown (input X and output 1)

f unknown (input and output three-stated)

18.4.3.2 Drivers

Where drivers are considered only in terms of primitives, continuous assignments, and procedural continu-

ous assignments. Value 0/1 means both input and output are active with value 0/1. 0 and 1 are conflict

states. The following rules apply to conflicts:

— If both input and output are driving the same value with the same range of strength, then this is a con-
flict. The resolved value is 0/1 and the strength is the stronger of the two.

— If the input is driving a strong strength (range) and the output is driving a weak strength (range), the
resolved value is d/u and the strength is the strength of the input.

— If the input is driving a weak strength (range) and the output is driving a strong strength (range), then
the resolved value is l/h and the strength is the strength of the output.

Where range is:

— Strength supply 7 to 5 (large) - strong strength
— Strength 4 to 1 - weak strength

18.4.4 Extended VCD file format example

The following example illustrates the format of the extended VCD file.

A module declaration:

module adder(data0, data1, data2, data3, carry, as, rdn, reset,
 test, write);

inout data0, data1, data2, data3;
output carry;
input as, rdn, reset, test, write;

. . .

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 349
This is an unapproved IEEE Standards Draft, subject to change.

And the resulting VCD fragment:

$scope module testbench.adder_instance $end
$var port 1 <0 data0 $end
$var port 1 <1 data1 $end
$var port 1 <2 data2 $end
$var port 1 <3 data3 $end
$var port 1 <4 carry $end
$var port 1 <5 as $end
$var port 1 <6 rdn $end
$var port 1 <7 reset $end
$var port 1 <8 test $end
$var port 1 <9 write $end
$upscope $end
$enddefinitions $end

#0
$dumpports
pX 6 6 <0
pX 6 6 <1
pX 6 6 <2
pX 6 6 <3
pX 6 6 <4
pN 6 6 <5
pN 6 6 <6
pU 0 6 <7
pD 6 0 <8
pN 6 6 <9
$end
#180
pH 0 6 <4
#200000
pD 6 0 <5
pU 0 6 <6
pD 6 0 <9
#200500
pf 0 0 <0
pf 0 0 <1
pf 0 0 <2
pf 0 0 <3

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

350 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

19. Compiler directives

All Verilog compiler directives are preceded by the (`) character. This character is called grave accent
(ASCII 0x60). It is different from the character ('), which is the apostrophe character (ASCII 0x27). The

scope of compiler directives extends from the point where it is processed, across all files processed, to the

point where another compiler directive supersedes it or the processing completes.

This clause describes the following compiler directives:

`celldefine [19.1]

`default_nettype [19.2]

`define [19.3]

`else [19.4]

`elsif [19.4]

`endcelldefine [19.1]

`endif [19.4]

`ifdef [19.4]

`ifndef [19.4]

`include [19.5]

`line [19.7]

`nounconnected_drive [19.9]

`resetall [19.6]

`timescale [19.8]

`unconnected_drive [19.9]

`undef [19.3]

19.1 `celldefine and `endcelldefine

The directives `celldefine and `endcelldefine tag modules as cell modules. Cells are used by certain PLI

routines for applications, such as delay calculations. It is advisable to pair each `celldefine with an `endcell-
define. More than one of these pairs may appear in a single source description.

These directives may appear anywhere in the source description, but it is recommended that the directives be

specified outside the module definition.

The `resetall directive includes the effects of a `endcelldefine directive.

19.2 `default_nettype

The directive `default_nettype controls the net type created for implicit net declarations (see 3.5). It can be

used only outside of module definitions. It affects all modules that follow the directive, even across source

file boundaries. Multiple `default_nettype directives are allowed. The latest occurrence of this directive in

the source controls the type of nets that will be implicitly declared. Syntax 19-1 contains the syntax of the

directive.

Syntax 19-1—Syntax for default nettype compiler directive

default_nettype_compiler_directive ::=

`default_nettype net_type

net_type ::= wire | tri | tri0 | tri1 | wand | triand | wor | trior | trireg | none

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 351
This is an unapproved IEEE Standards Draft, subject to change.

When no `default_nettype directive is present or if the `resetall directive is specified, implicit nets are of

type wire. When the `default_nettype is set to none, all nets must be explicitly declared. If a net is not

explicitly declared, an error is generated.

19.3 `define and `undef

A text macro substitution facility has been provided so that meaningful names can be used to represent com-

monly used pieces of text. For example, in the situation where a constant number is repetitively used

throughout a description, a text macro would be useful in that only one place in the source description would

need to be altered if the value of the constant needed to be changed.

The text macro facility is not affected by the compiler directive `resetall.

19.3.1 `define

The directive `define creates a macro for text substitution. This directive can be used both inside and outside

module definitions. After a text macro is defined, it can be used in the source description by using the (`)

character, followed by the macro name. The compiler shall substitute the text of the macro for the string

`macro_name. All compiler directives shall be considered predefined macro names; it shall be illegal to

redefine a compiler directive as a macro name.

A text macro can be defined with arguments. This allows the macro to be customized for each use individu-

ally.

The syntax for text macro definitions is given in Syntax 19-2.

Syntax 19-2—Syntax for text macro definition

The macro text can be any arbitrary text specified on the same line as the text macro name. If more than one

line is necessary to specify the text, the newline shall be preceded by a backslash (\). The first newline not

preceded by a backslash shall end the macro text. The newline preceded by a backslash shall be replaced in

the expanded macro with a newline (but without the preceding backslash character).

When formal arguments are used to define a text macro, the scope of the formal argument shall extend up to

the end of the macro text. A formal argument can be used in the macro text in the same manner as an identi-

fier.

If a one-line comment (that is, a comment specified with the characters //) is included in the text, then the

comment shall not become part of the substituted text. The macro text can be blank, in which case the text

macro is defined to be empty, and no text is substituted when the macro is used.

The syntax for using a text macro is given in Syntax 19-3.

text_macro_definition ::=

`define text_macro_name macro_text

text_macro_name ::=

text_macro_identifier [(list_of_formal_arguments)]

list_of_formal_arguments ::=

formal_argument_identifier { , formal_argument_identifier }

text_macro_identifier ::= (From Annex A - A.9.3)
simple_identifier

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

352 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 19-3—Syntax for text macro usage

For a macro without arguments, the text shall be substituted “as is” for every occurrence of

`text_macro_name. However, a text macro with one or more arguments shall be expanded by substitut-

ing each formal argument with the expression used as the actual argument in the macro usage.

Once a text macro name has been defined, it can be used anywhere in a source description; that is, there are

no scope restrictions. Text macros can be defined and used interactively. The text macro name shall be a sim-

ple identifier.

The text specified for macro text shall not be split across the following lexical tokens:

— Comments
— Numbers
— Strings
— Identifiers
— Keywords
— Operators

Examples:

The following is illegal syntax because it is split across a string:

`define first_half "start of string
$display(`first_half end of string");

NOTES:

1) Each actual argument is substituted for the corresponding formal argument literally. Therefore, when an expression is

used as an actual argument, the expression will be substituted in its entirety. This may cause an expression to be evalu-

ated more than once if the formal argument was used more than once in the macro text. For example,

`define max(a,b)((a) > (b) ? (a) : (b))
n = `max(p+q, r+s) ;

will expand as

text_macro_usage ::=

`text_macro_identifier [(list_of_actual_arguments)]
list_of_actual_arguments ::=

actual_argument { , actual_argument }

actual_argument ::=

expression

`define wordsize 8
reg [1:`wordsize] data;

//define a nand with variable delay
`define var_nand(dly) nand #dly

`var_nand(2) g121 (q21, n10, n11);
`var_nand(5) g122 (q22, n10, n11);

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 353
This is an unapproved IEEE Standards Draft, subject to change.

n = ((pq) > (r+s)) ? (p+q) : (r+s) ;

Here, the larger of the two expressions p + q and r + s will be evaluated twice.

2) The word define is known as a compiler directive keyword, and it is not part of the normal set of keywords. Thus, nor-

mal identifiers in a Verilog HDL source description can be the same as compiler directive keywords (although this is not

recommended). The following problems should be considered:

a) Text macro names may not be the same as compiler directive keywords.

b) Text macro names can re-use names being used as ordinary identifiers. For example, signal_name and

`signal_name are different.

c) Redefinition of text macros is allowed; the latest definition of a particular text macro read by the compiler pre-

vails when the macro name is encountered in the source text.

3) The macro text can contain usages of other text macros. Such usages shall be substituted after the original macro is

substituted, not when it is defined. It shall be an error for a macro to expand directly or indirectly to text containing

another usage of itself (a recursive macro).

19.3.2 `undef

The directive `undef shall undefine a previously defined text macro. An attempt to undefine a text macro that

was not previously defined using a `define compiler directive can result in a warning. The syntax for `undef
compiler directive is given in Syntax 19-4.

Syntax 19-4—Syntax for undef compiler directive

An undefined text macro has no value, just as if it had never been defined.

19.4 `ifdef, `else, `elsif, `endif, `ifndef

These conditional compilation compiler directives are used to include optionally lines of a Verilog HDL

source description during compilation. The `ifdef compiler directive checks for the definition of a

text_macro_name. If the text_macro_name is defined, then the lines following the `ifdef directive

are included. If the text_macro_name is not defined and an `else directive exists, then this source is

compiled. The `ifndef compiler directive checks for the definition of a text_macro_name. If the

text_macro_name is not defined, then the lines following the `ifndef directive are included. If the

text_macro_name is defined and an `else directive exists, then this source is compiled.

If the `elsif directive exists (instead of the `else) the compiler checks for the definition of the

text_macro_name. If the name exists the lines following the `elsif directive are included. The `elsif
directive is equivalent to the compiler directive sequence `else `ifdef ... `endif. This directive does not need a

corresponding `endif directive. This directive must be preceded by an `ifdef or `ifndef directive.

These directives may appear anywhere in the source description.

undefine_compiler_directive ::=

`undef text_macro_identifier

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

354 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Situations where the `ifdef, `else, `elsif, `endif, and `ifndef compiler directives may be useful include:

— Selecting different representations of a module such as behavioral, structural, or switch level
— Choosing different timing or structural information
— Selecting different stimulus for a given run

The `ifdef, `else, `elsif, `endif, and `ifndef compiler directives have the syntax shown in Syntax 19-5.

Syntax 19-5—Syntax for conditional compilation directives

The text_macro_identifier is a Verilog HDL simple_identifier. The ifdef_group_of_lines,

ifndef_group_of_lines, elsif_group_of_lines and the else_group_of_lines are

parts of a Verilog HDL source description. The `else and `elsif compiler directives and all of the groups of

lines are optional.

The `ifdef, `else, `elsif, and `endif compiler directives work together in the following manner:

— When an `ifdef is encountered, the `ifdef text macro identifier is tested to see if it is defined as a text
macro name using `define within the Verilog HDL source description.

— If the `ifdef text macro identifier is defined, the `ifdef group of lines is compiled as part of the
description and if there are `else or `elsif compiler directives, these compiler directives and corre-
sponding groups of lines are ignored.

— If the `ifdef text macro identifier has not been defined, the `ifdef group of lines is ignored.
— If there is an `elsif compiler directive, the `elsif text macro identifier is tested to see if it is defined as

a text macro name using `define within the Verilog HDL source description.
— If the `elsif text macro identifier is defined, the `elsif group of lines is compiled as part of the descrip-

tion and if there are other `elsif or `else compiler directives, the other `elsif or `else directives and
corresponding groups of lines are ignored.

— If the first `elsif text macro identifier has not been defined, the first `elsif group of lines is ignored.
— If there are multiple `elsif compiler directives, they are evaluated like the first `elsif compiler direc-

tive in the order they are written in the Verilog HDL source description.
— If there is an `else compiler directive, the `else group of lines is compiled as part of the description.

conditional_compilation_directive ::=

ifdef_directive

| ifndef_directive

ifdef_directive ::=

`ifdef text_macro_identifier

ifdef_group_of_lines

{ `elsif text_macro_identifier elsif_group_of_lines }

[`else else_group_of_lines]

`endif
ifndef_directive ::=

`ifndef text_macro_identifier

ifndef_group_of_lines

{ `elsif text_macro_identifier elsif_group_of_lines }

[`else else_group_of_lines]

`endif

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 355
This is an unapproved IEEE Standards Draft, subject to change.

The `ifndef, `else, `elsif, and `endif compiler directives work together in the following manner:

— When an `ifndef is encountered, the `ifndef text macro identifier is tested to see if it is defined as a
text macro name using `define within the Verilog HDL source description.

— If the `ifndef text macro identifier is not defined, the `ifndef group of lines is compiled as part of the
description and if there are `else or `elsif compiler directives, these compiler directives and corre-
sponding groups of lines are ignored.

— If the `ifndef text macro identifier is defined, the `ifndef group of lines is ignored.
— If there is an `elsif compiler directive, the `elsif text macro identifier is tested to see if it is defined as

a text macro name using `define within the Verilog HDL source description.
— If the `elsif text macro identifier is defined, the `elsif group of lines is compiled as part of the descrip-

tion and if there are other `elsif or `else compiler directives, the other `elsif or `else directives and
corresponding groups of lines are ignored.

— If the first `elsif text macro identifier has not been defined, the first `elsif group of lines is ignored.
— If there are multiple `elsif compiler directives, they are evaluated like the first `elsif compiler direc-

tive in the order they are written in the Verilog HDL source description.
— If there is an `else compiler directive, the `else group of lines is compiled as part of the description.

Although the names of compiler directives are contained in the same name space as text macro names, the

names of compiler directives are considered not to be defined by `ifdef, `ifndef, and `elseif.

Nesting of `ifdef, `ifndef, `else, `elsif, and `endif compiler directives shall be permitted.

NOTE—Any group of lines that the compiler ignores still has to follow the Verilog HDL lexical conventions for white

space, comments, numbers, strings, identifiers, keywords, and operators.

Examples:

Example 1—The example below shows a simple usage of an `ifdef directive for conditional compilation. If

the identifier behavioral is defined, a continuous net assignment will be compiled in; otherwise, an and
gate will be instantiated.

module and_op (a, b, c);
output a;
input b, c;

`ifdef behavioral
wire a = b & c;

`else
and a1 (a,b,c);

`endif

endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

356 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Example 2—The following example shows usage of nested conditional compilation directives.

Example 3—The following example shows usage of chained nested conditional compilation directives.

module test(out);
output out;
`define wow
`define nest_one
`define second_nest
`define nest_two

`ifdef wow
initial $display(“wow is defined”);
`ifdef nest_one

initial $display(“nest_one is defined”);
`ifdef nest_two

initial $display(“nest_two is defined”);
`else

initial $display(“nest_two is not defined”);
`endif

`else
initial $display(“nest_one is not defined”);

`endif
`else

initial $display(“wow is not defined”);
`ifdef second_nest

initial $display(“second_nest is defined”);
`else

initial $display(“second_nest is not defined”);
`endif

`endif
endmodule

module test;
`ifdef first_block

`ifndef second_nest
initial $display(“first_block is defined”);

`else
initial $display(“first_block and second_nest defined”);

`endif
`elsif second_block

initial $display(“second_block defined, first_block is not”);
`else

`ifndef last_result
initial $display(“first_block, second_block,"

" last_result not defined.”);
`elsif real_last

initial $display(“first_block, second_block not defined,"
" last_result and real_last defined.”);

`else
initial $display(“Only last_result defined!”);

`endif
`endif

endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 357
This is an unapproved IEEE Standards Draft, subject to change.

19.5 `include

The file inclusion (`include) compiler directive is used to insert the entire contents of a source file in another

file during compilation. The result is as though the contents of the included source file appear in place of the

`include compiler directive. The `include compiler directive can be used to include global or commonly

used definitions and tasks without encapsulating repeated code within module boundaries.

Advantages of using the `include compiler directive include the following:

— Providing an integral part of configuration management
— Improving the organization of Verilog HDL source descriptions
— Facilitating the maintenance of Verilog HDL source descriptions

The syntax for the `include compiler directive is given in Syntax 19-6.

Syntax 19-6—Syntax for include compiler directive

The compiler directive `include can be specified anywhere within the Verilog HDL description. The file-
name is the name of the file to be included in the source file. The filename can be a full or relative path name.

Only white space or a comment may appear on the same line as the `include compiler directive.

A file included in the source using the `include compiler directive may contain other `include compiler

directives. The number of nesting levels for include files shall be finite.

Examples:

Examples of `include compiler directives are as follows:

`include "parts/count.v"
`include "fileB"
`include "fileB" // including fileB

NOTE—Implementations may limit the maximum number of levels to which include files can be nested, but the limit

shall be at least 15.

19.6 `resetall

When `resetall compiler directive is encountered during compilation, all compiler directives are set to the

default values. This is useful for ensuring that only those directives that are desired in compiling a particular

source file are active.

The recommended usage is to place `resetall at the beginning of each source text file, followed immediately

by the directives desired in the file.

19.7 `line

The compiler is expected to maintain the current line and the filename of the file being compiled. The line

include_compiler_directive ::=

`include "filename"

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

358 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

number (`line) compiler directive is used to reset the current line number and filename of the current file to

the line number and filename presented. This can be used to reflect the location in an original file; if the

actual source file has been modified by addition or reduction of lines. After specifying the new line number

or file name, the compiler can correctly refer to the original source file location. For example error messages,

source code debugging, etc. can direct the user to the actual original line.

The syntax for the `line compiler directive is given in Syntax 19-7.

Syntax 19-7—Syntax for line compiler directive

The directive can be specified anywhere within the Verilog HDL source description. The number parameter

is the new line number of the next line. The filename parameter is the new name of the file. The filename can

be a full or relative path name. The level parameter indicates whether an include file has been entered (value

is 1), an include file is exited (value is 2), or neither has been done (value is 0).

The results of this directive are not affected by the compiler directive `resetall. As the compiler processes

the remainder of the file and new files, the line number shall be incremented as each line is read and the file-

name shall be updated to the new current file being processed. When beginning to read include files, the cur-

rent line and filename shall be stored for restoration at the termination of the include file. The updated line

number and filename information shall be available for PLI access. The mechanism of library searching is

not affected by the effects of the `line compiler directive.

19.8 `timescale

This directive specifies the time unit and time precision of the modules that follow it. The time unit is the

unit of measurement for time values such as the simulation time and delay values.

To use modules with different time units in the same design, the following timescale constructs are useful:

— The `timescale compiler directive to specify the unit of measurement for time and precision of time
in the modules in the design

— The $printtimescale system task to display the time unit and precision of a module
— The $time and $realtime system functions, the $timeformat system task, and the %t format speci-

fication to specify how time information is reported

The `timescale compiler directive specifies the unit of measurement for time and delay values and the

degree of accuracy for delays in all modules that follow this directive until another `timescale compiler

directive is read. If there is no `timescale specified or it has been reset by a `resetall directive, the time unit

and precision are simulator specific. It shall be an error if some modules have a `timescale specified and oth-

ers do not.

The syntax for the `timescale directive is given in Syntax 19-8.

line_compiler_directive ::=

`line number "filename" level

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 359
This is an unapproved IEEE Standards Draft, subject to change.

Syntax 19-8—Syntax for timescale compiler directive

The time_unit argument specifies the unit of measurement for times and delays.

The time_precision argument specifies how delay values are rounded before being used in simulation.

The values used are accurate to within the unit of time specified here, even if there is a smaller

time_precision argument elsewhere in the design. The smallest time_precision argument of all

the `timescale compiler directives in the design determines the precision of the time unit of the simulation.

The time_precision argument shall be at least as precise as the time_unit argument; it cannot spec-

ify a longer unit of time than time_unit.

The integers in these arguments specify an order of magnitude for the size of the value; the valid integers are

1, 10, and 100. The character strings represent units of measurement; the valid character strings are s, ms,

us, ns, ps, and fs.

The units of measurement specified by these character strings are given in Table 86.

Examples:

The following example shows how this directive is used:

`timescale 1 ns / 1 ps

Here, all time values in the modules that follow the directive are multiples of 1 ns because the time_unit
argument is “1 ns”. Delays are rounded to real numbers with three decimal places—or precise to within one

thousandth of a nanosecond—because the time_precision argument is “1 ps,” or one thousandth of a

nanosecond.

Consider the following example:

`timescale 10 us / 100 ns

timescale_compiler_directive ::=

`timescale time_unit / time_precision

Table 86—Arguments of time_precision

Character
string Unit of measurement

s seconds

ms milliseconds

us microseconds

ns nanoseconds

ps picoseconds

fs femtoseconds

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

360 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The time values in the modules that follow this directive are multiples of 10 us because the time_unit
argument is “10 us”. Delays are rounded to within one tenth of a microsecond because the

time_precision argument is “100 ns,” or one tenth of a microsecond.

The following example shows a `timescale directive in the context of a module:

The `timescale 10 ns / 1 ns compiler directive specifies that the time unit for module test is 10 ns. As

a result, the time values in the module are multiples of 10 ns, rounded to the nearest 1 ns and, therefore, the

value stored in parameter d is scaled to a delay of 16 ns. This means that the value 0 is assigned to reg set
at simulation time 16 ns (1.6 × 10 ns), and the value 1 at simulation time 32 ns.

Parameter d retains its value no matter what timescale is in effect.

These simulation times are determined as follows:

a) The value of parameter d is rounded from 1.55 to 1.6 according to the time precision.

b) The time unit of the module is 10 ns, and the precision is 1 ns, so the delay of parameter d is scaled

from 1.6 to 16.

c) The assignment of 0 to reg set is scheduled at simulation time 16 ns and the assignment of 1 at

simulation time 32 ns. The time values are not rounded when the assignments are scheduled.

19.9 `unconnected_drive and `nounconnected_drive

All unconnected input ports of a module appearing between the directives `unconnected_drive and

`nounconnected_drive are pulled up or pulled down instead of the normal default.

The directive `unconnected_drive takes one of two arguments—pull1 or pull0. When pull1 is specified,

all unconnected input ports are automatically pulled up. When pull0 is specified, unconnected ports are

pulled down. These directives shall be specified in pairs, and outside of the module declarations.

The `resetall directive includes the effects of a `endcelldefine directive.

`timescale 10 ns / 1 ns
module test;
reg set;
parameter d = 1.55;

initial begin
#d set = 0;
#d set = 1;

end
endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 361
This is an unapproved IEEE Standards Draft, subject to change.

20. PLI overview

20.1 PLI purpose and history (informative)

Clause 20 through Clause 27 and Annex E through Annex G describe the C language procedural interface

standard and interface mechanisms that are part of the Verilog HDL. This procedural interface, known as the

Programming Language Interface, or PLI, provides a means for Verilog HDL users to access and modify

data in an instantiated Verilog HDL data structure dynamically. An instantiated Verilog HDL data structure

is the result of compiling Verilog HDL source descriptions and generating the hierarchy modeled by module

instances, primitive instances, and other Verilog HDL constructs that represent scope. The PLI procedural

interface provides a library of C language functions that can directly access data within an instantiated Ver-

ilog HDL data structure.

A few of the many possible applications for the PLI procedural interface are:

— C language delay calculators for Verilog model libraries that can dynamically scan the data structure
of a Verilog software product and then dynamically modify the delays of each instance of models
from the library

— C language applications that dynamically read test vectors or other data from a file and pass the data
into a Verilog software product

— Custom graphical waveform and debugging environments for Verilog software products
— Source code decompilers that can generate Verilog HDL source code from the compiled data struc-

ture of a Verilog software product
— Simulation models written in the C language and dynamically linked into Verilog HDL simulations
— Interfaces to actual hardware, such as a hardware modeler, that dynamically interact with simulations

This document standardizes the Verilog PLI that has been in use since the mid-1980s. This standard com-

prises three primary generations of the Verilog PLI.

a) Task/function routines, called TF routines, make up the first generation of the PLI. These routines,

most of which start with the characters tf_, are primarily used for operations involving user-defined

task/function arguments, along with utility functions, such as setting up call-back mechanisms and

writing data to output devices. The TF routines are sometimes referred to as utility routines

b) Access routines, called ACC routines, form the second generation of the PLI. These routines, which

all start with the characters acc_, provide an object-oriented access directly into a Verilog HDL

structural description. ACC routines are used to access and modify information, such as delay values

and logic values on a wide variety of objects that exist in a Verilog HDL description. There is some

overlap in functionality between ACC routines and TF routines.

c) Verilog Procedural Interface routines, called VPI routines, are the third generation of the PLI. These

routines, all of which start with the characters vpi_, provide an object-oriented access for both

Verilog HDL structural and behavioral objects. The VPI routines are a superset of the functionality

of the TF routines and ACC routines.

20.2 User-defined system task or function names

A user-defined system task or function name is the name that will be used within a Verilog HDL source file

to invoke specific PLI applications. The name shall adhere to the following rules:

— The first character of the name shall be the dollar sign character ($)
— The remaining characters shall be letters, digits, the underscore character (_) or the dollar character

($)
— Uppercase and lowercase letters shall be considered to be unique—the name is case sensitive
— The name can be any size, and all characters are significant

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

362 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

20.3 User-defined system task or function types

The type of a user-defined system task or function determines how a PLI application is called from the Ver-

ilog HDL source code. The types are:

— A user task can be used in the same places a Verilog HDL task can be used (refer to 10.2). A user-
defined system task can read and modify the arguments of the task, but does not return any value.

— A user function can be used in the same places a Verilog HDL function can be used (refer to 10.3). A
user-defined system function can read and modify the arguments of the function, and shall return a
scalar or vector value. The bit width of the return value shall be determined by a user-supplied sizetf
application (see 21.1.1).

— A user real-function can be used in the same places a Verilog HDL function can be used (refer to
10.3). A user-defined system real-function can read and modify the arguments of the function, and
will return a double-precision floating point value.

20.4 Overriding built-in system task and function names

Clause 17 defines a number of built-in system tasks and functions that are part of the Verilog language. In

addition, software products can include other built-in system tasks and functions specific to the product.

These built-in system task and function names begin with the dollar sign character ($) just as user-defined

system task and function names.

If a user-provided PLI application is associated with the same name as a built-in system task or function

(using the PLI interface mechanism), the user-provided C application shall override the built-in system task/

function, replacing its functionality with that of the user-provided C application. For example, a user could

write a random number generator as a PLI application and then associate the application with the name

$random, thereby overriding the built-in $random function with the user’s application.

Verilog timing checks, such as $setup, are not system tasks, and cannot be overridden.

The system functions $signed and $unsigned can be overridden. These system functions are unique in the

Verilog HDL, in that the return width is based on the width of their argument. If overridden, the PLI version

shall have the same return width for all instances of the system function. The PLI return width is defined by

the PLI sizetf routine.

20.5 User-supplied PLI applications

User-supplied PLI applications are C language functions that utilize the library of PLI C functions to access

and interact dynamically with Verilog HDL software implementations as the Verilog HDL source code is

executed.

These PLI applications are not independent C programs. They are C functions, which are linked into a soft-

ware product, and become part of the product. This allows the PLI application to be called when the user-

defined system task or function $ name is compiled or executed in the Verilog HDL source code.

20.6 PLI interface mechanism

The PLI interface mechanism provides a means to have PLI applications called for various reasons when the

associated system task or function $ name is encountered in the Verilog HDL source description. For exam-

ple, when a Verilog HDL simulator first compiles the Verilog HDL source description, a specific PLI appli-

cation can be called that performs syntax checking to ensure the user-defined system task or function is

being used correctly. Then, as simulation is executing, a different PLI application can be called to perform

the operations required by the PLI application. Other PLI applications can be automatically called by the

simulator for miscellaneous reasons, such as the end of a simulation time step or a logic value change on a

specific signal.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 363
This is an unapproved IEEE Standards Draft, subject to change.

The PLI provides two interface mechanisms:

— The TF and ACC interface mechanism is an older interface, which can be used to associate PLI
applications which use routines from the ACC and TF function libraries. This interface mechanism
is described in Clause 21.

— The VPI interface mechanism is a newer interface, which can be used to associate PLI applications
which use routines from the VPI function libraries. This interface mechanism is described in Clause
26.

Instances of system tasks and functions which are defined using the TF and ACC interface mechanism can

only be accessed using the TF and ACC function libraries. Instances of system tasks and functions which are

defined using the VPI interface mechanism can only be accessed using the VPI function library.

20.7 User-defined system task and function arguments

When a user-defined system task or function is used in a Verilog HDL source file, it can have arguments that

can be used by the PLI applications associated with the system task or function. In the following example,

the user-defined system task $get_vector has two arguments:

$get_vector(“test_vector.pat”, input_bus);

The arguments to a system task or function are referred to as task/function arguments (often abbreviated as

tfargs). These arguments are not the same as C language arguments. When the PLI applications associated

with a user-defined system task or function are called, the task/function arguments are not passed to the PLI

application. Instead, a number of PLI routines are provided that allow the PLI applications to read and write

to the task/function arguments. Refer to the sections on ACC routines, TF routines and VPI routines for

information on specific routines that work with task/function arguments.

20.8 PLI include files

The libraries of PLI functions are defined in C include files, which are a normative part of the 1364 standard.

These files also define constants, structures, and other data used by the library of PLI routines and the inter-

face mechanisms. The files are acc_user.h (listed in Annex E), veriuser.h (listed in Annex F) and

vpi_user.h (listed in Annex G).

— PLI applications that use the TF routines shall include the file veriuser.h.
— PLI applications that use the ACC routines shall include the file acc_user.h.
— PLI applications that use the VPI routines shall include the file vpi_user.h.

20.9 PLI Memory Restrictions

Memory allocated by the PLI routines is not to be modified by the user, with the exception of the value stor-

age returned by the PLI routines tf_exprinfo() and tf_nodeinfo(), as defined in 25.15 and 25.35.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

364 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

21. PLI TF and ACC interface mechanism

The interface mechanism described in this section provides a means for users to link applications based on

PLI task/function (TF) routines and access (ACC) routines to Verilog software products. Through the inter-

face mechanism, a user can:

— Specify a user-defined system task or function name that can be included in Verilog HDL source
descriptions; the user-defined system task or function name shall begin with a dollar sign ($), such as
$get_vector

— Provide one or more PLI C applications to be called by a software product (such as a logic simulator)
— Define which PLI C applications are to be called—and when the applications should be called—

when the user-defined system task or function name is encountered in the Verilog HDL source
description

— Define whether the PLI applications should be treated as functions (which return a value) or tasks
(analogous to subroutines in other programming languages)

— Define a data argument to be passed to the PLI applications each time they are called

NOTE—The PLI interface mechanism described in this section does not apply to applications that use the Verilog Proce-

dural Interface (VPI) routines; these routines use the VPI registry mechanism described in Clause 26 and Clause 27.

21.1 User-supplied PLI applications

User-supplied PLI applications are C language functions that utilize the library of PLI C functions to access

and interact dynamically with Verilog HDL software implementations as the Verilog HDL source code is

executed.

These PLI applications are not independent C programs. They are C functions, which are linked into a soft-

ware product, and become part of the product. This allows the PLI application to be called when the user-

defined system task or function $ name is compiled or executed in the Verilog HDL source code.

The PLI interface mechanism for TF and ACC routines provides five classes of user-supplied PLI applica-

tions: checktf applications, sizetf applications, calltf applications, misctf applications, and consumer applica-

tions. The sizetf, checktf, calltf, and misctf routines are called during specific periods during processing. The

purpose of each of the PLI application classes is explained in the following subsections.

21.1.1 The sizetf class of PLI applications

A sizetf PLI application can be used in conjunction with user-defined system functions. A function shall

return a value, and software products that execute the system function may need to determine how many bits

wide that return value shall be. The sizetf application may be called early in the process, prior to a complete

instantiation of the design. As a result, access to objects may be limited at this time. Each sizetf function

shall be called at most once. It shall be called if its associated system function appears in the design. The

value returned by the sizetf function shall be the number of bits that the calltf routine shall provide as the

return value for the system function. If no sizetf application is specified for a user-defined system function,

the function shall return 32-bits. The sizetf application shall not be called for user-defined system tasks or

real-functions.

21.1.2 The checktf class of PLI applications

A checktf PLI application shall be called when the user-defined system task or function name is encountered

during parsing or compiling the Verilog HDL source code. This application is typically used to check the

correctness of any arguments used with the system task in the Verilog HDL source code. The checktf PLI

application shall be called one time for each instance of a system task or function in the source description.

Providing a checktf application is optional, but it is recommended that any arguments used with the system

task or function be checked for correctness to avoid problems when the calltf or other PLI applications read

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 365
This is an unapproved IEEE Standards Draft, subject to change.

and perform operations on the arguments. The checktf shall be called at the earliest possible time after all

simulation data structures required by the PLI are available. Generally this means after the design is fully

instantiated, but no simulation events have occurred. By the time the checktf application is called, all PLI

routines can be used without concern for the state of the process, with the exception of setting the return

value of user defined system functions. The return value of a user defined system function can only be set

during a calltf application.

21.1.3 The calltf class of PLI applications

A calltf PLI application shall be called each time the associated user-defined system task or function is exe-

cuted within the Verilog HDL source code. For example, the following Verilog loop would call the PLI calltf

application that is associated with the $get_vector user-defined system task name 1024 times:

for (i = 1; i <= 1024; i = i + 1)
 @(posedge clk) $get_vector(“test_vector.pat”, input_bus);

In this example, the user-supplied PLI calltf application might read a test vector from a file called

test_vector.pat (the first task/function argument), perhaps manipulate the vector to put it in a proper

format for Verilog, and then assign the vector value to the second task/function argument called input_bus.

21.1.4 The misctf class of PLI applications

A misctf PLI application shall be called by a Verilog software product for miscellaneous reasons while the

Verilog HDL source description is being executed. Among these reasons can be the end of a simulation time

step, a logic value change on a user-defined system task/function argument, or the execution of the $stop and

$finish built-in system tasks. When the software product calls the misctf PLI application, it shall pass in a

reason argument, which can be used within the misctf application to determine why the application was

called. The reason argument shall be a predefined integer constant. Table 87 and Table 88 list the reasons

for which the misctf application can be called.

For most reasons, the misctf routine will not be called until the instance of the system task has been executed

(at which point the calltf routine is called). The following reasons are exceptions, and will be called for each

instance of the system task in the design regardless of whether or not it has been executed:

— reason_endofcompile
— reason_save
— reason_startofsave
— reason_restart
— reason_endofreset
— reason_reset

21.1.5 The consumer class of PLI applications

A consumer PLI application shall be called through a PLI callback mechanism referred to as the Value

Change Link (VCL). Using the VCL, another PLI application, typically the calltf application, can place

VCL flags on objects within the Verilog HDL data structure, such as a specific net. Whenever an object with

a VCL flag changes value during a simulation, the consumer PLI application shall be called and passed

information about the change.

21.2 Associating PLI applications to a class and system task/function name

Each user-provided PLI application is a standard C language function that makes use of the library of PLI

functions. These user-provided PLI applications shall be associated with both the class of application (such

as calltf or checktf) and the user-defined system task or function $ name. In addition, the user-defined name

shall be declared as either a system task or a system function.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

366 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

For the TF and ACC interface mechanism, the method of associating PLI applications with a class and sys-

tem task/function name is not defined as part of this standard. Each software product vendor shall define an

association mechanism specific to their product. Refer to the documentation provided by the vendor for

instructions on associating PLI applications to classes and system task/function names and then linking the

PLI applications into the software products of the vendor.

21.3 PLI application arguments

When the calltf, checktf, and sizetf PLI applications are called by a Verilog software implementation, they

shall be passed two C arguments, data and reason, in that order. When the misctf application is called, it

shall be passed three C arguments, data, reason, and paramvc, in that order. These arguments are defined in

more detail in the following subsections.

21.3.1 The data C argument

The data C argument shall be an integer value. The value is defined by the user at the time the PLI applica-

tions are associated with a user-defined system task/function name. This value can be used to allow several

different system task/function names to use the same calltf, checktf, sizetf, or misctf applications. To do this,

each system task/function name would be associated with the same PLI applications, but each would have a

different value for the user-defined data argument. When a PLI application is called, it can then check the

value of the data argument to determine which system task/function name was used to call the application.

21.3.2 The reason C argument

The reason C argument shall be a predefined integer constant that is passed to the calltf, checktf, sizetf, and

misctf applications each time the applications are called. Generally, the calltf, checktf, and sizetf applica-

tions do not need to check the reason argument, since these applications can only be called under specific

circumstances. The misctf application, however, can be called for a wide variety of reasons, and therefore it

should always examine the reason argument to determine why the application was called. The value for the

reason argument is defined in the PLI include file veriuser.h. The reason constant that is passed is based on

the class of the PLI application, as follows:

— The calltf application is passed the reason constant reason_calltf.
— The checktf application is passed the reason constant reason_checktf.
— The sizetf application is passed the reason constant reason_sizetf.
— The misctf application is passed one of the constants listed in Table 87. Software implementations

can define additional reason constants to be passed to the misctf application. Table 88 lists some
common reason constants that can be available in some software implementations.

Table 87—(normative) Predefined misctf reason constants

Integer constant Reason

reason_endofcompile end of Verilog source compilation/start of execution

reason_paramvc a change of value on a user-defined system task or function

argument

reason_synch end of a time step flagged by tf_synchronize()

reason_rosynch end of a time step flagged by tf_rosynchronize()

reason_reactiviate a simulation event scheduled by tf_setdelay()

reason_finish the $finish() built-in system task executed

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 367
This is an unapproved IEEE Standards Draft, subject to change.

21.3.3 The paramvc C argument

The paramvc C argument shall be an integer value passed to the misctf application. The value of paramvc

shall indicate which task/function argument changed value when the misctf application was called back after

activating the utility routine tf_asynchon(). This routine shall cause the misctf application to be called with

a reason argument of reason_paramvc or reason_paramdrc. Task/function argument index numbering

shall proceed from left to right, with the left-most argument being number 1.

Table 88—(informative) Additional misctf reason constants

Integer constant Reason

reason_paramdrc a value change on the driver of a user-defined system task or

function argument

reason_force
execution of a procedural force or procedural continuous

assignment on any net, reg, integer variable, time variable or real

variable

reason_release execution of a procedural release or procedural deassign on any

net, reg, integer variable, time variable or real variable

reason_disable execution of a procedural disable statement

reason_interactive execution of the $stop() built-in system task

reason_scope execution of the $scope() built-in system task

reason_startofsave start of execution of the $save() built-in system task

reason_save completion of execution of the $save() built-in system task

reason_restart execution of the $restart() built-in system task

reason_reset start of execution of the $reset() built-in system task

reason_endofreset completion of execution of the $reset() built-in system task

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

368 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

22. Using ACC routines

This clause presents a general discussion of how and why to use PLI ACC routines. Clause 23 defines the

ACC routine syntax, listed in alphabetical order.

22.1 ACC routine definition

ACC routines are C programming language functions that provide procedural access to information within

the Verilog HDL.

ACC routines perform one of two functions:

a) Read data about particular objects in the Verilog HDL description directly from internal data

structures.

b) Write new information about certain objects in the Verilog HDL description into the internal data

structures.

ACC routines shall read information about the following objects:

— Module instances
— Module ports
— Module or data paths
— Intermodule paths
— Top-level modules
— Primitive instances
— Primitive terminals
— Nets
— Reg variables
— Parameters
— Specparams
— Timing checks
— Named events
— Integer, real, and time variables

ACC routines shall read and write information on the following objects:

— Intermodule path delays
— Module path delays
— Module input port delays (MIPDs)
— Primitive instance delays
— Timing check limits
— Reg variable logic values
— Net logic values (force/release only)
— Integer, real and time variable values
— Sequential UDP logic values

22.2 The handle data type

A handle is a predefined data type that is a pointer to a specific object in the design hierarchy. Each handle

conveys information to ACC routines about a unique instance of an accessible object—information about

the type of the object, plus how and where to find data about the object.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 369
This is an unapproved IEEE Standards Draft, subject to change.

Most ACC routines require a handle argument to indicate the objects about which they need to read or write

information. The PLI provides two categories of ACC routines that return handles for objects: handle rou-

tines, which begin with the prefix acc_handle_, and next routines, which begin with the prefix acc_next_.

Refer to 22.4.2 for a discussion of handle routines and 22.4.3 for more information about next routines.

Handles shall be passed to and from ACC routines through handle variables. To declare a handle variable,

the keyword handle (all lowercase) shall be used, followed by the variable name, as in this example:

handle net_handle;

After declaring a handle variable, it can be passed to any ACC routine that requires a handle argument or be

used to receive a handle returned by an ACC routine. The following C language code fragment uses the vari-

able net_handle to store the handle returned by the ACC routine acc_handle_object():

handle net_handle;
net_handle = acc_handle_object(“top.mod1.w3”);

22.3 Using ACC routines

22.3.1 Header files

The header file acc_user.h shall be included in any C language source file containing an application pro-

gram that calls ACC routines. The acc_user.h file is listed in Annex E.

22.3.2 Initializing ACC routines

The ACC routine acc_initialize() shall initialize the environment for ACC routines and shall be called from

the C language application program before the program invokes any other ACC routines.

22.3.3 Exiting ACC routines

Before exiting a C language application program that calls ACC routines, the ACC routine acc_close()
should be called. This routine shall reset ACC routine configuration parameters back to their defaults, and it

shall also free memory allocated by the ACC routines.

22.4 List of ACC routines by major category

The ACC routines are divided into the following major categories:

— Fetch routines
— Handle routines
— Next routines
— Modify routines
— VCL routines
— Miscellaneous routines

This subclause contains a summary list of each major category. The ACC routines sorted by the types of

objects they work with are listed in 22.5. Clause 23 presents an alphabetical list of all ACC routines, with

their functions, syntax, and usage.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

370 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

22.4.1 Fetch routines

Fetch routines shall return a variety of information about different objects in the design hierarchy. The name

of each routine begins with the prefix acc_fetch_ and indicates the type of information desired. For example,

acc_fetch_fullname() retrieves the full hierarchical path name for any named object, while

acc_fetch_paramval() retrieves the value of a parameter or specparam.

Table 89—List of fetch routines

ACC routine Description

acc_fetch_argc() Get the number of invocation command line arguments

acc_fetch_argv() Get the invocation command line arguments

acc_fetch_attribute() Get the value of a Verilog parameter or specparam as a double

acc_fetch_attribute_int() Get the value of a Verilog parameter or specparam as an integer

acc_fetch_attribute_str() Get the value of a Verilog parameter or specparam as a string

acc_fetch_defname() Get the definition name of a module or primitive

acc_fetch_delay_mode() Get the delay mode of a module instance

acc_fetch_delays() Get the existing delays for a primitive, module path, timing check, intermod-

ule path, or module input port

acc_fetch_direction() Get the direction of a module port or primitive terminal

acc_fetch_edge() Get the edge specifier of a module path input terminal

acc_fetch_fullname() Get the full hierarchical name of an object

acc_fetch_fulltype() Get the full type description of an object as a predefined integer constant

acc_fetch_index() Get the index number of a port or terminal

acc_fetch_itfarg() Get the value of an instance of a system task/function argument as a double

acc_fetch_itfarg_int() Get the value of an instance of a system task/function argument as an integer

acc_fetch_itfarg_str() Get the value of an instance of a system task/function argument as a string

acc_fetch_location() Get the location of an object in a Verilog source file

acc_fetch_name() Get the local name of an object

acc_fetch_paramtype() Get the data type of a parameter or specparam

acc_fetch_paramval() Get the value of a parameter or specparam

acc_fetch_polarity() Get the polarity of a module path or data path

acc_fetch_precision() Get the simulation time precision

acc_fetch_pulsere() Get the current pulse handling values of a module path, intermodule path or

module input port

acc_fetch_range() Get the range of a vector

acc_fetch_size() Get the bit size of a vector or port

acc_fetch_tfarg() Get the value of a system task/function argument as a double

acc_fetch_tfarg_int() Get the value of a system task/function argument as an integer

acc_fetch_tfarg_str() Get the value of a system task/function argument as a string

acc_fetch_timescale_info() Get the timescale information for an object

acc_fetch_type() Get the general type classification of an object as an integer constant

acc_fetch_type_str() Get the string representation of a type or fulltype integer constant

acc_fetch_value() Get the logic or strength value of a net, reg, integer variable, time variable or

real variable

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 371
This is an unapproved IEEE Standards Draft, subject to change.

22.4.2 Handle routines

Handle routines can return handles to a variety of objects in the design hierarchy. The name of each routine

begins with the prefix acc_handle_ and indicates the type of handle desired. For example,

acc_handle_object() retrieves a handle for a named object, while acc_handle_conn() retrieves a handle for

a net connected to a particular terminal. Each handle routine shall return a handle to an object. This handle

can, in turn, be passed as an argument to other ACC routines.

Table 90—List of handle routines

ACC routine Description

acc_handle_by_name() Get the handle to any named object

acc_handle_condition() Get the handle to the condition of a module path, data path, or timing check

acc_handle_conn() Get the handle to the net connected to a primitive, path, or timing check ter-

minal

acc_handle_datapath() Get the handle to a data path

acc_handle_hiconn() Get the handle to the hierarchically higher net connected to a module port bit

acc_handle_interactive_scope() Get the handle to the current simulation interactive scope

acc_handle_itfarg() Get the handle to an argument of a specific system task/function instance

acc_handle_loconn() Get the handle to the hierarchically lower net connected to a module port bit

acc_handle_modpath() Get the handle to a module path

acc_handle_notifier() Get the handle to the notifier argument of a timing check

acc_handle_object() Get the handle to any named object

acc_handle_parent() Get the handle to the parent of an object

acc_handle_path() Get the handle to an intermodule path

acc_handle_pathin() Get the handle to the first net connected to a module path source

acc_handle_pathout() Get the handle to the first net connected to a module path destination

acc_handle_port() Get the handle to a module port based on the port index

acc_handle_scope() Get the handle to the scope containing an object

acc_handle_simulated_net() Get the handle to the net associated with a collapsed net

acc_handle_tchk() Get the handle to a timing check

acc_handle_tchkarg1() Get the handle to the first argument of a timing check

acc_handle_tchkarg2() Get the handle to the second argument of a timing check

acc_handle_terminal() Get the handle to a terminal of a primitive based on the terminal index

acc_handle_tfarg() Get the handle to the object named in a system task/function argument

acc_handle_tfinst() Get the handle to the current instance of a system task/function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

372 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

22.4.3 Next routines

When used inside a C loop construct, next routines shall find each object of a given type that is related to a

particular reference object in the design hierarchy. The name of each routine begins with the prefix

acc_next_ and indicates the type of object desired, known as the target object. For example, acc_next_net()
retrieves each net in a module, while acc_next_driver() retrieves each terminal driving a net. Each call to a

next routine returns a handle to the object it finds.

Most next routines require two arguments:

— The first argument shall be a handle to a reference object.
— The second argument shall be a handle that indicates whether to retrieve the first or next target

object.

The reference object shall indicate where the next routine shall look for the target object. The target object is

the type of object to be returned by a next routine.

Table 91 summarizes how next routines shall find each target object associated with a given reference

object.

Each call to a next routine shall return only one handle. Therefore, to retrieve all target objects for a particu-

lar reference object, the following process can be used:

a) Chose an appropriate ACC routine to retrieve the handle of the desired reference object.

b) Set the target object handle variable to null. When a next routine is called with a null target

handle, it shall return the first target associated with the reference.

c) Call the next routine, assigning the return value to the same variable as the target object argument.

This automatically updates the target object argument to point to the last object found.

d) Place the next routine call inside a C while loop that terminates when the loop control value is

null. When a next routine cannot access any more target objects, it shall return a null.

NOTE—Most next routines can return objects in an arbitrary order. However, certain next routines shall return objects in

a defined order, as noted in the description of the routine in Clause 23.

The following example, display_net_names, uses a next routine to display the names of all nets in a

module.

Table 91—How next routines use the target object argument

When A next routine shall return

the target object is null a handle to the first target object related to the reference object

the target object is a handle to the last target object returned a handle to the next target object related to the reference object

no target objects remain for the reference object a null handle

no target objects are found initially for the reference object a null handle

an error occurs a null handle

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 373
This is an unapproved IEEE Standards Draft, subject to change.

Table 92—List of next routines

ACC routine Description

acc_next() Get handles to all objects of a set of types

acc_next_bit() Get handles to all bits of a port or vector

acc_next_cell() Get handles to all cell modules in the current hierarchy and below

acc_next_cell_load() Get handles to all cell loads on a net

acc_next_child() Get handles to all module instances within a module

acc_next_driver() Get handles to all primitive terminals that drive a net

acc_next_hiconn() Get handles to all nets connected hierarchically higher to a module port

acc_next_input() Get handles to all input terminals of a module path or data path

acc_next_load() Get handles to all primitive terminals driven by a net

acc_next_loconn() Get handles to all nets connected hierarchically lower to a module port

acc_next_modpath() Get handles to all paths in a module

acc_next_net() Get handles to all nets in a module

acc_next_output() Get handles to all output terminals of a module path or data path

acc_next_parameter() Get handles to all parameters in a module

acc_next_port() Get handles to all ports of a module or connected to a net

acc_next_portout() Get handles to all output ports of a module

acc_next_primitive() Get handles to all primitive instances in a module

acc_next_scope() Get handles to all hierarchy scopes within a scope

acc_next_specparam() Get handles to all specify block parameters in a module

acc_next_tchk() Get handles to all timing checks in a module

acc_next_terminal() Get handles to all terminals of a primitive

acc_next_topmod() Get handles to all top-level modules

#include "acc_user.h"

display_net_names()
{

handle module_handle;
handle net_handle;

/*initialize environment for access routines*/
acc_initialize();

/*get handle for module*/
module_handle = acc_handle_tfarg(1);

/*display names of all nets in the module*/
net_handle = null;
while(net_handle = acc_next_net(module_handle, net_handle))

io_printf("Net name is: %s\n", acc_fetch_fullname(net_handle));

acc_close();
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

374 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

22.4.4 Modify routines

Modify routines shall alter the values of a variety of objects in the design hierarchy. Table 93 lists the types

of values that shall be modified for particular objects.

More details on using the acc_append_delays() and acc_replace_delays() ACC routines are provided in

22.8.

22.4.5 Miscellaneous routines

Miscellaneous routines shall perform a variety of operations, such as initializing and configuring the ACC

routine environment.

Table 93—Values that can be modified

Modify routines alter For these objects

Delay values Primitives

Module paths

Intermodule paths

Module input ports

Timing checks

Logic values Variable data types

Net data types

Sequential UDPs

Pulse handling values Module paths

Intermodule paths

Module input ports

Table 94—List of modify routines

ACC routine Description

acc_append_delays() Add delays to existing delays on primitives, module paths, timing checks,

intermodule paths, and module input ports

acc_append_pulsere() Add to existing pulse control values of module paths, intermodule paths and

module input ports

acc_replace_delays() Replace existing delays on primitives, module paths, timing checks, inter-

module paths and module input ports

acc_replace_pulsere() Replace existing values on pulse control values of module paths, intermodule

paths and module input ports

acc_set_pulsere() Set the pulse control values for a module path, intermodule path or module

input port as a percentage of the delay

acc_set_value() Set and propagate a logic value onto a reg, integer variable, time variable,

real variable or sequential UDP;

continuously assign/deassign a reg or variable;

force/release a net or reg or variable

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 375
This is an unapproved IEEE Standards Draft, subject to change.

22.4.6 VCL routines

The VCL shall allow a PLI application to monitor simulation value changes of selected objects. It consists of

two ACC routines that instruct a Verilog simulator to start or stop informing an application when an object

changes value. How the VCL routine is used is discussed in 22.10.

22.5 Accessible objects

ACC routines shall access information about the following objects:

— Module instances
— Module ports
— Individual bits of a port
— Module or data paths
— Intermodule paths

Table 95—List of miscellaneous routines

ACC routine Description

acc_close() Close ACC routine environment

acc_collect() Collect an array of handles for a reference object

acc_compare_handles() Determine if two handles are for the same object

acc_configure() Set the ACC routine environment parameters

acc_count() Count the number of objects related to a reference object

acc_free() Free up memory allocated by acc_collect()

acc_initialize() Initialize the ACC routine environment

acc_object_in_typelist() Determine if an object matches a set of types, fulltypes, or special properties

acc_object_of_type() Determine if an object matches a specific type, fulltype, or special property

acc_product_type() Get the type of software product being used

acc_product_version() Get the version of software product being used

acc_release_object() Release memory allocated by acc_next_input() or acc_next_output()

acc_reset_buffer() Reset the string buffer

acc_set_interactive_scope() Set the interactive scope of a software implementation

acc_set_scope() Set the scope used by acc_handle_object()

acc_version() Get the version of the ACC routines being used

Table 96—List of VCL routines

ACC routine Description

acc_vcl_add() Add a value change callback on an object

acc_vcl_delete() Remove a value change callback

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

376 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

— Top-level modules
— Primitive instances
— Primitive terminals
— Nets (scalars, vectors, and bit-selects or part-selects of vectors)
— Regs (scalars, vectors, and bit-selects or part-selects of vectors)
— Integer variables (and bit-selects or part-selects of integers)
— Real and time variables
— Named events
— Parameters
— Specparams
— Timing checks
— Timing check terminals
— User-Defined system task/function arguments

The following tables summarize the operations that can be performed for each of the above object types.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 377
This is an unapproved IEEE Standards Draft, subject to change.

22.5.1 ACC routines that operate on module instances

22.5.2 ACC routines that operate on module ports

Table 97—Operations on module instances

To Use

Obtain handles for module instances tagged as cells within a hierarchi-

cal scope and below

acc_next_cell()

Obtain handles for module instances within a particular module

instance

acc_next_child()

Obtain a handle to the parent (the module that contains the instance) acc_handle_parent()

Get the instance name acc_fetch_name()

Get the full hierarchical name acc_fetch_fullname()

Get the module definition name acc_fetch_defname()

Get the fulltype of a module instance (cell instance, module instance, or

top-level module)

acc_fetch_fulltype()

Get the delay mode of a module instance (none, zero, unit, distributed,

or path)

acc_fetch_delay_mode()

Get timescale information for a module instance acc_fetch_timescale_info()

Table 98—Operations on module ports

To Use

Obtain handles for ports of a module instance acc_next_port()

Obtain handles for output ports of a module instance acc_next_portout()

Obtain a handle for a particular port acc_handle_port()

Obtain a handle to the parent (the module instance that contains the

port)

acc_handle_parent()

Obtain handles to hierarchically higher-connected nets acc_next_hiconn()

Obtain handles to hierarchically lower-connected nets acc_next_loconn()

Obtain a handle to the hierarchically higher-connected net of a scalar

module port or bit of a vector port

acc_handle_hiconn()

Obtain a handle to the hierarchically lower-connected net of a scalar

module port or bit of a vector port

acc_handle_loconn()

Get the instance name acc_fetch_name()

Get the full hierarchical name acc_fetch_fullname()

Get the port direction acc_fetch_direction()

Get the port index number acc_fetch_index()

Get the fulltype of a module port acc_fetch_fulltype()

Add VCL value change callback monitors acc_vcl_add()

Delete VCL value change callback monitors acc_vcl_delete()

Read Module Input Port Delay (MIPD) acc_fetch_delays()

Append to existing MIPD acc_append_delays()

Replace existing MIPD acc_replace_delays()

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

378 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

22.5.3 ACC routines that operate on bits of a port

22.5.4 ACC routines that operate on module paths or data paths

Table 99—Operations on bits of a port

To Use

Obtain handles for bits of a module port acc_next_bit()

Obtain a handle to the port from a port bit acc_handle_parent()

Get the port name acc_fetch_name()

Get the full hierarchical name acc_fetch_fullname()

Get the fulltype of a port’s bit acc_fetch_fulltype()

Read Module Input Port Delay (MIPD) acc_fetch_delays()

Append to existing MIPD acc_append_delays()

Replace existing MIPD acc_replace_delays()

Add VCL value change callback monitors acc_vcl_add()

Delete VCL value change callback monitors acc_vcl_delete()

Table 100—Operations on module paths and data paths

To Use

Obtain handles for module paths within a scope acc_next_modpath()

Obtain a handle to the first connected net acc_handle_pathin()
acc_handle_pathout()

Obtain a handle to a module path acc_handle_modpath()

Obtain a handle to a datapath acc_handle_datapath()

Obtain a handle to a conditional expression for a path acc_handle_condition()

Obtain handles for input terminals of a module path or data path acc_next_input()

Obtain handles for output terminals of a module path or data path acc_next_output()

Get the path name acc_fetch_name()

Get the full hierarchical name acc_fetch_fullname()

Get the polarity of a path acc_fetch_polarity()

Get the edge specified for a path terminal acc_fetch_edge()

Read path delays acc_fetch_delays()

Append to existing path delays acc_append_delays()

Replace existing path delays acc_replace_delays()

Read path pulse handling acc_fetch_pulsere()

Append to existing path pulse control values acc_append_pulsere()

Replace existing path pulse control values acc_replace_pulsere()

Specify path pulse control values acc_set_pulsere()

Free memory allocated by acc_next_input() or acc_next_output() acc_release_object()

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 379
This is an unapproved IEEE Standards Draft, subject to change.

22.5.5 ACC routines that operate on intermodule paths

22.5.6 ACC routines that operate on top-level modules

22.5.7 ACC routines that operate on primitive instances

Table 101—Operations on intermodule paths

To Use

Obtain a handle for an intermodule path acc_handle_path()

Get the fulltype of an intermodule path acc_fetch_fulltype()

Read intermodule path delays acc_fetch_delays()

Modify intermodule path delays acc_replace_delays()

Read intermodule path pulse control values acc_fetch_pulsere()

Append to existing intermodule path pulse control values acc_append_pulsere()

Replace existing intermodule path pulse control values acc_replace_pulsere()

Specify intermodule path pulse control values acc_set_pulsere()

Table 102—Operations on top-level modules

To Use

Obtain handles for top-level modules in a design acc_next_topmod()
acc_next_child()

Get the module name acc_fetch_name()
acc_fetch_fullname()
acc_fetch_defname()

Table 103—Operations on primitive instances

To Use

Obtain handles for primitive instances within a module instance acc_next_primitive()

Obtain a handle to the parent (the module that contains the primitive) acc_handle_parent()

Get the instance name acc_fetch_name()

Get the full hierarchical name acc_fetch_fullname()

Get the definition name acc_fetch_defname()

Get the primitive fulltype acc_fetch_fulltype()

Read delays acc_fetch_delays()

Append to existing primitive delays acc_append_delays()

Replace existing primitive delays acc_replace_delays()

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

380 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

22.5.8 ACC routines that operate on primitive terminals

22.5.9 ACC routines that operate on nets

Table 104—Operations on primitive terminals

To Use

Obtain handles for terminals of a primitive instance acc_next_terminal()

Obtain a handle to the net connected to the terminal acc_handle_conn()

Obtain a handle to the parent (primitive instance containing the

terminal)

acc_handle_parent()

Get the direction (input, output, inout) acc_fetch_direction()

Get the terminal index number acc_fetch_index()

Get the fulltype acc_fetch_fulltype()

Add VCL value change callback monitors acc_vcl_add()

Delete VCL value change callback monitors acc_vcl_delete()

Table 105—Operations on nets

To Use

Obtain handles for nets within a module instance acc_next_net()

Obtain handles for nets within a module instance acc_next()

Obtain a handle to the parent (the module instance that contains the net) acc_handle_parent()

Determine if net is scalar, vector, collapsed, or expanded acc_object_of_type()

Obtain handles to bits of a vector net acc_next_bit()

Obtain handles to driving terminals of the net acc_next_driver()

Obtain handles to load terminals of the net acc_next_load()

Obtain handles to connected load terminals; only one per driven cell

port

acc_next_cell_load()

Obtain a handle to the simulated net of a collapsed net acc_handle_simulated_net()

Get the net name acc_fetch_name()

Get the full hierarchical name acc_fetch_fullname()

Get the net vector size acc_fetch_size()

Get the msb and lsb vector range acc_fetch_range()

Get the net fulltype acc_fetch_fulltype()

Get the net logic or strength value acc_fetch_value()

Force or release the net logic value acc_set_value()

Add VCL value change callback monitors acc_vcl_add()

Delete VCL value change callback monitors acc_vcl_delete()

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 381
This is an unapproved IEEE Standards Draft, subject to change.

22.5.10 ACC routines that operate on reg types

22.5.11 ACC routines that operate on integer, real, and time variables

22.5.12 ACC routines that operate on named events

Table 106—Operations on reg types

To Use

Obtain handles to regs within a given scope acc_next()

Obtain handles to bits of a vector reg acc_next_bit()

Obtain a handle to the parent (module instance containing the reg) acc_handle_parent()

Obtain handles to load terminals of the reg acc_next_load()

Determine if reg is a scalar or a vector acc_object_of_type()

Get the reg name acc_fetch_name()

Get the full hierarchical name acc_fetch_fullname()

Get the reg size acc_fetch_size()

Get the msb and lsb vector range acc_fetch_range()

Get the reg value acc_fetch_value()

Set the reg value acc_set_value()

Add VCL value change callback monitors acc_vcl_add()

Delete VCL value change callback monitors acc_vcl_delete()

Table 107—Operations on integer, real, and time variables

To Use

Obtain handles to variables within a given scope acc_next()

Obtain a handle to the parent (module instance containing the variable) acc_handle_parent()

Get the variable name acc_fetch_name()

Get the full hierarchical name acc_fetch_fullname()

Get the variable value acc_fetch_value()

Set the variable value acc_set_value()

Add VCL value change callback monitors acc_vcl_add()

Delete VCL value change callback monitors acc_vcl_delete()

Table 108—Operations on named events

To Use

Obtain handles to named events within a given scope acc_next()

Obtain a handle to the parent (module instance containing the named

event)

acc_handle_parent()

Get the named-event name acc_fetch_name()

Get the full hierarchical name acc_fetch_fullname()

Add VCL value change callback monitors acc_vcl_add()

Delete VCL value change callback monitors acc_vcl_delete()

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

382 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

22.5.13 ACC routines that operate on parameters and specparams

22.5.14 ACC routines that operate on timing checks

22.5.15 ACC routines that operate on timing check terminals

Table 109—Operations on parameters and specparams

To Use

Obtain handles for parameters within a module instance acc_next_parameter()

Obtain handles for specparams within a module instance acc_next_specparam()

Obtain a handle to the parent (the module instance that contains the

parameter)

acc_handle_parent()

Get the parameter or specparam name acc_fetch_name()

Get the full hierarchical name acc_fetch_fullname()

Get the parameter value data type (integer, floating point, string) acc_fetch_paramtype()
acc_fetch_fulltype()

Get the value of a parameter acc_fetch_paramval()

Get the attribute value of a parameter defined with an attribute name acc_fetch_attribute()
acc_fetch_attribute_int()
acc_fetch_attribute_str()

Table 110—Operations on timing checks

To Use

Obtain handles for timing checks within a module instance acc_next_tchk()

Obtain a handle to a specific timing check acc_handle_tchk()

Obtain handles to all timing check terminals acc_next_input()

Free memory allocated by acc_next_input() acc_release_object()

Obtain a handle to a timing check terminal acc_handle_tchkarg1()
acc_handle_tchkarg2()

Get the timing check fulltype acc_fetch_fulltype()

Get a timing check limit acc_fetch_delays()

Append to an existing timing check limit acc_append_delays()

Replace to an existing timing check limit acc_replace_delays()

Table 111—Operations on timing check terminals

To Use

Obtain a handle to the net attached to timing check terminals acc_handle_conn()

Obtain a handle to the condition on a timing check terminal acc_handle_condition()

Get edge information on a timing check terminal acc_fetch_edge()

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 383
This is an unapproved IEEE Standards Draft, subject to change.

22.5.16 ACC routines that operate on user-defined system task/function arguments

22.6 ACC routine types and fulltypes

Many objects in the Verilog HDL can have both a type and a fulltype associated with them. A type shall be a

general classification of an object, whereas a fulltype shall be a specific classification. The type and fulltype

for a given object can be different constants, or they can be the same constant. For example, an and logic

gate has a type of accPrimitive and a fulltype of accAndPrimitive. The type and fulltype are predefined

integer constants in the file acc_user.h. Several ACC routines either return a type or fulltype value, or

use a type or fulltype value as an argument. Table 113 lists all type and fulltype constants that shall be sup-

ported by ACC routines, listed alphabetically by the type name.

Table 112—Operations on user-defined system task/function arguments

To Use

Obtain a handle for an object named in a task/function argument acc_handle_tfarg()
acc_handle_itfarg()

Get the value of a task/function argument as a double acc_fetch_tfarg()
acc_fetch_itfarg()

Get the value of a task/function argument as an integer acc_fetch_tfarg_int()
acc_fetch_itfarg_int()

Get the value of a task/function argument as a string pointer acc_fetch_tfarg_str()
acc_fetch_itfarg_str()

Table 113—List of all predefined type and fulltype constants

type constant fulltype constant Description

accConstant accConstant Object is a constant

accDataPath accDataPath Object is a data path in a path delay

accFunction accFunction Object is a Verilog HDL function

accIntegerVar accIntegerVar Object is declared as an integer data type

accModPath accModPath Object is a module path

 accModule accModuleInstance Object is a module instance

accCellInstance Object is a module instance that has been defined as

a cell

accTopModule Object is a top-level module

accNamedEvent accNamedEvent Object is declared as an event data type

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

384 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

accNet accSupply0 Object is declared as a supply0 net data type

accSupply1 Object is declared as a supply1 net data type

accTri Object is declared as a tri net data type

accTriand Object is declared as a triand net data type

accTrior Object is declared as a trior net data type

accTrireg Object is declared as a trireg net data type

accTri0 Object is declared as a tri0 net data type

accTri1 Object is declared as a tri1 net data type

accWand Object is declared as a wand net data type

accWire Object is declared as a wire net data type

accWor Object is declared as a wor net data type

accNetBit accNetBit Object is a bit-select of a net data type

accOperator accOperator Object is a Verilog HDL operator

accParameter accIntegerParam Object is a parameter with an integer value

accRealParam Object is a parameter with a real value

accStringParam Object is a parameter with a string value

accPartSelect accPartSelect Object is a part-select of a vector

accPathTerminal accPathInput Object is an input terminal of a module path

accPathOutput Object is an output terminal of a module path

accPort accConcatPort Object is a module port concatenation

accScalarPort Object is a scalar module port

accBitSelectPort Object is a bit-select of a module port (e.g.:

module (.a[1], .a[0], ...);
input [1:0] a;

accPartSelectPort Object is a part-select of a module port (e.g.:

module (.a[3:2], .a[1:0], ...);
input [3:0] a;

accVectorPort Object is a vector module port

accPortBit accPortBit Object is a bit of a module port

Table 113—List of all predefined type and fulltype constants (continued)

type constant fulltype constant Description

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 385
This is an unapproved IEEE Standards Draft, subject to change.

accPrimitive accAndGate Object is an and primitive

accBufGate Object is a buf primitive

accBufif0Gate Object is a bufif0 primitive

accBufif1Gate Object is a bufif1 primitive

accCmosGate Object is a cmos primitive

accCombPrim Object is a combinational logic UDP

accNandGate Object is a nand primitive

accNmosGate Object is an nmos primitive

accNorGate Object is a nor primitive

accNotGate Object is a not primitive

accNotif0Gate Object is a notif0 primitive

accNotif1Gate Object is a notif1 primitive

accOrGate Object is an or primitive

accPmosGate Object is a pmos primitive

accPulldownGate Object is a pulldown primitive

accPullupGate Object is a pullup primitive

accRcmosGate Object is an rcmos primitive

accRnmosGate Object is an rnmos primitive

accRpmosGate Object is an rpmos primitive

accRtranGate Object is an rtran primitive

accRtranif0Gate Object is an rtranif0 primitive

accRtranif1Gate Object is an rtranif1 primitive

accSeqPrim Object is a sequential logic UDP

accTranGate Object is a tran primitive

accTranif0Gate Object is a tranif0 primitive

accTranif1Gate Object is a tranif1 primitive

accXnorGate Object is an xnor primitive

accXorGate Object is an xor primitive

accRealVar accRealVar Object is declared as a real data type

accReg accReg Object is declared as a reg data type

accRegBit accRegBit Object is a bit-select of a reg data type

accSpecparam accIntegerParam Object is a specparam with an integer value

accRealParam Object is a specparam with a real value

accStringParam Object is a specparam with a string value

Table 113—List of all predefined type and fulltype constants (continued)

type constant fulltype constant Description

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

386 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

accStatement accStatement Object is a procedural statement

accNamedBeginStat Object is a named begin statement

accNamedForkStat Object is a named fork statement

accSystemTask accSystemTask Object is a built-in system task

accSystemFunction accSystemFunction Object is a built-in system function with a scalar or

vector return

accSystemRealFunction accSystemRealFunction Object is a built-in system function with a real

value return

accTask accTask Object is a Verilog HDL task

accTchk accHold Object is a $hold timing check

accNochange Object is a $nochange timing check

accPeriod Object is a $period timing check

accRecovery Object is a $recovery timing check

accSetup Object is a $setup timing check

accSetuphold Object is a $setuphold timing check

accSkew Object is a $skew timing check

accWidth Object is a $width timing check

accTchkTerminal accTchkTerminal Object is a timing check terminal

accTerminal accInputTerminal Object is a primitive input terminal

accOutputTerminal Object is a primitive output terminal

accInoutTerminal Object is a primitive inout terminal

accTimeVar accTimeVar Object is declared as a time data type

accUserTask accUserTask Object is a user-defined system task

accUserFunction accUserFunction Object is a user-defined system function with a sca-

lar or vector return

accUserRealFunction accUserRealFunction Object is a user-defined system function with a real

value return

accWirePath accIntermodPath Object is an intermodule path (from a module out-

put to a module input)

Table 113—List of all predefined type and fulltype constants (continued)

type constant fulltype constant Description

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 387
This is an unapproved IEEE Standards Draft, subject to change.

22.7 Error handling

When an ACC routine detects an error, it shall perform the following operations:

a) Set the global error flag acc_error_flag to non-zero

b) Display an error message at run time to the output channel of the software product which invoked

the PLI application

c) Return an exception value

When an ACC routine is called, it automatically resets acc_error_flag to 0.

22.7.1 Suppressing error messages

By default, ACC routines shall display error messages. Error messages can be suppressed using the ACC

routine acc_configure() to set the configuration parameter accDisplayErrors to “false”.

22.7.2 Enabling warnings

By default, ACC routines shall not display warning messages. To enable warning messages, use the ACC

routine acc_configure() to set the configuration parameter accDisplayWarnings to “true”.

22.7.3 Testing for errors

If automatic error reporting is suppressed, error handling can be performed by checking the acc_error_flag
explicitly after calling an ACC routine. This procedure is described in Figure 53.

Figure 53—Using acc_error_flag to detect errors

22.7.4 Example

The following example shows a C language application that performs error checking for ACC routines. This

example uses acc_configure() to suppress automatic error reporting. Instead, it checks acc_error_flag
explicitly and displays its own specialized error message.

no

yes perform
error

processing

continue
normal

processing

acc_error_flag
is

set?

call
access
routine

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

388 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

22.7.5 Exception values

ACC routines shall return one of three exception values when an error occurs, unless specified differently in

the syntax of a specific ACC routine.

Because ACC routines can return valid values that are the same as exception values, the only definitive way

to detect errors explicitly is to check acc_error_flag.

Note that null and false are predefined constants, declared in acc_user.h.

22.8 Reading and writing delay values

This section explains how ACC routines that read and modify delays are used. The ACC routines

acc_fetch_delays(), acc_replace_delays(), and acc_append_delays() can read or modify delay values in a

Verilog software implementation data structure. Refer to Clause 23 for the complete syntax of each of these

routines.

Table 114—Exception values returned by ACC routines on errors

When routine returns The exception value shall be

PLI_INT32 0

double values 0.0

pointers or handles null

bool (boolean) values false

#include "acc_user.h"

check_new_timing()
{

handle gate_handle;

/* initialize and configure access routines */
acc_initialize();

/* suppress error reporting by access routines */
acc_configure(accDisplayErrors, "false");

/* check type of first argument, the object */
gate_handle = acc_handle_tfarg(1);

/* check for valid argument */
if (acc_error_flag)

tf_error("Cannot derive handle from argument\n");
else
/* argument is valid */
/* make sure it is a primitive */
 if (acc_fetch_type(gate_handle) != accPrimitive)

 tf_error("Invalid argument type:not a primitive\n");
acc_close();

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 389
This is an unapproved IEEE Standards Draft, subject to change.

22.8.1 Number of delays for Verilog HDL objects

There are a variety of objects in a Verilog HDL source description that can model delays. These objects can

have a single delay that represents all possible logic transitions, or multiple delays that represent different

logic transitions. Table 115 lists the objects that can have delays and the number of different delays for each

object.

In addition to the number of delays, each delay can be represented as a single delay for each transition or as

a minimum:typical:maximum delay set for each transition. Thus, a module path, intermodule path and mod-

ule input port with 1 delay might have one value or three values, and a module path, intermodule path and

module input port with 12 delays can have 12 delay values or 36 delay values.

22.8.2 ACC routine configuration

The PLI shall use configuration parameters to set up the delay ACC routines to work with the variations of
Verilog objects and the number of possible delays. These parameters shall be set using the routine
acc_configure(). The parameters that configure the delay ACC routines are summarized in Table 115.

How these configuration parameters are used is presented in 22.8.3. Refer to 23.6 for details on using
acc_configure().

Table 115—Number of possible delays for Verilog HDL objects

Verilog HDL Objects Number of
delays Description

2-state primitives
1 One delay for: all transitions

2 Separate delays for: rise, fall

3-state primitives

1 One delay for: all transitions

2 Separate delays for: rise, fall

3 Separate delays for: rise, fall, toZ

Module paths
Intermodule paths

Module ports
Module port bits

1 One delay for: all transitions

2 Separate delays for: rise, fall

3 Separate delays for: rise, fall, toZ

6 Separate delays for: 0->1, 1->0, 0->Z, Z->1, 1->Z, Z->0

12 Separate delays for: 0->1, 1->0, 0->Z, Z->1, 1->Z, Z->0,
0->X, X->1, 1->X, X->0, X->Z, Z->X

Timing checks 1 One delay for: timing limit

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

390 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

22.8.3 Determining the number of arguments for ACC delay routines

The ACC routines acc_fetch_delays(), acc_replace_delays(), and acc_append_delays() shall require a dif-

ferent number of arguments based on

— The type of object handle
— The setting of configuration parameters

The following subsections discuss how these factors affect the number of arguments for delay ACC routines.

22.8.3.1 Single delay value mode

When the configuration parameter accMinTypMaxDelays is “false” (the default), a single value shall be

used for each delay transition. In this mode, the routines acc_fetch_delays(), acc_replace_delays(), and

acc_append_delays() shall require each delay value as a separate argument. For acc_replace_delays() and

acc_append_delays(), the arguments shall be a literal value of type double or variables of type double. For

acc_fetch_delays(), the arguments shall be pointers to variables of type double.

The number of arguments required is determined by the type of object handle passed to the delay ACC rou-

tine, as shown in Table 117.

Table 116—Configuration parameters for delay ACC routines

Configuration parameter Description

accMinTypMaxDelays

When “false”, each delay shall be represented by one value.

When “true”, each delay shall be represented by three delay values, repre-

senting minimum, typical, maximum, respectively.

The default shall be “false”.

accToHiZDelay

When set to “average”, “max” or “min”, the delay modify ACC rou-

tines shall calculate the toZ delay for 3-state primitives, or for path and input

port objects when accPathDelayCount is set to 2. When set to

“from_user”, the toZ delay shall not be calculated.

The default is “from_user”. This parameter shall be ignored when

accMinTypMaxDelays is set to “true”.

accPathDelayCount
Sets the number of delay arguments to be used by the ACC routines for mod-

ule path, intermodule path and module input port delays. Shall be set to “1”,

“2”, “3”, “6”, or “12”. The default shall be “6”.

Table 117—Number of delay arguments in single delay mode

Object handle type Configuration parameters Number and order of delay arguments

Timing check 1 argument: timing check limit

2-state primitive 2 arguments: rise, fall transitions

3-state primitive

accToHiZDelay set to

“min”, “max”, or “average”
2 arguments: rise, fall transitions

(toZ delay is calculated; see 22.8.3.3)

accToHiZDelay set to

“from_user”
3 arguments: rise, fall, toZ transitions

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 391
This is an unapproved IEEE Standards Draft, subject to change.

22.8.3.2 Min:typ:max delay value mode

When the configuration parameter accMinTypMaxDelays is “true”, a three-value set shall be used for

each delay transition. In this mode, the routines acc_fetch_delays(), acc_replace_delays(), and

acc_append_delays() shall require the delay argument to be a pointer of an array of variables of type dou-

ble. The number of elements placed into or read from the array shall be determined by the type of object

handle passed to the delay ACC routine, as shown in Table 118.

Module paths
Intermodule paths

Module ports
Module port bits

accPathDelayCount set to “1” 1 argument: all transitions

accPathDelayCount set to “2” 2 arguments: rise, fall transitions

accPathDelayCount set to “3” 3 arguments: rise, fall, toZ transitions

accPathDelayCount set to “6” 6 arguments:

0->1, 1->0, 0->Z, Z->1, 1->Z, Z->0

accPathDelayCount set to “12” 12 arguments:

0->1, 1->0, 0->Z, Z->1, 1->Z, Z->0
0->X, X->1, 1->X, X->0, X->Z, Z->X

Table 118—Number of delay elements in min:typ:max delay mode

 Object handle type Configuration parameters Size and order of the delay array

Timing check

3 elements:

 array[0] = min limit
 array[1] = typ limit
 array[2] = max limit

2-state primitive
3-state primitive

9 elements:

 array[0] = min rise delay
 array[1] = typ rise delay
 array[2] = max rise delay
 array[3] = min fall delay
 array[4] = typ fall delay
 array[5] = max fall delay
 array[6] = min toZ delay
 array[7] = typ toZ delay
 array[8] = max toZ delay
(an array of at least 9 elements shall be declared,

even if toZ delays are not used by the object)

Table 117—Number of delay arguments in single delay mode (continued)

Object handle type Configuration parameters Number and order of delay arguments

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

392 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Module path
Intermodule paths

Module ports
Module port bits

accPathDelayCount set to “1” 3 elements:

 array[0] = min delay
 array[1] = typ delay
 array[2] = max delay

accPathDelayCount set to “2” 6 elements:

 array[0] = min rise delay
 array[1] = typ rise delay
 array[2] = max rise delay
 array[3] = min fall delay
 array[4] = typ fall delay
 array[5] = max fall delay

accPathDelayCount is set to “3” 9 elements:

 array[0] = min rise delay
 array[1] = typ rise delay
 array[2] = max rise delay
 array[3] = min fall delay
 array[4] = typ fall delay
 array[5] = max fall delay
 array[6] = min toZ delay
 array[7] = typ toZ delay
 array[8] = max toZ delay

accPathDelayCount set to “6” 18 elements:

 array[0] = min 0->1 delay
 array[1] = typ 0->1 delay
 array[2] = max 0->1 delay
 array[3] = min 1->0 delay
 array[4] = typ 1->0 delay
 array[5] = max 1->0 delay
 array[6] = min 0->Z delay
 array[7] = typ 0->Z delay
 array[8] = max 0->Z delay
 array[9] = min Z->1 delay
 array[10] = typ Z->1 delay
 array[11] = max Z->1 delay
 array[12] = min 1->Z delay
 array[13] = typ 1->Z delay
 array[14] = max 1->Z delay
 array[15] = min Z->0 delay
 array[16] = typ Z->0 delay
 array[17] = max Z->0 delay

Table 118—Number of delay elements in min:typ:max delay mode (continued)

 Object handle type Configuration parameters Size and order of the delay array

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 393
This is an unapproved IEEE Standards Draft, subject to change.

22.8.3.3 Calculating turn-off delays from rise and fall delays

In single delay mode (accMinTypMaxDelays set to “false”), the routines acc_replace_delays() and

acc_append_delays() can be instructed to calculate automatically the turn-off delays from rise and fall

delays. How the calculation shall be performed is controlled by the configuration parameter accToHiZDe-
lay, as shown in Table 119.

Module path
(continued)

accPathDelayCount set to “12” 36 elements:

 array[0] = min 0->1 delay
 array[1] = typ 0->1 delay
 array[2] = max 0->1 delay
 array[3] = min 1->0 delay
 array[4] = typ 1->0 delay
 array[5] = max 1->0 delay
 array[6] = min 0->Z delay
 array[7] = typ 0->Z delay
 array[8] = max 0->Z delay
 array[9] = min Z->1 delay
 array[10] = typ Z->1 delay
 array[11] = max Z->1 delay
 array[12] = min 1->Z delay
 array[13] = typ 1->Z delay
 array[14] = max 1->Z delay
 array[15] = min Z->0 delay
 array[16] = typ Z->0 delay
 array[17] = max Z->0 delay
 array[18] = min 0->X delay
 array[19] = typ 0->X delay
 array[20] = max 0->X delay
 array[21] = min X->1 delay
 array[22] = typ X->1 delay
 array[23] = max X->1 delay
 array[24] = min 1->X delay
 array[25] = typ 1->X delay
 array[26] = max 1->X delay
 array[27] = min X->0 delay
 array[28] = typ X->0 delay
 array[29] = max X->0 delay
 array[30] = min X->Z delay
 array[31] = typ X->Z delay
 array[32] = max X->Z delay
 array[33] = min Z->X delay
 array[34] = typ Z->X delay
 array[35] = max Z->X delay

Table 118—Number of delay elements in min:typ:max delay mode (continued)

 Object handle type Configuration parameters Size and order of the delay array

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

394 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

22.9 String handling

22.9.1 ACC routines share an internal string buffer

ACC routines that return pointers to strings can share an internal buffer to store string values. These routines

shall return a pointer to the location in the buffer that contains the first character of the string, as illustrated in

Figure 54. In this example, mod_name points to the location in the buffer where top.m1 (the name of the

module associated with module_handle) is stored.

Figure 54—How ACC routines store strings in the internal buffer

Table 119—Configuring accToHiZDelay to determine the toZ delay

Configuration of accToHiZDelay Value of the toZ delay

“average” The toZ turn-off delay shall be the average of the

rise and fall delays.

“min” The toZ turn-off delay shall be the smaller of the

rise and fall delays.

“max” The toZ turn-off delay shall be the larger of the rise

and fall delays.

“from_user”
(the default)

The toZ turn-off delay shall be set to the value

passed as a user-supplied argument.

’d’
’f’

’f’

’\0’
’t’
’o’
’p’
’.’
’m’
’1’
’\0’

mod_name = acc_fetch_name(module_handle);

THE INTERNAL STRING BUFFER

end of a previous string

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 395
This is an unapproved IEEE Standards Draft, subject to change.

22.9.2 String buffer reset

ACC routines shall place strings at the next available sequential location in the string buffer, which stores at

least 4096 characters. If there is not enough room to store an entire string starting at the next location, a con-

dition known as buffer reset shall occur.

When buffer reset occurs, ACC routines shall place the next string starting at the beginning of the buffer,

overwriting data already stored there. The result can be a loss of data, as illustrated in Figure 55.

Figure 55—Buffer reset causes data in the string buffer to be overwritten

22.9.2.1 The buffer reset warning

ACC routines shall issue a warning whenever the internal string buffer resets. To view the warning message,

the configuration parameter accDisplayWarnings shall be set to “true”, using the ACC routine

acc_configure().

’d’

’f’

’f’

’\0’

’t’

’o’

’p’

’.’

’m’

’1’

’\0’

mod_name = acc_fetch_fullname(module_handle);

THE INTERNAL STRING BUFFER

net_name = acc_fetch_fullname(net_handle);

mod_name

’t’

’o’

’p’

’.’

’m’

’1’

’.’

’w’

’4’

’\0’

’\0’

THE INTERNAL STRING BUFFER

mod_name

net_name

Action: Results:

mod_name points to the string

“top.m1”.

The string happens to be stored

near the end of the buffer.

acc_fetch_fullname() cannot

place the next string at the end

of the buffer. Therefore, a

buffer reset occurs.

net_name points to the string

“top.m1.w4”

The data at the beginning of the

buffer is overwritten; The old

mod_name pointer now points

to corrupted data, which in this

example is “m1.w4”.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

396 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

22.9.3 Preserving string values

Applications that use strings immediately—for example, to print names of objects—do not need to be con-

cerned about overwrites after a string buffer reset. Applications that have to preserve string values while call-

ing other ACC routines that write to the string buffer should preserve the string value before it is overwritten.

To preserve a string value, the C routine strcpy can be used to copy the string to a local character array.

22.9.4 Example of preserving string values

The following example code illustrates preserving string values. If the module in this example contains

many cells, one of the calls to acc_fetch_name() could eventually overwrite the module name in the string

buffer with a cell name. To preserve the module name, strcpy is used to store it locally in an array called

mod_name.

22.10 Using VCL ACC routines

The VCL routines add or delete value change monitors on a specified object. If a value change monitor is

placed on an object, then whenever the object changes logic value or strength, a PLI consumer routine shall

be called.

The ACC routine acc_vcl_add() adds a value change monitor on an object. The arguments for

acc_vcl_add() specify

— A handle to an object in the Verilog HDL structure
— The name of a consumer routine
— A user_data value
— A VCL reason_flag

The following example illustrates the usage of acc_vcl_add().

acc_vcl_add(net, netmon_consumer, net_name, vcl_verilog_logic);

#include "acc_user.h"

void display_cells_in_module(mod)
handle mod;
{

handle cell;
char *mod_name;
PLI_BYTE8 *temp;

 /* save the module name in local buffer mod_name */
 temp = acc_fetch_fullname(mod);
 mod_name = (char*)malloc((strlen((char*)temp)+1) * sizeof(PLI_BYTE8));

 strcpy(mod_name,(char *)temp);

cell = null;
while (cell = acc_next_cell(mod, cell))

io_printf("%s.%s\n", mod_name, acc_fetch_name(cell));

free(mod_name);
}

strcpy saves the full module
name in mod_name

storage the size of the full
module name is allocated

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 397
This is an unapproved IEEE Standards Draft, subject to change.

The purpose of each of these arguments is described in the following paragraphs. Refer to 23.97 for the full

syntax and usage of acc_vcl_add() and its arguments.

The handle argument shall be a handle to any object type in the list in 22.10.1.

The consumer routine argument shall be the name of a C application that shall be called for the reasons spec-

ified by the reason_flag, such as a logic value change. When a consumer routine is called, it shall be passed

a pointer to a C record, called vc_record. This record shall contain information about the object, includ-

ing the simulation time of the change and the new logic value of the object. The vc_record is defined in

the file acc_user.h and is listed in Figure 56.

The user_data argument shall be a PLI_BYTE8 pointer. The value of the user_data argument shall be passed

to the consumer routine as part of the vc_record. The user_data argument can be used to pass a single

value to the consumer routine, or it can be used to pass a pointer to information. For example, the name of

the object could be stored in a global character string array, and a pointer to that array could be passed as the

user_data argument. The consumer routine could then have access to the object name. Another example is to

allocate memory for a user-defined structure with several values that need to be passed to the consumer rou-

tine. A pointer to the memory for the user-defined structure is then passed as the user_data argument. Note

that the user_data argument is defined as a PLI_BYTE8 pointer; therefore, any other data type should be cast

to a PLI_BYTE8 pointer.

The VCL reason_flag argument is one of two predefined constants that sets up the VCL callback mechanism

to call the consumer routine under specific circumstances. The constant vcl_verilog_logic sets up the VCL

to call the consumer routine whenever the monitored object changes logic value. The constant

vcl_verilog_strength sets up the VCL to call the consumer routine when the monitored object changes logic

value or logic strength.

An object can have any number of VCL monitors associated with it, as long as each monitor is unique in

some way. VCL monitors can be deleted using the ACC routine acc_vcl_delete().

22.10.1 VCL objects

The VCL shall monitor value changes for the following objects:

— Scalar variables and bit-selects of vector variables
— Scalar nets, unexpanded vector nets, and bit-selects of expanded vector nets
— Integer, real, and time variables
— Module ports
— Primitive output or inout terminals
— Named events

Note—Adding a value change link to a module port is equivalent to adding a value change link to the loconn of the port.

The vc_reason returned shall be based on the loconn of the port.

22.10.2 The VCL record definition

Each time a consumer routine is called, it shall be passed a pointer to a record structure called vc_record.

This structure shall contain information about the most recent change that occurred on the monitored object.

The vc_record structure is defined in acc_user.h and is listed in Figure 56.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

398 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Figure 56—The VCL s_vc_record structure

The vc_reason field of vc_record shall contain a predefined integer constant that shall describe what type

of change occurred. The constants that can be passed in the vc_reason field are described in Table 120.

The vc_hightime and vc_lowtime fields of vc_record shall be 32-bit integers that shall contain the simula-

tion time in the simulator's time units during which the change occurred, as follows:

The user_data field of vc_record shall be a PLI_BYTE8 pointer, and it shall contain the value specified

as the user_data argument in the acc_vcl_add() ACC routine.

The out_value field of vc_record shall be a union of several data types. Only one data type shall be

passed in the structure, based on the reason the callback occurred, as shown Table 121.

Table 120—Predefined vc_reason constants

Predefined vc_reason constant Description

logic_value_change A scalar net or bit-select of a vector net changed logic value.

strength_value_change A scalar net or bit-select of a vector net changed logic value or strength.

vector_value_change A vector net or part-select of a vector net changed logic value.

sregister_value_change A scalar reg changed logic value.

vregister_value_change A vector reg or part-select of a vector reg changed logic value.

integer_value_change An integer variable changed value.

real_value_change A real variable changed value.

time_value_change A time variable changed value.

event_value_change A named event occured.

typedef struct t_vc_record
{
 PLI_INT32 vc_reason;
 PLI_INT32 vc_hightime;
 PLI_INT32 vc_lowtime;
 PLI_BYTE8 *user_data;
 union
 {
 PLI_UBYTE8 logic_value;
 double real_value;
 handle vector_handle;
 s_strengths strengths_s;
 } out_value;
} s_vc_record, *p_vc_record;

vc_hightime vc_lowtime

0313264

lsbmsb

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 399
This is an unapproved IEEE Standards Draft, subject to change.

When the vc_reason field of the vc_record is strength_value_change, the s_strengths structure fields of

the out_value field of vc_record shall contain the value. This structure shall contain three fields, as shown

in Figure 57.

Figure 57—The VCL s_strengths structure

The values of the s_strengths structure fields are defined in Table 122.

Table 121—Predefined out_value constants

If vc_reason is The out_value shall
be a type of

Description

logic_value_change PLI_UBYTE8 A predefined constant, from the following: vcl0 vcl1
vclX vclx vclZ vclz

strength_value_change s_strengths
structure

A structure with logic and strength, as shown in

Figure 57

vector_value_change handle A handle to a vector net or part-select of a vector net

sregister_value_change PLI_UBYTE8 A predefined constant, from the following: vcl0 vcl1
vclX vclx vclZ vclz

vregister_value_change handle A handle to a vector reg or part-select of a vector reg

integer_value_change handle A handle to an integer variable

real_value_change double The value of a real variable

time_value_change handle A handle to a time variable

event_value_change none Event types have no value

Table 122—Predefined out_value constants

 s_strengths field C data type Description

logic_value PLI_UBYTE8 A predefined constant, from the following:

vcl0 vcl1 vclX vclx vclZ vclz

strength1
strength2

PLI_UBYTE8 A predefined constant, from the following:

vclSupply vclWeak
vclStrong vclMedium
vclPull vclSmall
vclLarge vclHighZ

typedef struct t_strengths
{
 PLI_UBYTE8 logic_value;
 PLI_UBYTE8 strength1;
 PLI_UBYTE8 strength2;
} s_strengths, *p_strengths;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

400 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The strength1 and strength2 fields of the s_strengths structure can represent

a) A known strength—when strength1 and strength2 contain the same value, the signal strength shall

be that value.

b) An ambiguous strength with a known logic_value—when strength1 and strength2 contain different

values and the logic_value contains either vcl0 or vcl1, the signal strength shall be an ambiguous

strength, where the strength1 value shall be the maximum possible strength and strength2 shall be

the minimum possible strength.

c) An ambiguous strength with an unknown logic_value—when strength1 and strength2 contain

different values and the logic_value contains vclX, the signal strength shall be an ambiguous

strength, where the strength1 value shall be the logic 1 component and strength2 shall be the logic 0

component.

22.10.3 Effects of acc_initialize() and acc_close() on VCL consumer routines

The ACC routines acc_initialize() and acc_close() shall reset all configuration parameters set by the routine

acc_configure() back to default values. Care should be taken to ensure that the VCL consumer routine does

not depend on any configuration parameters, as these parameters might not have the same value when a VCL

callback occurs. Refer to 23.6 on acc_configure() for a list of routines that are affected by configuration

parameters.

22.10.4 An example of using VCL ACC routines

The following example contains three PLI routines: a checktf application, a calltf application, and a con-

sumer routine. The example is based on the checktf and calltf applications both being associated with two

user-defined system tasks, using the PLI interface mechanism described in Clause 21.

$net_monitor(<net_name>,<net_name>, ...);
$net_monitor_off(<net_name>,<net_name>, ...);

The checktf application, netmon_checktf, is shown below. This application performs syntax checking

on instances of the user-defined system tasks to ensure there is at least one argument and that the arguments

are valid net names.

PLI_INT32 netmon_checktf()
{
 int i;
 PLI_INT32 arg_cnt = tf_nump();

 /* initialize the environment for access routines */
 acc_initialize();

 /* check number and type of task/function arguments */
 if (arg_cnt == 0)
 tf_error("$net_monitor[_off] must have at least one argument");
 else
 for (i = 1; i <= arg_cnt; i++)
 if (acc_fetch_type(acc_handle_tfarg(i)) != accNet) {
 tf_error("$net_monitor[_off] arg %d is not a net type",i);
 }

 acc_close();
 return(0);
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 401
This is an unapproved IEEE Standards Draft, subject to change.

The calltf application, netmon_calltf, follows. This application gets a handle to each task function

argument and either adds or deletes a VCL monitor on the net. The application checks the data C argument

associated with each system task name to determine whether the application was called by

$net_monitor or $net_monitor_off.

PLI_INT32 netmon_calltf(data)
PLI_INT32 data;
{
 handle net;
 PLI_INT32 netmon_consumer();
 PLI_INT32 tfnum;

 #define ADD 0 /* data value associated with $net_monitor */
 #define DELETE 1 /* data value associated with $net_monitor_off */

 /* initialize the environment for access routines */
 acc_initialize();

 switch (data) /* see which system task name called this application */
 {
 case ADD: /* called by $net_monitor */
 /* add a VCL flag to each net in the task/function argument list */
 tfnum = 1;
 while ((net = acc_handle_tfarg(tfnum++)) != null)
 {
 /* add a VCL monitor; pass net pointer as user_data argument*/
 acc_vcl_add(net, netmon_consumer, (PLI_BYTE8*)net,
 vcl_verilog_logic);
 }
 break;

 case DELETE: /* called by $net_monitor_off */
 tfnum = 1;
 while ((net = acc_handle_tfarg(tfnum++)) != null)
 {
 /* delete the VCL monitor */
 acc_vcl_delete(net, netmon_consumer, (PLI_BYTE8*)net, vcl_verilog);
 }
 break;
 }
 acc_close();
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

402 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The consumer routine, netmon_consumer, is shown in the following example. The consumer routine is

called by the VCL callback mechanism. Since the checktf application only permits net data types to be used,

the consumer routine only needs to check for scalar and vector net value changes when it is called. In this

example, it is assumed that $net_monitor is associated with a data value of 0, and $net_monitor_off is asso-

ciated with a data value of 1. Refer to 21.3.1 for a description of associating data values.

PLI_INT32 netmon_consumer(vc_record)
p_vc_record vc_record; /* record type passed to consumer routine */
{
 PLI_BYTE8 net_value;
 char value;
 handle vector_value;

 /* check reason VCL call-back occurred */
 switch (vc_record->vc_reason)
 {
 case logic_value_change : /* scalar signal changed logic value */
 {
 net_value = vc_record->out_value.logic_value;
 /* convert logic value constant to a character for printing */
 switch (net_value)
 {
 case vcl0 : value = '0'; break;
 case vcl1 : value = '1'; break;
 case vclX : value = 'X'; break;
 case vclZ : value = 'Z'; break;
 }
 io_printf("%d : %s = %c\n",
 vc_record->vc_lowtime,
 acc_fetch_name((handle) vc_record->user_data),
 value);
 break;
 }
 case vector_value_change :/* vector signal changed logic value */
 {
 vector_value = vc_record->out_value.vector_handle;
 io_printf("%d : %s = %s\n",
 vc_record->vc_lowtime,
 acc_fetch_name((handle) vc_record->user_data),
 acc_fetch_value(vector_value, "%b",NULL));
 break;
 }
 }
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 403
This is an unapproved IEEE Standards Draft, subject to change.

23. ACC routine definitions

This clause describes the PLI access (ACC) routines, explaining their function, syntax, and usage. The rou-

tines are listed in alphabetical order.

The following conventions are used in the definitions of the PLI routines described in Clause 23, Clause 25,

and Clause 27.

Synopsis: A brief description of the PLI routine functionality, intended to be used as a quick reference when

searching for PLI routines to perform specific tasks.

Syntax: The exact name of the PLI routine and the order of the arguments passed to the routine.

Returns: The definition of the value returned when the PLI routine is called, along with a brief description

of what the value represents. The return definition contains the fields

— Type: The data type of the C value that is returned. The data type is either a standard ANSI C type or
a special type defined within the PLI.

— Description: A brief description of what the value represents.

Arguments: The definition of the arguments passed with a call to the PLI routine. The argument definition

contains the fields

— Type: The data type of the C values that are passed as arguments. The data type is either a standard
ANSI C type, or a special type defined within the PLI.

— Name: The name of the argument used in the Syntax definition.
— Description: A brief description of what the value represents.

All arguments shall be considered mandatory unless specifically noted in the definition of the PLI routine.

Two tags are used to indicate arguments that may not be required:

— Conditional: Arguments tagged as conditional shall be required only if a previous argument is set to
a specific value, or if a call to another PLI routine has configured the PLI to require the arguments.
The PLI routine definition explains when conditional arguments are required.

— Optional: Arguments tagged as optional may have default values within the PLI, but they may be
required if a previous argument is set to a specific value, or if a call to another PLI routine has con-
figured the PLI to require the arguments. The PLI routine definition explains the default values and
when optional arguments are required.

Related routines: A list of PLI routines that are typically used with, or provide similar functionality to, the

PLI routine being defined. This list is provided as a convenience to facilitate finding information in this stan-

dard. It is not intended to be all-inclusive, and it does not imply that the related routines have to be used.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

404 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.1 acc_append_delays()

acc_append_delays() for single delay values (accMinTypMaxDelays set to “false”)

Synopsis: Add delays to existing delay on primitives, module paths, intermodule paths, timing checks, and mod-

ule input ports.

Syntax:

Primitives acc_append_delays(object_handle, rise_delay, fall_delay, z_delay)

Module paths

Intermodule paths

Ports or port bits

acc_append_delays(object_handle,
 d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12)

Timing checks acc_append_delays(object_handle, limit)

Type Description

Returns: PLI_INT32 1 if successful; 0 if an error occurred

Type Name Description

Arguments: handle object_handle Handle of a primitive, module path, intermodule path, timing

check, module input port or bit of a module input port

double rise_delay

fall_delay

Rise and fall transition delay for 2-state primitives, 3-state

primitives

Conditional double z_delay If accToHiZDelay is set to “from_user”:

turn-off (to Z) transition delay for 3-state primitives

double d1 For module/intermodule paths and input ports/port bits:

If accPathDelayCount is set to “1”:

delay for all transitions

If accPathDelayCount is set to “2” or “3”:

rise transition delay

If accPathDelayCount is set to “6” or “12”:

0->1 transition delay

Conditional double d2 For module/intermodule paths and input ports/port bits:

If accPathDelayCount is set to “2” or “3”:

fall transition delay

If accPathDelayCount is set to “6” or “12”:

1->0 transition delay

Conditional double d3 For module/intermodule paths and input ports/port bits:

If accPathDelayCount is set to “3”:

turn-off transition delay

If accPathDelayCount is set to “6” or “12”:

0->Z transition delay

Conditional double d4

d5

d6

For module/intermodule paths and input ports/port bits:

If accPathDelayCount is set to “6” or “12”:

d4 is Z->1 transition delay

d5 is 1->Z transition delay

d6 is Z->0 transition delay

Conditional double d7

d8

d9

d10

d11

d12

For module/intermodule paths and input ports/port bits:

If accPathDelayCount is set to “12”:

d7 is 0->X transition delay

d8 is X->1 transition delay

d9 is 1->X transition delay

d10 is X->0 transition delay

d11 is X->Z transition delay

d12 is Z->X transition delay

double limit Limit of timing check

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 405
This is an unapproved IEEE Standards Draft, subject to change.

The ACC routine acc_append_delays() shall work differently depending on how the configuration parame-

ter accMinTypMaxDelays is set. When this parameter is set to false, a single delay per transition shall be

assumed, and delays shall be passed as individual arguments. For this single delay mode, the first syntax

table in this section shall apply.

When accMinTypMaxDelays is set to true, acc_append_delays() shall pass one or more sets of mini-

mum:typical:maximum delays contained in an array, rather than single delays passed as individual argu-

ments. For this min:typ:max delay mode, the second syntax table in this section shall apply.

The number of delay values appended by acc_append_delays() shall be determined by the type of object

and the setting of configuration parameters. Refer to 22.8 for a description of how the number of delay val-

ues are determined.

The acc_append_delays() routine shall write delays in the timescale of the module that contains the

object_handle.

When altering the delay via acc_append_delays() the value of the reject/error region will not be affected

unless they exceed the value of the delay. If the reject/error limits exceed the delay they will be truncated

down to the new delay limit.

The example shown in Figure 58 is an example of backannotation. It reads new delay values from a file

called primdelay.dat and uses acc_append_delays() to add them to the current delays on a gate. The for-

mat of the file is shown in Figure 58.

acc_append_delays() for min:typ:max delays (accMinTypMaxDelays set to “true”)

Synopsis: Add min:typ:max delay values to existing delay values for primitives, module paths, intermodule paths,

timing checks or module input ports; the delay values are contained in an array.

Syntax: acc_append_delays(object_handle, array_ptr)

Type Description

Returns: PLI_INT32 1 if successful; 0 if an error is encountered

Type Name Description

Arguments: handle object_handle Handle of a primitive, module path, intermodule path, tim-

ing check, module input port or bit of a module input port

double address array_ptr Pointer to array of min:typ:max delay values;

the size of the array depends on the type of object and the

setting of accPathDelayCount (see 22.8)

Related routines: Use acc_fetch_delays() to retrieve an object’s delay values

Use acc_replace_delays() to replace an object’s delay values

Use acc_configure() to set accPathDelayCount and accMinTypMaxDelays

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

406 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Figure 58—Using acc_append_delays() in single delay value mode

The example shown in Figure 59 shows how to append min:typ:max delays for a 2-state primitive (no high-

impedance state). The C application follows these steps:

a) Declares an array of nine double-precision floating-point values to hold three sets of min:typ:max

values, one set each for rising transitions, falling transitions, and transitions to Z.

b) Sets the configuration parameter accMinTypMaxDelays to true to instruct acc_append_delays()
to write delays in min:typ:max format.

c) Calls acc_append_delays() with a valid primitive handle and the array pointer.

Since the primitive to be used in this example does not have a high-impedance state, acc_append_delays()
automatically appends just the rise and fall delay value sets. The last three array elements for the toZ delay

values are not used. However, even though the last three array elements are not used with a 2-state primitive,

the syntax for using min:typ:max delays requires that the array contain all nine elements.

.

.
top.m1.buf4 10.5 15.0 20.7

.

.
name of gate

rise delay
turn-off delay

fall delay

#include <stdio.h>
#include "acc_user.h"

PLI_INT32 write_gate_delays()
{

FILE *infile;
PLI_BYTE8 full_gate_name[NAME_SIZE];
double rise,fall,toz;
handle gate_handle;

/*initialize the environment for ACC routines*/
acc_initialize();

/*read delays from file - "r" means read only*/
infile = fopen("primdelay.dat","r");
while(fscanf(infile, “%s %lf %lf %lf”,

full_gate_name,rise,fall,toz) != EOF)
{

/*get handle for the gate*/
gate_handle = acc_handle_object(full_gate_name);

/*add new delays to current values for the gate*/
acc_append_delays(gate_handle, rise, fall, toz);

}
acc_close();

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 407
This is an unapproved IEEE Standards Draft, subject to change.

For this example, the C application, append_mintypmax_delays, is associated through the ACC interface

mechanism with a user-defined system task called $appendprimdelays. A primitive with no Z state and

new delay values are passed as task/function arguments to $appendprimdelays as follows:

Figure 59—Using acc_append_delays() in min:typ:max mode

$appendprimdelays(g1, 3.0, 5.0, 6.7, 2.4, 8.1, 9.1);

minimum
rise delay

a 2-state primitive

typical
rise delay

maximum
rise delay

minimum
fall delay

typical
fall delay

maximum
fall delay

#include "acc_user.h"

PLI_INT32 append_mintypmax_delays()
{

handle prim;
double delay_array[9];
int i;

acc_configure(accMinTypMaxDelays, "true");

/* get handle for primitive */
prim = acc_handle_tfarg(1);

/* store new delay values in array */
for (i = 0; i < 9; i++)

delay_array[i] = acc_fetch_tfarg(i+2);

/* append min:typ:max delays */
acc_append_delays(prim, delay_array);

}

delay_array has to be
large enough to hold
nine values to handle
both 2-state primitives
and 3-state primitives

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

408 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.2 acc_append_pulsere()

The ACC routine acc_append_pulsere() shall add to an existing pulse handling reject_limit value and

e_limit value for a module path, intermodule path and module input port. The reject_limit and e_limit values

are used to control how pulses are propagated through paths.

A pulse is defined as two transitions that occur in a shorter period of time than the delay. Pulse control values

determine whether a pulse should be rejected, propagated through to the output, or considered an error. The

pulse control values consist of a reject_limit and an e_limit pair of values, where

— The reject_limit shall set a threshold for determining when to reject a pulse—any pulse less than the
reject_limit shall not propagate.

— The e_limit shall set a threshold for determining when a pulse is considered to be an error—any
pulse less than the e_limit and greater than or equal to the reject_limit shall propagate a logic x.

— A pulse that is greater than or equal to the e_limit shall propagate.

Table 123 illustrates the relationship between the reject_limit and the e_limit.

acc_append_pulsere()

Synopsis: Add delays to existing pulse handling reject_limit and e_limit for a module path, intermodule path or module

input port.

Syntax: acc_append_pulsere(object,r1,e1, r2,e2, r3,e3, r4,e4, r5,e5, r6,e6,
 r7,e7, r8,e8, r9,e9, r10,e10, r11,e11, r12,e12)

Type Description

Returns: PLI_INT32 1 if successful; 0 if an error is encountered

Type Name Description

Arguments: handle object Handle of module path, intermodule path or module input

port

double r1...r12 reject_limit values; the number of arguments is determined

by accPathDelayCount

double e1...e12 e_limit values; the number of arguments is determined by

accPathDelayCount

Related
routines:

Use acc_fetch_pulsere() to get current pulse handling values

Use acc_replace_pulsere() to replace existing pulse handling values

Use acc_set_pulsere() to set pulse handling values as a percentage of the path delay

Use acc_configure() to set accPathDelayCount

Table 123—Pulse control example

When The pulse shall be

reject_limit = 10.5

e_limit = 22.6

Rejected if < 10.5

An error if >= 10.5 and < 22.6

Passed if >= 22.6

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 409
This is an unapproved IEEE Standards Draft, subject to change.

The following rules shall apply when specifying pulse handling values:

a) The value of reject_limit shall be less than or equal to the value of e_limit.

b) The reject_limit and e_limit shall not be greater than the delay.

If any of the limits do not meet the above rules, they shall be truncated.

The number of pulse control values that acc_append_pulsere() sets shall be controlled using the ACC rou-

tine acc_configure() to set the delay count configuration parameter accPathDelayCount, as shown in

Table 124.

The minimum number of pairs of reject_limit and e_limit arguments to pass to acc_append_pulsere() has

to equal the value of accPathDelayCount. Any unused reject_limit and e_limit argument pairs shall be

ignored by acc_append_pulsere() and can be dropped from the argument list.

If accPathDelayCount is not set explicitly, it shall default to six; therefore, six pairs of pulse reject_limit

and e_limit arguments have to be passed when acc_append_pulsere() is called. Note that the value assigned

to accPathDelayCount also affects acc_append_delays(), acc_fetch_delays(), acc_replace_delays(),
acc_fetch_pulsere(), and acc_replace_pulsere().

Pulse control values shall be appended using the timescale of the module that contains the object handle.

Table 124—How the value of accPathDelayCount affects acc_append_pulsere()

When accPathDelayCount is acc_append_pulsere() shall write

“1” One pair of reject_limit and e_limit values:

one pair for all transitions, r1 and e1

“2”
Two pairs of reject_limit and e_limit values:

one pair for rise transitions, r1 and e1

one pair for fall transitions, r2 and e2

“3”

Three pairs of reject_limit and e_limit values:

one pair for rise transitions, r1 and e1

one pair for fall transitions, r2 and e2

one pair for turn-off transitions, r3 and e3

“6”
(the default)

Six pairs of reject_limit and e_limit values—a different pair

for each possible transition among 0, 1, and Z:

one pair for 0->1 transitions, r1 and e1

one pair for 1->0 transitions, r2 and e2

one pair for 0->Z transitions, r3 and e3

one pair for Z->1 transitions, r4 and e4

one pair for 1->Z transitions, r5 and e5

one pair for Z->0 transitions, r6 and e6

“12”

Twelve pairs of reject_limit and e_limit values—a different

pair for each possible transition among 0, 1, X, and Z:

one pair for 0->1 transitions, r1 and e1

one pair for 1->0 transitions, r2 and e2

one pair for 0->Z transitions, r3 and e3

one pair for Z->1 transitions, r4 and e4

one pair for 1->Z transitions, r5 and e5

one pair for Z->0 transitions, r6 and e6

one pair for 0->X transitions, r7 and e7

one pair for X->1 transitions, r8 and e8

one pair for 1->X transitions, r9 and e9

one pair for X->0 transitions, r10 and e10

one pair for X->Z transitions, r11 and e11

one pair for Z->X transitions, r12 and e12

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

410 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.3 acc_close()

The ACC routine acc_close() shall free internal memory used by ACC routines and reset all configuration

parameters to default values. No other ACC routines should be called after calling acc_close(); in particular,

ACC routines that are affected by acc_configure() should not be called.

Potentially, multiple PLI applications running in the same simulation session can interfere with each other

because they share the same set of configuration parameters. To guard against application interference, both

acc_initialize() and acc_close() reset all configuration parameters to their default values.

The example shown in Figure 60 presents a C language routine that calls acc_close() before exiting.

Figure 60—Using acc_close()

acc_close()

Synopsis: Free internal memory used by ACC routines; reset all configuration parameters to default values.

Syntax: acc_close()

Type Description

Returns: void No return

Type Name Description

Arguments: None

Related
routines:

Use acc_initialize() to initialize the ACC routine environment

#include "acc_user.h"

void show_versions()
{
 /*initialize environment for ACC routines*/
 acc_initialize();

 /*show version of ACC routines and simulator */
 io_printf("Running %s with %s\n",acc_version(),acc_product_version());

acc_close();
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 411
This is an unapproved IEEE Standards Draft, subject to change.

23.4 acc_collect()

The ACC routine acc_collect() shall scan through a reference object, such as a module, and collect handles

to all occurrences of a specific target object. The collection of handles shall be stored in an array, which can

then be used by other ACC routines.

The object associated with object_handle shall be a valid type of handle for the reference object required by

the acc_next routine to be called.

The routine acc_collect() should be used in the following situations:

— To retrieve data that can be used more than once
— Instead of using nested or concurrent calls to acc_next_loconn(), acc_next_hiconn(),

acc_next_load(), and acc_next_cell_load() routines

Otherwise, it can be more efficient to use the an acc_next_ routine directly.

The routine acc_collect() shall allocate memory for the array of handles it returns. When the handles are no

longer needed, the memory can be freed by calling the routine acc_free().

The ACC routine acc_next_topmod() does not work with acc_collect(). However, top-level modules can be

collected by passing acc_next_child() with a null reference object argument. For example:

acc_collect(acc_next_child, null, &count);

The example shown in Figure 61 presents a C language routine that uses acc_collect() to collect and display

all nets in a module.

acc_collect()

Synopsis: Obtain an array of handles for all objects related to a particular reference object; get the number of objects

collected.

Syntax: acc_collect(acc_next_routine_name, object_handle, number_of_objects)

Type Description

Returns: handle array

address

An address pointer to an array of handles of the objects collected

Type Name Description

Arguments: pointer to

acc_next_

routine

acc_next_routine_name Actual name (unquoted) of the acc_next_ routine that finds

the objects to be collected

handle object_handle Handle of the reference object for acc_next_ routine

PLI_INT32 * number_of_objects Integer pointer where the count of objects collected shall be

written

Related
routines:

All acc_next_ routines except acc_next_topmod()

Use acc_free() to free memory allocated by acc_collect()

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

412 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Figure 61—Using acc_collect()

#include "acc_user.h"

PLI_INT32 display_nets()
{

handle *list_of_nets, module_handle;
PLI_INT32 net_count, i;

/*initialize environment for ACC routines*/
acc_initialize();

/*get handle for the module*/
module_handle = acc_handle_tfarg(1);

/*collect all nets in the module*/
list_of_nets = acc_collect(acc_next_net, module_handle, &net_count);

/*display names of net instances*/
for(i=0; i < net_count; i++)

io_printf("Net name is: %s\n", acc_fetch_name(list_of_nets[i]));

/*free memory used by array list_of_nets*/
acc_free(list_of_nets);

acc_close();
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 413
This is an unapproved IEEE Standards Draft, subject to change.

23.5 acc_compare_handles()

The ACC routine acc_compare_handles() shall determine if two handles refer to the same object. In some

cases, two different handles might reference the same object if each handle is retrieved in a different way—

for example, if an acc_next routine returns one handle and acc_handle_object() returns the other.

The C == operator cannot be used to determine if two handles reference the same object.

if (handle1 == handle2) /* this does not work */

The example shown in Figure 62 uses acc_compare_handles() to determine if a primitive drives the speci-

fied output of a scalar port of a module.

Figure 62—Using acc_compare_handles()

acc_compare_handles()

Synopsis: Determine if two handles refer to the same object.

Syntax: acc_compare_handles(handle1, handle2)

Type Description

Returns: PLI_INT32 true if handles refer to the same object; false if different objects

Type Name Description

Arguments: handle handle1 Handle to any object

handle handle2 Handle to any object

#include "acc_user.h"

PLI_INT32 prim_drives_scalar_port(prim, mod, port_num)
handle prim, mod;
PLI_INT32 port_num;
{

/* retrieve net connected to scalar port */
handle port = acc_handle_port(mod, port_num);
handle port_conn = acc_next_loconn(port, null);

/* retrieve net connected to primitive output */
handle out_term = acc_handle_terminal(prim, 0);
handle prim_conn = acc_handle_conn(out_term);

/* compare handles */
if (acc_compare_handles(port_conn, prim_conn))

return(true);
else

return(false);
}

If port_conn and prim_conn
refer to the same connection,
then the prim drives port

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

414 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.6 acc_configure()

The ACC routine acc_configure() shall set parameters that control the operation of various ACC routines.

Table 125 through Table 134 describe each parameter and its set of values. Note that a call to either

acc_initialize() or acc_close() shall set each configuration parameter back to its default value.

acc_configure()

Synopsis: Set parameters that control the operation of various ACC routines.

Syntax: acc_configure(configuration_parameter, configuration_value)

Type Description

Returns: PLI_INT32 1 if successful; 0 if an error occurred

Type Name Description

Arguments: integer constant configuration_parameter One of the following predefined

constants:

accDefaultAttr0
accDevelopmentVersion
accDisplayErrors
accDisplayWarnings
accEnableArgs
accMapToMipd
accMinTypMaxDelays
accPathDelayCount
accPathDelimStr
accToHiZDelay

quoted string configuration_value One of a fixed set of string values for

the configuration_parameter

Related
routines:

For accDefaultAttr0
acc_fetch_attribute()

acc_fetch_attribute_int()

acc_fetch_attribute_str()

For accDisplayErrors
all ACC routines

For accDisplayWarnings
all ACC routines

For accEnableArgs
acc_handle_modpath()

acc_handle_tchk()

acc_set_scope()

For accMapToMipd
acc_append_delays()

acc_replace_delays()

For accMinTypMaxDelays
acc_append_delays()

acc_fetch_delays()

acc_replace_delays()

For accPathDelayCount
acc_append_delays()

acc_fetch_delays()

acc_replace_delays()

acc_append_pulsere()

acc_fetch_pulsere()

acc_replace_pulsere()

For accPathDelimStr
acc_fetch_attribute()

acc_fetch_attribute_int()

acc_fetch_attribute_str()

acc_fetch_fullname()

acc_fetch_name()

For accToHiZDelay
acc_append_delays()

acc_replace_delays()

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 415
This is an unapproved IEEE Standards Draft, subject to change.

Table 125—accDefaultAttr0 configuration parameter

accDefaultAttr0

Set of values Effect Default

“true” acc_fetch_attribute() shall return zero

when it does not find the attribute

requested and shall ignore the

default_value argument

“false”

“false” acc_fetch_attribute() shall return the

value passed as the default_value argu-

ment when it does not find the attribute

requested

Table 126—accDevelopmentVersion configuration parameter

accDevelopmentVersion

Set of values Effect Default

Quoted string of letters,

numbers, and the period

character that form a valid

PLI version, such as:

“IEEE 1364 PLI”

Software vendors can

define version strings spe-

cific to their products

None (can be used to document

which version of ACC routines was

used to develop a PLI application)

Current version

of ACC routines

Table 127—accDisplayErrors configuration parameter

accDisplayErrors

Set of values Effect Default

“true” ACC routines shall display error

messages

“true”

“false” ACC routines shall not display error

messages

Table 128—accDisplayWarnings configuration parameter

accDisplayWarnings

Set of values Effect Default

“true” ACC routines shall display warning mes-

sages

“false”

“false” ACC routines shall not display warning

messages

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

416 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Table 129—accEnableArgs configuration parameter

accEnableArgs

Set of values Effect Default

“acc_handle_modpath” acc_handle_modpath() shall

recognize its optional argu-

ments

“no_acc_handle_modpath”

“no_acc_handle_tchk”

“no_acc_set_scope”“no_acc_handle_modpath” acc_handle_modpath() shall

ignore its optional arguments

“acc_handle_tchk” acc_handle_tchk() shall rec-

ognize its optional arguments

“no_acc_handle_tchk” acc_handle_tchk() shall

ignore its optional arguments

“acc_set_scope” acc_set_scope() shall recog-

nize its optional arguments

“no_acc_set_scope” acc_set_scope() shall ignore

its optional arguments

Table 130—accMapToMipd configuration parameter

accMapToMipd

Set of values Effect Default

“max” acc_replace_delays() and acc_append_delays()
shall map the longest intermodule path delay to

the MIPD

“max”

“min” acc_replace_delays() and acc_append_delays()
shall map the shortest intermodule path delay to

the MIPD

“latest” acc_replace_delays() and acc_append_delays()
shall map the last intermodule path delay to the

MIPD

Table 131—accMinTypMaxDelays configuration parameter

accMinTypMaxDelays

Set of values Effect Default

“true” acc_append_delays(), acc_fetch_delays(),
acc_replace_delays(), acc_append_pulsere(),
acc_fetch_pulsere(), and acc_replace_pulsere()
shall use min:typ:max delay sets

“false”

“false” acc_append_delays(), acc_fetch_delays(),
acc_replace_delays(), acc_append_pulsere(),
acc_fetch_pulsere(), and acc_replace_pulsere()
shall use a single delay value

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 417
This is an unapproved IEEE Standards Draft, subject to change.

Table 132—accPathDelayCount configuration parameter

accPathDelayCount

Set of values Effect Default

“1” acc_append_delays(), acc_fetch_delays(),
acc_replace_delays(), acc_append_pulsere(),
acc_fetch_pulsere(), and
acc_replace_pulsere()
 shall use 1 delay value or value set

“6”

“2” acc_append_delays(), acc_fetch_delays(),
acc_replace_delays(), acc_append_pulsere(),
acc_fetch_pulsere(), and
acc_replace_pulsere()
 shall use 2 delay values or value sets

“3” acc_append_delays(), acc_fetch_delays(),
acc_replace_delays(), acc_append_pulsere(),
acc_fetch_pulsere(), and
acc_replace_pulsere()
 shall use 3 delay values or value sets

“6” acc_append_delays(), acc_fetch_delays(),
acc_replace_delays(), acc_append_pulsere(),
acc_fetch_pulsere(), and
acc_replace_pulsere()
 shall use 6 delay values or value sets

“12” acc_append_delays(), acc_fetch_delays(),
acc_replace_delays(), acc_append_pulsere(),
acc_fetch_pulsere(), and
acc_replace_pulsere()
 shall use 12 delay values or value sets

Table 133—accPathDelimStr configuration parameter

accPathDelimStr

Set of values Effect Default

Quoted string of

letters, numbers, $
or _

acc_fetch_name(), acc_fetch_fullname(),
and acc_fetch_attribute() shall use the

string literal as the delimiter separating the

source and destination in module path

names

“$”

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

418 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Table 134—accToHiZDelay configuration parameter

accToHiZDelay

Set of values Effect Default

“average” acc_append_delays() and

acc_replace_delays() shall derive turn-off

delays from the average of the rise and fall

delays

“from_user”

“max” acc_append_delays() and

acc_replace_delays() shall derive turn-off

delays from the larger of the rise and fall

delays

“min” acc_append_delays() and

acc_replace_delays() shall derive turn-off

delays from the smaller of the rise and fall

delays

“from_user” acc_append_delays() and

acc_replace_delays() shall derive turn-off

delays from user-supplied argument(s)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 419
This is an unapproved IEEE Standards Draft, subject to change.

The example shown in Figure 63 presents a C language application that obtains the load capacitance of all

scalar nets connected to the ports in a module. This application uses acc_configure() to direct

acc_fetch_attribute() to return zero if a load capacitance is not found for a net; as a result, the third argu-

ment, default_value, can be dropped from the call to acc_fetch_attribute().

Figure 63—Using acc_configure() to set accDefaultAttr0

#include "acc_user.h"

PLI_INT32 display_load_capacitance()
{

handle module_handle, port_handle, net_handle;
double cap_val;

/*initialize environment for ACC routines*/
acc_initialize();

/*configure acc_fetch_attribute to return 0 when it does not find*/
/* the attribute*/
acc_configure(accDefaultAttr0, "true");

/*get handle for module*/
module_handle = acc_handle_tfarg(1);

/*scan all ports in module; display load capacitance*/
port_handle = null;
while(port_handle = acc_next_port(module_handle, port_handle))
{

/*ports are scalar, so pass "null" to get single net connection*/
net_handle = acc_next_loconn(port_handle, null);

/*since accDefaultAttr0 is "true", drop default_value argument*/
cap_val = acc_fetch_attribute(net_handle,"LoadCap_");

if (!acc_error_flag)
io_printf("Load capacitance of net #%d = %1f\n",

acc_fetch_index(port_handle), cap_val);
}
acc_close();

}

default_value
argument is dropped

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

420 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The example shown in Figure 64 presents a C language application that displays the name of a module path.

It uses acc_configure() to set accEnableArgs and, therefore, forces acc_handle_modpath() to ignore its

null name arguments and recognize its optional handle arguments, src_handle and dst_handle.

Figure 64—Using acc_configure() to set accEnableArgs

#include "acc_user.h"

PLI_INT32 get_path()
{

handle path_handle,mod_handle,src_handle,dst_handle;

/*initialize the environment for ACC routines*/
acc_initialize();

/*set accEnableArgs for acc_handle_modpath*/
acc_configure(accEnableArgs, "acc_handle_modpath");

/*get handles to the three system task arguments:*/
/* arg 1 is module name */
/* arg 2 is module path source */
/* arg 3 is module path destination*/
mod_handle = acc_handle_tfarg(1);
src_handle = acc_handle_tfarg(2);
dst_handle = acc_handle_tfarg(3);

/*display name of module path*/
path_handle = acc_handle_modpath(mod_handle,

null, null,
src_handle, dst_handle);

io_printf("Path is %s \n", acc_fetch_fullname(path_handle));

acc_close();
}

acc_handle_modpath() uses

optional handle arguments
src_handle and
dst_handle because:

accEnableArgs is set

the name arguments are null
and

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 421
This is an unapproved IEEE Standards Draft, subject to change.

The example shown in Figure 65 fetches the rise and fall delays of each path in a module and backannotates

the maximum delay value as the delay for all transitions. The value of accPathDelayCount specifies the

minimum number of arguments that have to be passed to routines that read or write delay values. By setting

accPathDelayCount to the minimum number of arguments needed for acc_fetch_delays() and again for

acc_replace_delays(), all unused arguments can be eliminated from each call.

Figure 65—Using acc_configure() to set accPathDelayCount

#include "acc_user.h"

PLI_INT32 set_path_delays()
{

handle mod_handle;
handle path_handle;
double rise_delay,fall_delay,max_delay;

/*initialize environment for ACC routines*/
acc_initialize();

/*get handle to module*/
mod_handle = acc_handle_tfarg(1);

/*fetch rise delays for all paths in module "top.m1"*/
path_handle = null;
while(path_handle = acc_next_modpath(mod_handle, path_handle))
{

/*configure accPathDelayCount for rise and fall delays only*/
acc_configure(accPathDelayCount, "2");
acc_fetch_delays(path_handle, &rise_delay, &fall_delay);

/*find the maximum of the rise and fall delays*/
max_delay = (rise_delay > fall_delay) ? rise_delay : fall_delay;

/*configure accPathDelayCount to apply one delay for all transitions*/
acc_configure(accPathDelayCount, "1");
acc_replace_delays(path_handle, max_delay);

}
acc_close();

}

only 1 delay

argument is needed

only 2 delay

arguments are needed

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

422 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The example shown in Figure 66 shows how accToHiZDelay is used to direct acc_append_delays() to

derive the turn-off delay for a Z-state primitive automatically as the smaller of its rise and fall delays.

Figure 66—Using acc_configure() to set accToHiZDelay

#include "acc_user.h"

PLI_INT32 set_buf_delays()
{

handle primitive_handle;
handle path_handle;
double added_rise, added_fall;

/*initialize environment for ACC routines*/
acc_initialize();

/*configure accToHiZDelay so acc_append_delays derives turn-off */
/* delay from the smaller of the rise and fall delays*/
acc_configure(accToHiZDelay, "min");

/*get handle to Z-state primitive*/
primitive_handle = acc_handle_tfarg(1);

/*get delay values*/
added_rise = tf_getrealp(2);
added_fall = tf_getrealp(3);

acc_append_delays(primitive_handle, added_rise, added_fall);

acc_close();
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 423
This is an unapproved IEEE Standards Draft, subject to change.

23.7 acc_count()

The ACC routine acc_count() shall find the number of objects that exist for a specific acc_next_ routine

with a given reference object. The object associated with object_handle shall be a valid reference object for

the type acc_next_ routine to be called.

Note that the ACC routine acc_next_topmod() does not work with acc_count(). However, top-level mod-

ules can be counted using acc_next_child() with a null reference object argument. For example:

acc_count(acc_next_child, null);

The example shown in Figure 67 uses acc_count() to count the number of nets in a module.

Figure 67—Using acc_count()

acc_count()

Synopsis: Count the number of objects related to a particular reference object.

Syntax: acc_count(acc_next_routine_name, object_handle)

Type Description

Returns: PLI_INT32 Number of objects

Type Name Description

Arguments: pointer to an

acc_next_

routine

acc_next_routine_name Actual name (unquoted) of the acc_next_ routine that finds

the objects to be counted

handle object_handle Handle of the reference object for the acc_next_ routine

Related
routines:

All acc_next_ routines except acc_next_topmod()

#include "acc_user.h"
PLI_INT32 count_nets()
{

handle module_handle;
PLI_INT32 number_of_nets;

/*initialize environment for ACC routines*/
acc_initialize();

/*get handle for module*/
module_handle = acc_handle_tfarg(1);

/*count and display number of nets in the module*/
number_of_nets = acc_count(acc_next_net, module_handle);
io_printf("number of nets = %d\n", number_of_nets);

acc_close();
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

424 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.8 acc_fetch_argc()

The ACC routine acc_fetch_argc() shall obtain the number of command-line arguments given on a Verilog

software product invocation command line.

The example shown in Figure 68 uses acc_fetch_argc() to determine the number of invocation arguments

used.

Figure 68—Using acc_fetch_argc()

acc_fetch_argc()

Synopsis: Get the number of command-line arguments supplied with a Verilog software tool invocation.

Syntax: acc_fetch_argc()

Type Description

Returns: PLI_INT32 Number of command-line arguments

Type Name Description

Arguments: None

Related
routines:

Use acc_fetch_argv() to get a character string array of the invocation options

#include "acc_user.h"
#include <string.h> /* string.h is implementation dependent */

PLI_BYTE8* my_scan_plusargs(str)
 PLI_BYTE8 *str;
{
 PLI_INT32 i;
 int length = strlen(str);
 PLI_BYTE8 *curStr;
 PLI_BYTE8 **argv = acc_fetch_argv();

for (i = acc_fetch_argc()-1; i>0; i--)
 {
 curStr = argv[i];
 if ((curStr[0] == ’+’) && (!strncmp(curStr+1,str,length)))
 {
 PLI_BYTE8 *retVal;

 length = strlen(&(curStr[length]) + 1);
 retVal = (PLI_BYTE8 *)malloc(sizeof(PLI_BYTE8) * length);
 strcpy(retVal, &(curStr[length]));
 return(retVal);
 }
 }
 return(null);
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 425
This is an unapproved IEEE Standards Draft, subject to change.

23.9 acc_fetch_argv()

The ACC routine acc_fetch_argv() shall obtain an array of character pointers that make up the command-

line arguments.

The format of the argv array is that each pointer in the array shall point to a NULL terminated character

array which contains the string located on the tool's invocation command line. There shall be ‘argc’ entries

in the argv array. The value in entry zero shall be the tool’s name.

The argument following a -f argument shall contain a pointer to a NULL terminated array of pointers to

characters. This new array shall contain the parsed contents of the file. The value in entry zero shall contain

the name of the file. The remaining entries shall contain pointers to NULL terminated character arrays con-

taining the different options in the file. The last entry in this array shall be a NULL. If one of the options is a

-f then the next pointer shall behave the same as described above.

The example shown in Figure 69 uses acc_fetch_argv() to retrieve the invocation arguments used.

acc_fetch_argv()

Synopsis: Get an array of character pointers that make up the command-line arguments for a Verilog software product

invocation.

Syntax: acc_fetch_argv()

Type Description

Returns: PLI_BYTE8 ** An array of character pointers that make up the command-line arguments

Type Name Description

Arguments: None

Related
routines:

Use acc_fetch_argc() to get a count of the number of invocation arguments

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

426 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Figure 69—Using acc_fetch_argv()

#include "acc_user.h"
#include <string.h> /* string.h is implementation dependent */

PLI_BYTE8* my_scan_plusargs(str)
 PLI_BYTE8 *str;
{
 PLI_INT32 i;
 int length = strlen(str);
 PLI_BYTE8 *curStr;
PLI_BYTE8 **argv = acc_fetch_argv();

 for (i = acc_fetch_argc()-1; i>0; i--)
 {
 curStr = argv[i];
 if ((curStr[0] == ’+’) && (!strncmp(curStr+1,str,length)))
 {
 PLI_BYTE8 *retVal;

 length = strlen(&(curStr[length]) + 1);
 retVal = (PLI_BYTE8 *)malloc(sizeof(PLI_BYTE8) * length);
 strcpy(retVal, &(curStr[length]));
 return(retVal);
 }
 }
 return(null);
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 427
This is an unapproved IEEE Standards Draft, subject to change.

23.10 acc_fetch_attribute()

The ACC routine acc_fetch_attribute() shall obtain the value of a parameter or specparam that is declared

as an attribute in the Verilog HDL source description. The value shall be returned as a double.

Any parameter or specparam can be an attribute by naming it in one of the following ways:

— As a general attribute associated with more than one object in the module where the parameter or
specparam attribute is declared

— As a specific attribute associated with a particular object in the module where the parameter or spec-
param attribute is declared

Each of these methods uses its own naming convention, as described in Table 135. For either convention,

attribute_string shall name the attribute and shall be passed as the second argument to

acc_fetch_attribute(). The object_name shall be the actual name of a design object in a Verilog HDL

source description.

acc_fetch_attribute()

Synopsis: Get the value of a parameter or specparam named as an attribute in the Verilog source description.

Syntax: acc_fetch_attribute(object_handle, attribute_string, default_value)

Type Description

Returns: double Value of the parameter or specparam

Type Name Description

Arguments: handle object_handle Handle of a named object

quoted string or

PLI_BYTE8 *

attribute_string Literal string or character string pointer with the attribute
portion of the parameter or specparam declaration

Optional double default_value Double-precision value to be returned if the attribute is not

found (depends on accDefaultAttr0)

Related
routines:

Use acc_fetch_attribute_int() to get an attribute value as an integer

Use acc_fetch_attribute_str() to get an attribute value as a string

Use acc_configure(accDefaultAttr0...) to set default value returned when attribute is not found

Use acc_fetch_paramtype() to get the data type of the parameter value

Use acc_fetch_paramval() to get parameters or specparam values not declared in attribute/object format

Table 135—Naming conventions for attributes

For Naming convention Example

A general attribute

attribute_string

A mnemonic name that describes

the attribute

specparam DriveStrength$ = 2.8;

attribute_string is DriveStrength$

A specific attribute
associated with a
particular object

attribute_string—object_name

Concatenate a mnemonic name that

describes the attribute with the name

of the object

specparam DriveStrength$g1 = 2.8;

attribute_string is DriveStrength$
object_name is g1

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

428 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The ACC routine acc_fetch_attribute() shall identify module paths in terms of their sources and destina-

tions in the following format:

The acc_fetch_attribute() routine shall look for module path names in this format, and acc_fetch_name()
and acc_fetch_fullname() shall return names of module paths in this format. Therefore, the same naming

convention should be used when associating an attribute with a module path. Note that names of module

paths with multiple sources or destinations shall be derived from the first source or destination only.

By default, the path_delimiter used in path names is the “$” character. This default can be changed by using

the ACC routine acc_configure() to set the delimiter parameter accPathDelimStr to another character

string.

The examples in Table 136 show how to name module paths using different delimiter strings.

The following example shows an attribute name for a particular module path object:

Given the module path: (a => q) = 10;

An attribute name is: specparam RiseStrengthaq = 20;

In this example, the attribute_string is RiseStrength$, the object_name is a$q, and the path_delimiter is

$ (the default path delimiter).

Table 136—Example module path names using delimiter strings

For module path If accPathDelimStr is Then the module path name is

(a => q) = 10; “$” a$q

(b *> q1,q2) = 8; “_$_” b_$_q1

(d,e,f *> r,s)= 8; “_” d_r

source path_delimiter destination

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 429
This is an unapproved IEEE Standards Draft, subject to change.

The following flowchart illustrates how acc_fetch_attribute() shall work:

This flowchart shows that when acc_fetch_attribute() finds the attribute requested, it returns the value of

the attribute as a double-precision floating-point number.

1) The routine shall first look for the attribute name that concatenates attribute_string with the name

associated with object_handle. For example, to find an attribute InputLoad$ for a net n1,

acc_fetch_attribute() would search for InputLoad$n1.

2) If acc_fetch_attribute() does not find the attribute associated with the object specified with

object_handle, the routine shall then search for a name that matches attribute_string. Assume that,

in the previous example, acc_fetch_attribute() does not find InputLoad$n1. It would then look

for InputLoad$. Other variants of that name, such as InputLoad$n3 or InputLoad$n, shall not

be considered matches.

3) Failing both search attempts, the routine acc_fetch_attribute() shall return a default value. The

default value is controlled by using the ACC routine acc_configure() to set or reset the configuration

parameter accDefaultAttr0 as shown in Table 137.

The example shown in Figure 70 presents a C language application that uses acc_fetch_attribute() to

obtain the load capacitance of all scalar nets connected to the ports in a module. Note that

acc_fetch_attribute() does not require its third argument, default_value, because acc_configure() is used to

set accDefaultAttr0 to true.

Table 137—Controlling the default value returned by acc_fetch_attribute()

When accDefaultAttr0 is acc_fetch_attribute() shall return

“true” Zero when the attribute is not found; the

default_value argument can be dropped

“false” The value passed as the default_value argument

when the attribute is not found

yes

no

found?

search for attribute

associated with

specified object

return attribute’s value

as a double-precision

floating-point number

search for attribute

without an associated

yes

no

found?

return default value

object

1)

2)

3)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

430 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Figure 70—Using acc_fetch_attribute()

#include "acc_user.h"
PLI_INT32 display_load_capacitance()
{

handle module_handle, port_handle, net_handle;
double cap_val;

/*initialize environment for ACC routines*/
acc_initialize();

/*configure acc_fetch_attribute to return 0 when it does not find*/
/*the attribute*/
acc_configure(accDefaultAttr0, "true");

/*get handle for module*/
module_handle = acc_handle_tfarg(1);

/*scan all ports in module; display load capacitance*/
port_handle = null;
while(port_handle = acc_next_port(module_handle, port_handle))
{

/*ports are scalar, so pass "null" to get single net connection*/
net_handle = acc_next_loconn(port_handle, null);

/*since accDefaultAttr0 is "true", drop default_value argument*/
cap_val = acc_fetch_attribute(net_handle,"LoadCap_");

if (!acc_error_flag)
io_printf("Load capacitance of net #%d = %1f\n",

acc_fetch_index(port_handle), cap_val);
}
acc_close();

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 431
This is an unapproved IEEE Standards Draft, subject to change.

23.11 acc_fetch_attribute_int()

The ACC routine acc_fetch_attribute_int() shall obtain the value of a parameter or specparam that is

declared as an attribute in the Verilog HDL source description. The value shall be returned as an integer.

Any parameter or specparam can be an attribute. Refer to 23.10 for a description of attribute naming and

how attribute values are fetched.

acc_fetch_attribute_int()

Synopsis: Get the integer value of a parameter or specparam named as an attribute in the Verilog source description.

Syntax: acc_fetch_attribute_int(object_handle, attribute_string, default_value)

Type Description

Returns: PLI_INT32 Value of the parameter or specparam

Type Name Description

Arguments: handle object_handle Handle of a named object

quoted string or

PLI_BYTE8 *

attribute_string Literal string or character string pointer with the attribute
portion of the parameter or specparam declaration

Optional PLI_INT32 default_value Integer value to be returned if the attribute is not found

(depends on accDefaultAttr0)

Related
routines:

Use acc_fetch_attribute() to get an attribute value as a double

Use acc_fetch_attribute_str() to get an attribute value as a string

Use acc_configure(accDefaultAttr0...) to set default value returned when attribute is not found

Use acc_fetch_paramtype() to get the data type of the parameter value

Use acc_fetch_paramval() to get parameters or specparam values not declared in attribute/object format

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

432 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.12 acc_fetch_attribute_str()

The ACC routine acc_fetch_attribute_str() shall obtain the value of a parameter or specparam that is

declared as an attribute in the Verilog HDL source description. The value shall be returned as a pointer to a

character string. The return value for this routine is placed in the ACC internal string buffer. See 22.9 for

explanation of strings in ACC routines.

Any parameter or specparam can be an attribute. Refer to 23.10 for a description of attribute naming and

how attribute values are fetched.

acc_fetch_attribute_str()

Synopsis: Get the value of a parameter or specparam named as an attribute in the Verilog source description.

Syntax: acc_fetch_attribute_str(object_handle, attribute_string, default_value)

Type Description

Returns: PLI_BYTE8 * Value of the parameter or specparam

Type Name Description

Arguments: handle object_handle Handle of a named object

quoted string or

PLI_BYTE8 *

attribute_string Literal string or character string pointer with the attribute
portion of the parameter or specparam declaration

Optional quoted string or

PLI_BYTE8 *

default_value Character string value to be returned if the attribute is not

found (depends on accDefaultAttr0)

Related
routines:

Use acc_fetch_attribute() to get an attribute value as a double

Use acc_fetch_attribute_int() to get an attribute value as an integer

Use acc_configure(accDefaultAttr0...) to set default value returned when attribute is not found

Use acc_fetch_paramtype() to get the data type of the parameter value

Use acc_fetch_paramval() to get parameters or specparam values not declared in attribute/object format

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 433
This is an unapproved IEEE Standards Draft, subject to change.

23.13 acc_fetch_defname()

The ACC routine acc_fetch_defname() shall obtain the definition name of a module instance or primitive

instance. The definition name is the declared name of the object as opposed to the instance name of the

object. In the illustration shown below, the definition name is “dff”, and the instance name is “i15”.

The return value for this routine is placed in the ACC internal string buffer. See 22.9 for explanation of

strings in ACC routines.

The example shown in Figure 71 presents a C language application that uses acc_fetch_defname() to dis-
play the definition names of all primitives in a module.

Figure 71—Using acc_fetch_defname()

acc_fetch_defname()

Synopsis: Get the definition name of a module instance or primitive instance.

Syntax: acc_fetch_defname(object_handle)

Type Description

Returns: PLI_BYTE8 * Pointer to a character string containing the definition name

Type Name Description

Arguments: handle object_handle Handle of the module instance or primitive instance

Related
routines

Use acc_fetch_name() to display the instance name of an object

dff i15 (q, clk, d); //instance of a module or primitive

definition name

instance name

#include "acc_user.h"

void get_primitive_definitions(module_handle)
handle module_handle;
{

handle prim_handle;

/*get and display defining names of all primitives in the module*/
prim_handle = null;
while(prim_handle = acc_next_primitive(module_handle,prim_handle))

io_printf("primitive definition is %s\n",
acc_fetch_defname(prim_handle));

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

434 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.14 acc_fetch_delay_mode()

The ACC routine acc_fetch_delay_mode() shall return the delay mode of a module or cell instance. The

delay mode determines how delays are stored for primitives and paths within the module or cell. The routine

shall return one of the predefined constants given in Table 138.

acc_fetch_delay_mode()

Synopsis: Get the delay mode of a module instance.

Syntax: acc_fetch_delay_mode(module_handle)

Type Description

Returns: PLI_INT32 A predefined integer constant representing the delay mode of the module instance:

accDelayModeNone accDelayModeZero accDelayModeUnit
accDelayModePath accDelayModeDistrib accDelayModeMTM

Type Name Description

Arguments: handle module_handle Handle to a module instance

Table 138—Predefined constants used by acc_fetch_delay_mode()

Predefined constant Description

accDelayModeNone No delay mode specified.

accDelayModeZero All primitive delays are zero; all path delays are ignored.

accDelayModeUnit All primitive delays are one; all path delays are ignored.

accDelayModeDistrib If a logical path has both primitive delays and path delays spec-

ified, the primitive delays shall be used.

accDelayModePath If a logical path has both primitive delays and path delays spec-

ified, the path delays shall be used.

accDelayModeMTM
If this property is true, Minimum:Typical:Maximum delay sets

for each transition are being stored; if this property is false, a

single delay for each transition is being stored.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 435
This is an unapproved IEEE Standards Draft, subject to change.

Figure 72 uses acc_fetch_delay_mode() to retrieve the delay mode of all children of a specified module.

Figure 72—Using acc_fetch_delay_mode()

#include "acc_user.h"
PLI_INT32 display_delay_mode()
{

handle mod, child;

/*reset environment for ACC routines*/
acc_initialize();

/*get module passed to user-defined system task*/
mod = acc_handle_tfarg(1);

/*find and display delay mode for each module instance*/
child = null;
while(child = acc_next_child(mod, child))
{

io_printf("Module %s set to: ",acc_fetch_fullname(child));
switch(acc_fetch_delay_mode(child))
{

case accDelayModePath:
io_printf(" path delay mode\n");
break;

case accDelayModeDistrib:
io_printf(" distributed delay mode\n");
break;

. . .
}

}
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

436 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.15 acc_fetch_delays()

acc_fetch_delays() for single delay values (accMinTypMaxDelays set to “false”)

Synopsis: Get existing delays for primitives, module paths, timing checks, module input ports, and intermodule

paths.

Syntax:

Primitives acc_fetch_delays(object_handle, rise_delay, fall_delay, z_delay)

Module paths

Intermodule paths

Ports or port bits

acc_fetch_delays(object_handle,
 d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12)

Timing checks acc_fetch_delays(object_check_handle, limit)

Type Description

Returns: PLI_INT32 1 if successful; 0 if an error occurred

Type Name Description

Arguments: handle object_handle Handle of a primitive, module path, timing check, module

input port, bit of a module input port, or intermodule path

double * rise_delay

fall_delay

Rise and fall delay for 2-state primitive or 3-state primitive

Conditional double * z_delay Turn-off (to Z) transition delay for 3-state primitives

double * d1 For module/intermodule paths and input ports/port bits:

If accPathDelayCount is set to “1”:

delay for all transitions

If accPathDelayCount is set to “2” or “3”:

rise transition delay

If accPathDelayCount is set to “6” or “12”:

0->1 transition delay

Conditional double * d2 For module/intermodule paths and input ports/port bits:

If accPathDelayCount is set to “2” or “3”:

fall transition delay

If accPathDelayCount is set to “6” or “12”:

1->0 transition delay

Conditional double * d3 For module/intermodule paths and input ports/port bits:

If accPathDelayCount is set to “3”:

turn-off transition delay

If accPathDelayCount is set to “6” or “12”:

0->Z transition delay

Conditional double * d4

d5

d6

For module/intermodule paths and input ports/port bits:

If accPathDelayCount is set to “6” or “12”:

d4 is Z->1 transition delay

d5 is 1->Z transition delay

d6 is Z->0 transition delay

Conditional double * d7

d8

d9

d10

d11

d12

For module/intermodule paths and input ports/port bits:

If accPathDelayCount is set to “12”:

d7 is 0->X transition delay

d8 is X->1 transition delay

d9 is 1->X transition delay

d10 is X->0 transition delay

d11 is X->Z transition delay

d12 is Z->X transition delay

double * limit Limit of timing check

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 437
This is an unapproved IEEE Standards Draft, subject to change.

The ACC routine acc_fetch_delays() shall work differently depending on how the configuration parameter

accMinTypMaxDelays is set. When this parameter is set to “false”, a single delay per transition shall be

assumed, and each delay shall be fetched into variables pointed to as individual arguments. For this single
delay mode, the first syntax table in this section shall apply.

When accMinTypMaxDelays is set to “true”, acc_fetch_delays() shall fetch one or more sets of mini-

mum:typical:maximum delays into an array, rather than single delays fetched as individual arguments. For

this min:typ:max delay mode, the second syntax table in this section shall apply.

The number of delay values that shall be fetched by acc_fetch_delays() is determined by the type of object

and the setting of configuration parameters. Refer to 22.8 for a description of how the number of delay val-

ues is determined.

The ACC routine acc_fetch_delays() shall retrieve delays in the timescale of the module that contains the

object_handle.

The example shown in Figure 73 presents a C language application that uses acc_fetch_delays() to retrieve

the rise, fall, and turn-off delays of all paths through a module.

acc_fetch_delays() for min:typ:max delays (accMinTypMaxDelays set to “true”)

Synopsis: Get existing delay values for primitives, module paths, timing checks, module input ports, or intermod-

ule paths; the delay values are contained in an array.

Syntax: acc_fetch_delays(object_handle, array_ptr),

Type Description

Returns: PLI_INT32 1 if successful; 0 if an error is encountered

Type Name Description

Arguments: handle object_handle Handle of a primitive, module path, timing check, module

input port, bit of a module input port, or intermodule path

double address array_ptr Pointer to array of min:typ:max delay values;

the size of the array depends on the type of object and the

setting of accPathDelayCount (see 22.8)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

438 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Figure 73—Using acc_fetch_delays() in single delay mode

The example shown in Figure 74 is a C language code fragment of an application that shows how to fetch

min:typ:max delays for the intermodule paths. The example follows these steps:

a) Declares an array of nine double-precision floating-point values as a buffer for storing three sets of

min:typ:max values, one set each for rise, fall, and turn-off delays.

b) Sets the configuration parameter accMinTypMaxDelays to “true” to instruct acc_fetch_delays()
to retrieve delays in min:typ:max format.

c) Calls acc_fetch_delays() with a valid intermodule path handle and the array pointer.

#include "acc_user.h"

void display_path_delays()
{

handle mod_handle;
handle path_handle;
double rise_delay,fall_delay,toz_delay;

/*initialize environment for ACC routines*/
acc_initialize();

/*set accPathDelayCount to return rise, fall and turn-off delays */
acc_configure(accPathDelayCount, "3");

/*get handle to module*/
mod_handle = acc_handle_tfarg(1);

/*fetch rise delays for all paths in module "top.m1"*/
path_handle = null;
while(path_handle = acc_next_modpath(mod_handle, path_handle))
{

acc_fetch_delays(path_handle,
&rise_delay,&fall_delay,&toz_delay);

/*display rise, fall and turn-off delays for each path*/
io_printf("For module path %s,delays are:\n",

acc_fetch_fullname(path_handle));
io_printf("rise = %lf, fall = %lf, turn-off = %lf\n",

rise_delay,fall_delay,toz_delay);
}
acc_close();

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 439
This is an unapproved IEEE Standards Draft, subject to change.

Figure 74—Using acc_fetch_delays() in min:typ:max delay mode

#include "acc_user.h"
void fetch_mintypmax_delays(port_output, port_input)
handle port_output, port_input;
{

.

.

.
handle intermod_path;
double delay_array[9];

.

.

.
acc_configure(accMinTypMaxDelays, "true");

.

.

.
intermod_path = acc_handle_path(port_output, port_input);
acc_fetch_delays(intermod_path, delay_array);

.

.

.
}

acc_handle_path
returns a handle to a wire
path that represents the
connection from an output
(or inout) port to an input
(or inout) port

acc_fetch_delays places the

following values in delay_array:

 delay_array[0] =

 delay_array[1] =

 delay_array[2] =

 delay_array[3] =

 delay_array[4] =

 delay_array[5] =

 delay_array[6] =

 delay_array[7] =

 delay_array[8] =

min:typ:max

min:typ:max

min:typ:max
rise delay

fall delay

turn-off delay

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

440 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.16 acc_fetch_direction()

The ACC routine acc_fetch_direction() shall return a predefined integer constant indicating the direction of

a module port or primitive terminal. The values returned are given in Table 139.

The example shown in Figure 75 presents a C language application that uses acc_fetch_direction() to

determine whether or not a port is an input.

Figure 75—Using acc_fetch_direction()

acc_fetch_direction()

Synopsis: Get the direction of a port or terminal.

Syntax: acc_fetch_direction(object_handle)

Type Description

Returns: PLI_INT32 A predefined integer constant representing the direction of a port or terminal

accInput accOutput accInout accMixedIo

Type Name Description

Arguments: handle object_handle Handle of a port or terminal

Table 139—The operation of acc_fetch_direction()

When direction is acc_fetch_direction() shall return

Input only accInput

Output only accOutput

Bidirectional (input and output) accInout

A concatenation of input ports and output

ports

accMixedIo

#include "acc_user.h"

int is_port_input(port_handle)
handle port_handle;
{

PLI_INT32 direction;

direction = acc_fetch_direction(port_handle);
if (direction == accInput || direction == accInout)

return(true);
else

return(false);
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 441
This is an unapproved IEEE Standards Draft, subject to change.

23.17 acc_fetch_edge()

The ACC routine acc_fetch_edge() shall return a value that is a masked integer representing the edge speci-

fier for a module path or timing check terminal.

Table 140 lists the predefined edge specifiers as they are specified in acc_user.h.

The integer mask returned by acc_fetch_edge() is usually either accPosedge or accNegedge. Occasionally,

however, the mask is a hybrid mix of specifiers that is equal to neither. The example shown in Figure 76
illustrates how to check for these hybrid edge specifiers. The value accNoEdge is returned if no edge is

found.

The example takes a path input or output and returns the string corresponding to its edge specifier. It pro-

vides analogous functionality to that of acc_fetch_type_str() in that it returns a string corresponding to an

integer value that represents a type.

acc_fetch_edge()

Synopsis: Get the edge specifier of a module path or timing check terminal.

Syntax: acc_fetch_edge(pathio_handle)

Type Description

Returns: PLI_INT32 A predefined integer constant representing the edge specifier of a path input or output ter-

minal:

accNoedge accEdge01 accEdgex1
accPosedge accEdge10 accEdge1x
accNegedge accEdge0x accEdgex0

Type Name Description

Arguments: handle pathio_handle Handle to a module path input or output, or handle to a tim-

ing check terminal

Table 140—Edge specifiers constants

Edge type Defined constant Binary value

None accNoedge 0

Positive edge (0→1,0→x,x→1) accPosedge 00001101

Negative edge (1→0,1→x,x→0) accNegedge 00110010

0→1 edge accEdge01 00000001

1→0 edge accEdge10 00000010

0→x edge accEdge0x 00000100

x→1 edge accEdgex1 00001000

1→x edge accEdge1x 00010000

x→0 edge accEdgex0 00100000

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

442 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

This example first checks to see whether the returned mask is equal to accPosedge or accNegedge, which

are the most likely cases. If it is not, the application does a bitwise AND with the returned mask and each of

the other edge specifiers to find out which types of edges it contains. If an edge type is encoded in the

returned mask, the corresponding edge type string suffix is appended to the string “accEdge”.

Figure 76—Using acc_fetch_edge()

PLI_BYTE8 *acc_fetch_edge_str(pathio)
handle pathio;
{

PLI_INT32 edge = acc_fetch_edge(pathio);
static PLI_BYTE8 edge_str[32];

if (! acc_error_flag)
{

if (edge == accNoEdge)
strcpy(edge_str, "accNoEdge");

/* accPosedge == (accEdge01 & accEdge0x & accEdgex1) */
else if (edge == accPosEdge)

strcpy(edge_str, "accPosEdge");

/* accNegedge == (accEdge10 & accEdge1x & accEdgex0) */
else if (edge == accNegEdge)

strcpy(edge_str, "accNegEdge");

/* edge is neither posedge nor negedge, but some combination
of other edges */

else {
strcpy(edge_str, "accEdge");
if (edge & accEdge01) strcat(edge_str, "_01");
if (edge & accEdge10) strcat(edge_str, "_10");
if (edge & accEdge0x) strcat(edge_str, "_0x");
if (edge & accEdgex1) strcat(edge_str, "_x1");
if (edge & accEdge1x) strcat(edge_str, "_1x");
if (edge & accEdgex0) strcat(edge_str, "_x0");

}

return(edge_str);
}
else

return(null);
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 443
This is an unapproved IEEE Standards Draft, subject to change.

23.18 acc_fetch_fullname()

The ACC routine acc_fetch_fullname() shall obtain the full hierarchical name of an object. The full hierar-

chical name is the name that uniquely identifies an object. In Figure 77, the top-level module, top1, con-

tains module instance mod3, which contains net w4. In this example, the full hierarchical name of the net is

top1.mod3.w4.

Figure 77—A design hierarchy; the fullname of net w4 is “top1.mod3.w4”

Table 141 lists the objects in a Verilog HDL description for which acc_fetch_fullname() shall return a

name.

acc_fetch_fullname()

Synopsis: Get the full hierarchical name of any named object or module path.

Syntax: acc_fetch_fullname(object_handle)

Type Description

Returns: PLI_BYTE8 * Character pointer to a string containing the full hierarchical name of the object

Type Name Description

Arguments: handle object_handle Handle of the object

Related
routines:

Use acc_fetch_name() to find the lowest-level name of the object

Use acc_configure(accPathDelimStr...) to set the delimiter string for module path names

Table 141—Named objects supported by acc_fetch_fullname()

Modules Integer, time and real variables

Module ports Named events

Module paths Parameters

Data paths Specparams

Primitives Named blocks

Nets Verilog HDL tasks

Regs or Variables Verilog HDL functions

top1
mod3

w4

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

444 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Module path names shall be derived from their sources and destinations in the following format:

By default, the path_delimiter shall be the character $. However, the delimiter can be changed by using the

ACC routine acc_configure() to set the delimiter parameter accPathDelimStr to another character string.

The following examples show names of paths within a top-level module m3, as returned by

acc_fetch_fullname() when the path_delimiter is $. Note that names of module paths with multiple sources

or destinations shall be derived from the first source and destination only.

If a Verilog software product creates default names for unnamed instances, acc_fetch_fullname() shall

return the full hierarchical default name. Otherwise, the routine shall return null for unnamed instances.

Using acc_fetch_fullname() with a module port handle shall return the full hierarchical implicit name of the

port.

The routine acc_fetch_fullname() shall store the returned string in a temporary buffer. To preserve the string

for later use in an application, it should be copied to another variable (refer to 22.9).

In the example shown in Figure 78, the routine uses acc_fetch_fullname() to display the full hierarchical

name of an object if the object is a net.

Figure 78—Using acc_fetch_fullname()

Table 142—Module path names returned by acc_fetch_fullname()

For paths in module m3 acc_fetch_fullname() returns a pointer to

(a => q) = 10; m3.a$q

(b *> q1,q2) = 8; m3.b$q1

(d,e,f *> r,s)= 8; m3.d$r

source path_delimiter destination

#include "acc_user.h"

PLI_INT32 display_if_net(object_handle)
handle object_handle;
{

/*get and display full name if object is a net*/
if (acc_fetch_type(object_handle) == accNet)

io_printf("Object is a net: %s\n",
 acc_fetch_fullname(object_handle));

else
io_printf("Object is not a net: %s\n",

 acc_fetch_fullname(object_handle));
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 445
This is an unapproved IEEE Standards Draft, subject to change.

23.19 acc_fetch_fulltype()

The ACC routine acc_fetch_fulltype() shall return the fulltype of an object. The fulltype is a specific classi-

fication of a Verilog HDL object, represented as a predefined constant (defined in acc_user.h). Table 113
lists all of the fulltype constants that can be returned by acc_fetch_fulltype().

Many Verilog HDL objects have both a type and a fulltype. The type of an object is its general Verilog HDL

type classification. The fulltype is the specific type of the object. The examples in Table 143 illustrate the

difference between the type of an object and the fulltype of the same object for selected objects.

acc_fetch_fulltype()

Synopsis: Get the fulltype of an object.

Syntax: acc_fetch_fulltype(object_handle)

Type Description

Returns: PLI_INT32 A predefined integer constant from the list shown in 22.6

Type Name Description

Arguments: handle object_handle Handle of the object

Related
routines:

Use acc_fetch_type() to get the general type classification of an object

Use acc_fetch_type_str() to get the fulltype as a character string

Table 143—The difference between the type and the fulltype of an object

For a handle to acc_fetch_type() shall return acc_fetch_fulltype() shall return

A setup timing check accTchk accSetup

An and gate primitive accPrimitive accAndGate

A sequential UDP accPrimitive accSeqPrim

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

446 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The example shown in Figure 79 uses acc_fetch_fulltype() to find and display the fulltypes of timing

checks. This application is called by a higher-level application, display_object_type, presented as the

usage example for acc_fetch_type().

Figure 79—Using acc_fetch_fulltype() to display the fulltypes of timing checks

#include "acc_user.h"

PLI_INT32 display_timing_check_type(tchk_handle)
handle tchk_handle;
{

/*display timing check type*/
io_printf("Timing check is");
switch(acc_fetch_fulltype(tchk_handle))

{
case accHold:

io_printf(" hold\n");
break;

case accNochange:
io_printf(" nochange\n");
break;

case accPeriod:
io_printf(" period\n");
break;

case accRecovery:
io_printf(" recovery\n");
break;

case accSetup:
io_printf(" setup\n");
break;

case accSkew:
io_printf(" skew\n");
break;

case accWidth:
io_printf(" width\n");

}
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 447
This is an unapproved IEEE Standards Draft, subject to change.

The example shown in Figure 80 uses acc_fetch_fulltype() to find and display the fulltypes of primitive

objects passed as input arguments. This application is called by a higher-level application,

display_object_type, presented as the usage example for acc_fetch_type().

Figure 80—Using acc_fetch_fulltype() to display the fulltypes of primitives

#include "acc_user.h"

PLI_INT32 display_primitive_type(primitive_handle)
handle primitive_handle;
{

/*display primitive type*/
io_printf("Primitive is");
switch(acc_fetch_fulltype(primitive_handle))

{
case accAndGate:

io_printf(" and gate\n"); break;
case accBufGate:

io_printf(" buf gate\n"); break;
case accBufif0Gate:case accBufif1Gate:

io_printf(" bufif gate\n"); break;
case accCmosGate:case accNmosGate:case accPmosGate:
case accRcmosGate:case accRnmosGate:case accRpmosGate:

io_printf(" MOS or Cmos gate\n"); break;
case accCombPrim:

io_printf(" combinational UDP\n"); break;
case accSeqPrim:

io_printf(" sequential UDP\n"); break;
case accNotif0Gate:case accNotif1Gate:

io_printf(" notif gate\n"); break;
case accRtranGate:

io_printf(" rtran gate\n"); break;
case accRtranif0Gate:case accRtranif1Gate:

io_printf(" rtranif gate\n"); break;
case accNandGate:

io_printf(" nand gate\n"); break;
case accNorGate:

io_printf(" nor gate\n"); break;
case accNotGate:

io_printf(" not gate\n"); break;
case accOrGate:

io_printf(" or gate\n"); break;
case accPulldownGate:

io_printf(" pulldown gate\n"); break;
case accPullupGate:

io_printf(" pullup gate\n"); break;
case accXnorGate:

io_printf(" xnor gate\n"); break;
case accXorGate:

io_printf(" xor gate\n");
}

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

448 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.20 acc_fetch_index()

The ACC routine acc_fetch_index() shall return the index number for a module port or primitive terminal.

Indices are integers that shall start at zero and increase from left to right.

— The index of a port shall be its position in a module definition in the Verilog HDL source description.
— The index of a terminal shall be its position in a gate, switch, or UDP instance.

Table 144 shows how indices shall be derived.

The example shown in Figure 81 presents a C language application that uses acc_fetch_index() to find and

display the input ports of a module.

acc_fetch_index()

Synopsis: Get the index number for a port or terminal.

Syntax: acc_fetch_index(object_handle)

Type Description

Returns: PLI_INT32 Integer index for a port or terminal, starting with zero

Type Name Description

Arguments: handle object_handle Handle of the port or terminal

Table 144—Deriving indices

For Indices are

Terminals:
 nand g1(out, in1, in2);

0 for terminal out
1 for terminal in1
2 for terminal in2

Implicit ports:
 module A(q, a, b);

0 for port q
1 for port a
2 for port b

Explicit ports:
 module top;
 reg ra,rb;
 wire wq;
 explicit_port_mod epm1(.b(rb), .a(ra), .q(wq));
 endmodule

 module explicit_port_mod(q, a, b);
 input a, b;
 output q;
 nand (q, a, b);
 endmodule

0 for explicit port epm1.q
1 for explicit port epm1.a
2 for explicit port epm1.b

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 449
This is an unapproved IEEE Standards Draft, subject to change.

Figure 81—Using acc_fetch_index()

#include "acc_user.h"

PLI_INT32 display_inputs(module_handle)
handle module_handle;
{

handle port_handle;
PLI_INT32 direction;

/*get handle for the module and each of its ports*/
port_handle = null;
while (port_handle = acc_next_port(module_handle, port_handle))
{

/*determine if port is an input*/
direction = acc_fetch_direction(port_handle);
/*give the index of each input port*/
if (direction == accInput)

io_printf("Port #%d of %s is an input\n",
acc_fetch_index(port_handle),
acc_fetch_fullname(module_handle));

}
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

450 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.21 acc_fetch_location()

The ACC routine acc_fetch_location() shall return the file name and line number in the file for the specified

object. The file name and line number shall be returned in an s_location data structure. This data structure

is defined in acc_user.h, and listed in Figure 82.

Figure 82—s_location data structure

filename field is a character pointer.

line_no field is a nonzero positive integer.

Table 145 lists the objects that shall be supported by acc_fetch_location().

acc_fetch_location()

Synopsis: Get the location of an object in a Verilog-HDL source file.

Syntax: acc_fetch_location(loc_p, object_handle)

Type Description

Returns: PLI_INT32 1 if successful; 0 if an error is encountered

Type Name Description

Arguments: p_location loc_p Pointer to a predefined location structure

handle object_handle Handle to an object

Table 145—Objects supported by acc_fetch_location()

Object type Location returned

Modules Module instantiation line

Module ports Module definition

Module paths Module path line

Data paths Module path line

Primitives Instantiation line

Explicit nets Definition line

Implicit nets Line where first used

Reg variables Definition line

Integer, time and real variables Definition line

typedef struct t_location
{
 PLI_INT32 line_no;
 PLI_BYTE8 *filename;
} s_location, *p_location;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 451
This is an unapproved IEEE Standards Draft, subject to change.

The return value for filename is placed in the ACC internal string buffer. See 22.9 for an explanation of

strings in ACC routines.

The example shown in Figure 83 uses acc_fetch_location() to print the file name and line number for an

object.

Figure 83—Using acc_fetch_location()

Named events Definition line

Parameters Definition line

Specparams Definition line

Named blocks Definition line

Verilog HDL tasks Definition line

Verilog HDL functions Definition line

Table 145—Objects supported by acc_fetch_location() (continued)

Object type Location returned

PLI_INT32 find_object_location (object)
handle object;

{
s_location s_loc;
p_location loc_p = &s_loc;
acc_fetch_location(loc_p, object); /*get the filename and line_no*/
if (! acc_error_flag) /* On success */

io_printf (“Object located in file %s on line %d \n”,
loc_p->filename, loc_p->line_no);

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

452 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.22 acc_fetch_name()

The ACC routine acc_fetch_name() shall obtain the name of an object. The name of an object is its lowest-

level name. In the following example, the top-level module, top1, contains module instance mod3, which

contains net w4, as shown in Figure 84. In this example, the name of the net is w4.

Figure 84—A design hierarchy; the name of net w4 is “w4”

The return value for this routine is placed in the ACC internal string buffer. See 22.9 for an explanation of

strings in ACC routines.

Table 141 lists the objects in a Verilog HDL description for which acc_fetch_name() shall return a name.

acc_fetch_name()

Synopsis: Get the instance name of any named object or module path.

Syntax: acc_fetch_name(object_handle)

Type Description

Returns: PLI_BYTE8 * Character pointer to a string containing the instance name of the object

Type Name Description

Arguments: handle object_handle Handle of the named object

Related
routines:

Use acc_fetch_fullname() to get the full hierarchical name of the object

Use acc_fetch_defname() to get the definition name of the object

Use acc_configure(accPathDelimStr...) to set the naming convention for module paths

Table 146—Named objects supported by acc_fetch_name()

Modules Integer, time and real variables

Module ports Named events

Module paths Parameters

Data paths Specparams

Primitives Named blocks

Nets Verilog HDL tasks

Regs or Variables Verilog HDL functions

top1
mod3

w4

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 453
This is an unapproved IEEE Standards Draft, subject to change.

Module path names shall be derived from their sources and destinations in the following format:

By default, the path_delimiter is the character $. However, the delimiter can be changed by using the ACC

routine acc_configure() to set the delimiter parameter accPathDelimStr to another character string.

Table 147 shows names of paths within a top-level module m3, as returned by acc_fetch_name() when the

path_delimiter is $. Note that names of module paths with multiple sources or destinations shall be derived

from the first source and destination only.

If a Verilog software implementation creates default names for unnamed instances, acc_fetch_name() shall

return the default name. Otherwise, the routine shall return null for unnamed instances.

Using acc_fetch_name() with a module port handle shall return the implicit name of the port.

The following example uses acc_fetch_name() to display the names of top-level modules.

Figure 85—Using acc_fetch_name()

Table 147—Module path names returned by acc_fetch_name()

For paths in module m3 acc_fetch_name() returns a pointer to

(a => q) = 10; a$q

(b *> q1,q2) = 8; b$q1

(d,e,f *> r,s)= 8; d$r

source path_delimiter destination

#include "acc_user.h"
PLI_INT32 show_top_mods()
{

handle module_handle;

/*initialize environment for ACC routines*/
acc_initialize();

/*scan all top-level modules*/
io_printf("The top-level modules are:\n");
module_handle = null;
while (module_handle = acc_next_topmod(module_handle))

io_printf(" %s\n",acc_fetch_name(module_handle));

acc_close();
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

454 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.23 acc_fetch_paramtype()

The ACC routine acc_fetch_paramtype() shall return an integer constant that represents the data type of a

value that has been assigned to a parameter or specparam.

Figure 86 uses acc_fetch_paramtype() to display the values of all parameters within a module.

Figure 86—Using acc_fetch_paramtype()

acc_fetch_paramtype()

Synopsis: Get the data type of a parameter or specparam.

Syntax: acc_fetch_paramtype(parameter_handle)

Type Description

Returns: PLI_INT32 A predefined integer constant representing the data type of a parameter:

accIntParam accIntegerParam accRealParam accStringParam

Type Name Description

Arguments: handle parameter_handle Handle to a parameter or specparam

Related
routines:

Use acc_next_parameter() to get all parameters within a module

Use acc_next_specparam() to get all specparams within a module

#include "acc_user.h"
PLI_INT32 print_parameter_values()
{
 handle module_handle, param_handle;

 /*initialize environment for ACC routines*/
 acc_initialize();

 module_handle = acc_handle_tfarg(1);
 param_handle = null;
 while(param_handle = acc_next_parameter(module_handle,param_handle))
 {
 io_printf("Parameter %s has value: ",
 acc_fetch_fullname(param_handle));
 switch(acc_fetch_paramtype(param_handle))
 {
 case accRealParam:
 io_printf("%lf\n", acc_fetch_paramval(param_handle)); break;
 case accIntegerParam:
 io_printf("%d\n",
 (int)acc_fetch_paramval(param_handle)); break;
 case accStringParam:
 io_printf("%s\n",
 (char*)(int)acc_fetch_paramval(param_handle)); break;
 }
 }
 acc_close();
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 455
This is an unapproved IEEE Standards Draft, subject to change.

23.24 acc_fetch_paramval()

The ACC routine acc_fetch_paramval() shall return the value stored in a parameter or specparam. The

value shall be returned as a double-precision floating-point number.

A parameter value can be stored as one of three data types:

— A double-precision floating-point number
— An integer value
— A string

Therefore, it can be necessary to call acc_fetch_paramtype() to determine the data type of the parameter

value, as shown in the example in Figure 87.

The routine acc_fetch_paramval() returns values as type double. The values can be converted back to inte-

gers or character pointers using the C language cast mechanism, as shown in Table 148. Note that some C

language compilers do not allow casting a double-precision value directly to a character pointer; it is there-

fore necessary to use a two-step cast to first convert the double value to an integer and then convert the inte-

ger to a character pointer.

If a character string is returned, it is placed in the ACC internal string buffer. See 22.9 for explanation of

strings in ACC routines.

acc_fetch_paramval()

Synopsis: Get the value of a parameter or specparam.

Syntax: acc_fetch_paramval(parameter_handle)

Type Description

Returns: double The value of a parameter or specparam

Type Name Description

Arguments: handle parameter_handle Handle to a parameter or specparam

Related
routines:

Use acc_fetch_paramtype() to retrieve the data type of a parameter

Use acc_next_parameter() to scan all parameters within a module

Use acc_next_specparam() to scan all specparams within a module

Table 148—Casting acc_fetch_paramval() return values

To convert to Follow these steps

Integer Cast the return value to the integer data type using the C language cast operator

(int):

int_val= (int) acc_fetch_paramval(...);

String Cast the return value to a character pointer using the C language cast operators

(char*)(int):

str_ptr= (char*)(int) acc_fetch_paramval(...);

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

456 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The example shown in Figure 87 presents a C language application, print_parameter_values, that uses

acc_fetch_paramval() to display the values of all parameters within a module.

Figure 87—Using acc_fetch_paramval()

#include "acc_user.h"

PLI_INT32 print_parameter_values()
{

handle module_handle;
handle param_handle;

/*initialize environment for ACC routines*/
acc_initialize();

/*get handle for module*/
module_handle = acc_handle_tfarg(1);

/*scan all parameters in the module and display their values*/
/* according to type*/
param_handle = null;
while(param_handle = acc_next_parameter(module_handle,param_handle))
{

io_printf("Parameter %s has value:",
acc_fetch_fullname(param_handle));

switch(acc_fetch_paramtype(param_handle))
{

case accRealParam:
io_printf("%lf\n", acc_fetch_paramval(param_handle));
break;

case accIntegerParam:
io_printf("%d\n", (int)acc_fetch_paramval(param_handle));
break;

case accStringParam:
io_printf("%s\n",

 (char*)(int)acc_fetch_paramval(param_handle));
break;

}
}
acc_close();

} two-step cast

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 457
This is an unapproved IEEE Standards Draft, subject to change.

23.25 acc_fetch_polarity()

The ACC routine acc_fetch_polarity() shall return an integer constant that represents the polarity of the

specified path. The polarity of a path describes how a signal transition at its source propagates to its destina-

tion in the absence of logic simulation events. The return value shall be one of the predefined integer

constant polarity types listed in Table 149.

The example shown in Figure 88 takes a path argument and returns the string corresponding to its polarity.

Figure 88—Using acc_fetch_polarity()

acc_fetch_polarity()

Synopsis: Get the polarity of a path.

Syntax: acc_fetch_polarity(path_handle)

Type Description

Returns: PLI_INT32 A predefined integer constant representing the polarity of a path:

accPositive accNegative accUnknown

Type Name Description

Arguments: handle path_handle Handle to a module path or data path

Table 149—Polarity types returned by acc_fetch_polarity()

Integer constant Description

accPositive A rise at the source causes a rise at the destination.

A fall at the source causes a fall at the destination.

accNegative A rise at the source causes a fall at the destination.

A fall at the source causes a rise at the destination.

accUnknown Unpredictable; a rise or fall at the source causes either a rise or fall

at the destination.

PLI_BYTE8 *fetch_polarity_str(path)
{

switch (acc_fetch_polarity(path)) {
case accPositive: return(“accPositive”);
case accNegative: return(“accNegative”);
case accUnknown: return(“accUnknown”);
default: return(null);

}
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

458 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.26 acc_fetch_precision()

The ACC routine acc_fetch_precision() shall return the smallest time precision argument specified in all

`timescale compiler directives for a given design. The value returned shall be the order of magnitude of

one second, as shown in Table 150.

If there are no `timescale compiler directives specified for a design, acc_fetch_precision() shall return a

value of 0 (1 s).

acc_fetch_precision()

Synopsis: Get the smallest time precision argument specified in all `timescale compiler directives in a given design.

Syntax: acc_fetch_precision()

Type Description

Returns: PLI_INT32 An integer value that represents a time precision

Type Name Description

Arguments: None

Related
routines:

Use acc_fetch_timescale_info() to get the timescale and precision of a specific object

Table 150—Value returned by acc_fetch_precision()

Integer value returned Simulation time precision
represented

2 100 s

1 10 s

0 1 s

-1 100 ms

-2 10 ms

-3 1 ms

-4 100 us

-5 10 u s

-6 1 us

-7 100 ns

-8 10 ns

-9 1 ns

-10 100 ps

-11 10 ps

-12 1 ps

-13 100 fs

-14 10 fs

-15 1 fs

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 459
This is an unapproved IEEE Standards Draft, subject to change.

23.27 acc_fetch_pulsere()

The ACC routine acc_fetch_pulsere() shall obtain the current values controlling how pulses are propagated

through a module path, intermodule path or module input port.

A pulse is defined as two transitions that occur in a shorter period of time than the delay. Pulse control values

determine whether a pulse should be rejected, propagated through to the output, or considered an error. The

pulse control values consist of a reject_limit and an e_limit pair of values, where

— The reject_limit shall set a threshold for determining when to reject a pulse—any pulse less than the
reject_limit shall not propagate

— The e_limit shall set a threshold for determining when a pulse is an error—any pulse less than the
e_limit and greater than or equal to the reject_limit shall propagate a logic x

— A pulse that is greater than or equal to the e_limit shall propagate
— Table 151 illustrates the relationship between the reject_limit and the e_limit.

The number of pulse control values that acc_fetch_pulsere() shall retrieve is controlled using the ACC rou-

tine acc_configure() to set the delay count configuration parameter accPathDelayCount, as shown in

Table 152.

acc_fetch_pulsere()

Synopsis: Get current pulse handling reject_limit and e_limit for a module path, intermodule path or module input port.

Syntax: acc_fetch_pulsere(object,r1,e1, r2,e2, r3,e3, r4,e4, r5,e5, r6,e6,
 r7,e7, r8,e8, r9,e9, r10,e10, r11,e11, r12,e12)

Type Description

Returns: PLI_INT32 1 if successful; 0 if an error is encountered

Type Name Description

Arguments: handle object Handle of module path, intermodule path or module input

port

double * r1...r12 reject_limit values; the number of arguments is determined

by accPathDelayCount

double * e1...e12 e_limit values; the number of arguments is determined by

accPathDelayCount

Related
routines:

Use acc_append_pulsere() to add to the existing pulse handling values

Use acc_replace_pulsere() to replace existing pulse handling values

Use acc_set_pulsere() to set pulse handling values as a percentage of the path delay

Use acc_configure() to set accPathDelayCount

Table 151—Pulse control example

When The pulse shall be

reject_limit = 10.5

e_limit = 22.6

Rejected if < 10.5

An error if >= 10.5 and < 22.6

Passed if >= 22.6

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

460 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The minimum number of pairs of reject_limit and e_limit arguments to pass to acc_fetch_pulsere() shall

equal the value of accPathDelayCount. Any unused reject_limit and e_limit argument pairs shall be

ignored by acc_fetch_pulsere() and can be dropped from the argument list.

If accPathDelayCount is not set explicitly, it shall default to 6, and therefore six pairs of pulse reject_limit

and e_limit arguments have to be used when acc_fetch_pulsere() is called. Note that the value assigned to

accPathDelayCount also affects acc_append_delays(), acc_fetch_delays(), acc_replace_delays(),
acc_append_pulsere(), and acc_replace_pulsere().

Pulse control values shall be retrieved using the timescale of the module that contains the object handle.

The example shown in Figure 89 shows how an application, get_pulsevals, uses acc_fetch_pulsere() to

retrieve rise and fall pulse handling values of paths listed in a file called path.dat. The format of the file is

shown in the following diagram.

Table 152—How the accPathDelayCount affects acc_fetch_pulsere()

When accPathDelayCount is acc_fetch_pulsere() shall retrieve

“1” One pair of reject_limit and e_limit values:

one pair for all transitions, r1 and e1

“2”
Two pairs of reject_limit and e_limit values:

one pair for rise transitions, r1 and e1

one pair for fall transitions, r2 and e2

“3”

Three pairs of reject_limit and e_limit values:

one pair for rise transitions, r1 and e1

one pair for fall transitions, r2 and e2

one pair for turn-off transitions, r3 and e3

“6”
(the default)

Six pairs of reject_limit and e_limit values—a different pair

for each possible transition among 0, 1, and Z:

one pair for 0->1 transitions, r1 and e1

one pair for 1->0 transitions, r2 and e2

one pair for 0->Z transitions, r3 and e3

one pair for Z->1 transitions, r4 and e4

one pair for 1->Z transitions, r5 and e5

one pair for Z->0 transitions, r6 and e6

“12”

Twelve pairs of reject_limit and e_limit values—a different

pair for each possible transition among 0, 1, X, and Z:

one pair for 0->1 transitions, r1 and e1

one pair for 1->0 transitions, r2 and e2

one pair for 0->Z transitions, r3 and e3

one pair for Z->1 transitions, r4 and e4

one pair for 1->Z transitions, r5 and e5

one pair for Z->0 transitions, r6 and e6

one pair for 0->X transitions, r7 and e7

one pair for X->1 transitions, r8 and e8

one pair for 1->X transitions, r9 and e9

one pair for X->0 transitions, r10 and e10

one pair for X->Z transitions, r11 and e11

one pair for Z->X transitions, r12 and e12

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 461
This is an unapproved IEEE Standards Draft, subject to change.

Figure 89—Using acc_fetch_pulsere()

•
•

top.m1 in out
•
•

path source

name of module path destination

#include <stdio.h>
#include "acc_user.h"

#define NAME_SIZE 256
PLI_INT32 get_pulsevals()
{
FILE *infile;
PLI_BYTE8 mod_name[NAME_SIZE];
PLI_BYTE8 pathin_name[NAME_SIZE], pathout_name[NAME_SIZE];
handle mod, path;
double rise_reject_limit,rise_e_limit,fall_reject_limit,fall_e_limit;

/*initialize environment for ACC routines*/
acc_initialize();

/* set accPathDelayCount to return two pairs of pulse handling */
/* values, one each for rise and fall transitions */
acc_configure(accPathDelayCount, "2");

/*read all module path specifications from file "path.dat"*/
infile = fopen("path.dat", "r");
while(fscanf(infile, "%s %s %s",

mod_name,pathin_name,pathout_name)!=EOF)
{

mod=acc_handle_object(mod_name);
path=acc_handle_modpath(mod,pathin_name,pathout_name);
if(acc_fetch_pulsere(path,

&rise_reject_limit,&rise_e_limit,
&fall_reject_limit, &fall_e_limit))

{
io_printf("rise reject limit = %lf, rise e limit = %lf\n",

rise_reject_limit, rise_e_limit);
io_printf("fall reject limit = %lf, fall e limit = %lf\n",

fall_reject_limit, fall_e_limit);
 }
}
acc_close();

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

462 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.28 acc_fetch_range()

The ACC routine acc_fetch_range() shall obtain the most significant bit (msb) and least significant bit (lsb)

numbers of a vector.

The msb shall be the left range element, while the lsb shall be the right range element in the Verilog HDL

source code.

The example shown in Figure 90 takes a handle to a module instance as its input. It then uses

acc_fetch_range() to display the name and range of each vector net found in the module as:

<name>[<msb>:<lsb>].

Figure 90—Using acc_fetch_range()

acc_fetch_range()

Synopsis: Get the most significant bit and least significant bit range values for a vector.

Syntax: acc_fetch_range(vector_handle, msb, lsb)

Type Description

Returns: PLI_INT32 Zero if successful; nonzero upon error

Type Name Description

Arguments: handle vector_handle Handle to a vector net or reg

PLI_INT32 * msb Pointer to an integer variable to hold the most significant

bit of vector_handle

PLI_INT32 * lsb Pointer to an integer variable to hold the least significant bit

of vector_handle

Related
routines

Use acc_fetch_size() to get the number of bits in a vector

PLI_INT32 display_vector_nets()
{

handle mod = acc_handle_tfarg(1);
handle net;
PLI_INT32 msb, lsb;

io_printf (“Vector nets in module %s:\n”,
acc_fetch_fullname (mod));

net = null;
while (net = acc_next_net(mod, net))

if (acc_object_of_type(net, accVector))
{

acc_fetch_range(net, &msb, &lsb);
io_printf(“ %s[%d:%d]\n”,

acc_fetch_name(net), msb, lsb);
}

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 463
This is an unapproved IEEE Standards Draft, subject to change.

23.29 acc_fetch_size()

The ACC routine acc_fetch_size() shall return the number of bits of a net, reg, integer, time, real or port.

The example shown in Figure 91 uses acc_fetch_size() to display the size of a vector net.

Figure 91—Using acc_fetch_size()

acc_fetch_size()

Synopsis: Get the bit size of a net, reg, integer, time, real or port.

Syntax: acc_fetch_size(object_handle)

Type Description

Returns: PLI_INT32 Number of bits in the net, reg, integer, time, real or port

Type Name Description

Arguments: handle object_handle Handle to a net, reg, integer, time, real or port, or a bit-

select or part-select thereof

#include "acc_user.h"

PLI_INT32 display_vector_size()
{

handle net_handle;
PLI_INT32 size_in_bits;

/* reset environment for ACC routines */
acc_initialize();

/*get first argument passed to user-defined system task*/
/* associated with this routine*/
net_handle = acc_handle_tfarg(1);

/*if net is a vector, find and display its size in bits*/
if (acc_object_of_type(net_handle, accVector))
{

size_in_bits = acc_fetch_size(net_handle);
io_printf("Net %s is a vector of size %d\n",

 acc_fetch_fullname(net_handle),size_in_bits);
}
else

io_printf("Net %s is not a vector net\n",
 acc_fetch_fullname(net_handle));

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

464 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.30 acc_fetch_tfarg(), acc_fetch_itfarg()

The ACC routine acc_fetch_tfarg() shall return the value of arguments passed to the current instance of a

user-defined system task or function. The ACC routine acc_fetch_itfarg() shall return the value of argu-

ments passed to a specific instance of a user-defined system task or function, using a handle to the task or

function. The value is returned as a double-precision floating-point number.

Argument numbers shall start at one and increase from left to right in the order that they appear in the system

task or function call.

If an argument number is passed in that is out of range for the number of arguments in the user-defined sys-

tem task/function call, acc_fetch_tfarg() and acc_fetch_itfarg() shall return a value of 0.0, and generate a

warning message if warnings are enabled. Note that the acc_error_flag is not set for an out-of-range

index number.

If a user-defined system task/function argument that does not represent a valued object is referenced,

acc_fetch_tfarg() and acc_fetch_itfarg() shall return a value of 0.0 and generate a warning message if

warnings are enabled. Literal numbers, nets, regs, integer variables, and real variables all have values.

Objects such as module instance names do not have a value. Note that the acc_error_flag is not set when

a nonvalued argument is referenced.

The routine acc_fetch_tfarg() returns values as type double. The routines acc_fetch_tfarg_int() and

acc_fetch_tfarg_str() return values as integers or string pointers, respectively. The value returned by

acc_fetch_tfarg() can also be converted to integers or character pointers using the C language cast mecha-

nism, as shown in Table 153. Note that some C language compilers do not allow casting a double-precision

value directly to a character pointer; it is therefore necessary to use a two-step cast to first convert the double

value to an integer and then convert the integer to a character pointer. If a character string is returned, it is

placed in the ACC internal string buffer. See 22.9 for explanation of strings in ACC routines.

acc_fetch_tfarg(), acc_fetch_itfarg()

Synopsis: Get the value of the specified argument of the system task or function associated with the PLI application; the

value is returned as a double-precision number.

Syntax: acc_fetch_tfarg(argument_number)
acc_fetch_itfarg(argument_number, tfinst)

Type Description

Returns: double The value of the task/function argument, returned as a double-precision number

Type Name Description

Arguments: PLI_INT32 argument_number Integer number that references the system task or function

argument by its position in the argument list

handle tfinst Handle to a specific instance of a user-defined system task

or function

Related
routines:

Use acc_fetch_tfarg_int() or acc_fetch_itfarg_int() to get the task/function argument value as an integer

Use acc_fetch_tfarg_str() or acc_fetch_itfarg_str() to get the task/function argument value as a string

Use acc_handle_tfinst() to get a handle to a specific instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 465
This is an unapproved IEEE Standards Draft, subject to change.

The example shown in Figure 92 uses acc_fetch_tfarg(), acc_fetch_tfarg_int(), and acc_fetch_tfarg_str()
to return the value of the first argument of a user-defined system task or function.

Figure 92—Using acc_fetch_tfarg(), acc_fetch_tfarg_int(), and acc_fetch_tfarg_str()

Table 153—Casting acc_fetch_tfarg() return values

To convert to Follow these steps

Integer Cast the return value to the integer data type using the C language cast oper-

ator (PLI_INT32):

int_val= (PLI_INT32) acc_fetch_tfarg(...);

String Cast the return value to a character pointer using the C language cast opera-

tors (char*)(int):

str_ptr= (char*)(int) acc_fetch_tfarg(...);

#include "acc_user.h"
#include "veriuser.h"

PLI_INT32 display_arg_value()
{

PLI_INT32 arg_type;

/*initialize environment for ACC routines*/
acc_initialize();

/*check type of argument*/
io_printf("Argument value is ");

switch(tf_typep(1))
{

case tf_readonlyreal:
case tf_readwritereal:

io_printf("%1f\n", acc_fetch_tfarg(1));
break;

case tf_readonly:
case tf_readwrite:

io_printf("%d\n", acc_fetch_tfarg_int(1));
break;

case tf_string:
io_printf("%s\n", acc_fetch_tfarg_str(1));
break;

default:
io_printf("Error in argument specification\n");
break;

}
acc_close();

}

returns value as a
double-precision
floating-point number

returns value as a
pointer to a
character string

returns value as an
 integer number

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

466 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.31 acc_fetch_tfarg_int(), acc_fetch_itfarg_int()

The ACC routine acc_fetch_tfarg_int() shall return the value of arguments passed to the current user-

defined system task or function. The ACC routine acc_fetch_itfarg_int() shall return the value of arguments

passed to a specific instance of a user-defined system task and function, using a handle to the task or func-

tion. The value is returned as an integer number.

Argument numbers shall start at one and increase from left to right in the order that they appear in the system

task or function call.

If an argument number is passed in that is out of range for the number of arguments in the user-defined sys-

tem task/function call, acc_fetch_tfarg_int() and acc_fetch_itfarg_int() shall return a value of 0 and gener-

ate a warning message if warnings are enabled. Note that the acc_error_flag is not set for an out-of-

range index number.

If a user-defined system task/function argument that does not represent a valued object is referenced,

acc_fetch_tfarg_int() and acc_fetch_itfarg_int() shall return a value of 0 and generate a warning message

if warnings are enabled. Literal numbers, nets, regs, integer variables, and real variables all have values.

Objects such as module instance names do not have a value. Note that the acc_error_flag is not set when

a nonvalued argument is referenced.

If a user-defined task/function argument is a real value, the value is cast to a PLI_INT32 and returned as an

integer. If the task/function argument is a string value, the string is copied into the ACC string buffer and the

pointer to the string is cast to the type PLI_INT32 and returned as an integer.

Refer to Figure 92 for an example of using acc_fetch_tfarg_int().

acc_fetch_tfarg_int(), acc_fetch_itfarg_int()

Synopsis: Get the value of the specified argument of the system task or function associated with the PLI application; the

value is returned as an integer number.

Syntax: acc_fetch_tfarg_int(argument_number)
acc_fetch_itfarg_int(argument_number, tfinst)

Type Description

Returns: PLI_INT32 The value of the task/function argument, returned as an integer number

Type Name Description

Arguments: PLI_INT32 argument_number Integer number that references the system task or function

argument by its position in the argument list

handle tfinst Handle to a specific instance of a user-defined system task

or function

Related
routines:

Use acc_fetch_tfarg() or acc_fetch_itfarg() to get the task/function argument value as a double

Use acc_fetch_tfarg_str() or acc_fetch_itfarg_str() to get the task/function argument value as a string

Use acc_handle_tfinst() to get a handle to a specific instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 467
This is an unapproved IEEE Standards Draft, subject to change.

23.32 acc_fetch_tfarg_str(), acc_fetch_itfarg_str()

The ACC routine acc_fetch_tfarg_str() shall return the value of arguments passed to the current instance of

a user-defined system task or function. The ACC routine acc_fetch_itfarg_str() shall return the value of

arguments passed to a specific instance of a user-defined system task or function, using a handle to the task

or function. The value shall be returned as a pointer to a character string. The return value for this routine is

placed in the ACC internal string buffer. See 22.9 for explanation of strings in ACC routines.

Argument numbers shall start at one and increase from left to right in the order that they appear in the system

task or function call.

If an argument number is passed in that is out of range for the number of arguments in the user-defined sys-

tem task/function call, acc_fetch_tfarg_str() and acc_fetch_itfarg_str() shall return a value of null and

generate a warning message if warnings are enabled. Note that the acc_error_flag is not set for an out-

of-range index number.

If a user-defined system task/function argument that does not represent a valued object is referenced,

acc_fetch_tfarg_str() and acc_fetch_itfarg_str() shall return a value of null and generate a warning mes-

sage if warnings are enabled. Literal numbers, nets, regs, integer variables, and real variables all have values.

Objects such as module instance names do not have a value. Note that the acc_error_flag is not set when

a nonvalued argument is referenced.

If a user-defined task/function argument is a value, each 8 bits of the value are converted into its equivalent

ASCII character.

Refer to Figure 92 for an example of using acc_fetch_tfarg_str().

acc_fetch_tfarg_str(), acc_fetch_itfarg_str()

Synopsis: Get the value of the specified argument of the system task or function associated with the PLI application; the

value is returned as a pointer to a character string.

Syntax: acc_fetch_tfarg_str(argument_number)
acc_fetch_itfarg_str(argument_number, tfinst)

Type Description

Returns: PLI_BYTE8 * The value of the task/function argument, returned as a pointer to a character string

Type Name Description

Arguments: PLI_INT32 argument_number Integer number that references the system task or function

argument by its position in the argument list

handle tfinst Handle to a specific instance of a user-defined system task

or function

Related
routines:

Use acc_fetch_tfarg() or acc_fetch_itfarg() to get the task/function argument value as a double

Use acc_fetch_tfarg_int() or acc_fetch_itfarg_int() to get the task/function argument value as an integer

Use acc_handle_tfinst() to get a handle to a specific instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

468 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.33 acc_fetch_timescale_info()

The ACC routine acc_fetch_timescale_info() shall obtain the timescale information for an object or for an

active $timeformat built-in system task invocation. The timescale returned shall be based on the type of

object handle, as defined in Table 154.

The routine acc_fetch_timescale_info() shall return a value to an s_timescale_info structure pointed to

by the timescale_p argument. This structure is declared in the file acc_user.h, as shown in Figure 93.

Figure 93—s_timescale_info data structure

— The term unit is a short integer that shall represent the timescale unit in all cases of object
— The term precision is a short integer that shall represent the timescale precision. In the case of a null

object handle, precision shall be the number of decimal points specified in the active $timeformat
system task invocation.

acc_fetch_timescale_info()

Synopsis: Get timescale information for an object or for an active $timeformat system task invocation.

Syntax: acc_fetch_timescale_info(object_handle, timescale_p)

Type Description

Returns: void

Type Name Description

Arguments: handle object_handle Handle of a module instance, module definition, PLI user-

defined system task/function call, or null

p_timescale_info timescale_p Pointer to a variable defined as a s_timescale_info
structure

Related
routines:

Use acc_fetch_precision() to fetch the smallest timescale precision in a design

Table 154—Return values from acc_fetch_timescale_info()

If the object_handle is acc_fetch_timescale_info() shall return

A handle to a module instance or module

definition

The timescale for the corresponding module definition

A handle to a user-defined system task or

function

The timescale for the corresponding module definition

that represents the parent module instance of the object

null The timescale for an active $timeformat system task

invocation

typedef struct t_timescale_info
{
 PLI_INT16 unit;
 PLI_INT16 precision;
} s_timescale_info, *p_timescale_info;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 469
This is an unapproved IEEE Standards Draft, subject to change.

The value returned for unit and precision shall be the order of magnitude of 1 s, as shown in Table 155.

For example, a call to

acc_fetch_timescale_info(obj, timescale_p)

Where obj is defined in a module that has `timescale 1us/1ns specified for its definition, shall return

timescale_p->unit: -6
timescale_p->precision: -9

Table 155—Value returned by acc_fetch_timescale_info()

Integer value returned Time unit r

2 100 s

1 10 s

0 1 s

-1 100 ms

-2 10 ms

-3 1 ms

-4 100 us

-5 10 us

-6 1 us

-7 100 ns

-8 10 ns

-9 1 ns

-10 100 ps

-11 10 ps

-12 1 ps

-13 100 fs

-14 10 fs

-15 1 fs

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

470 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.34 acc_fetch_type()

The ACC routine acc_fetch_type() shall return the type of an object. The type is a general classification of a

Verilog HDL object, represented as a predefined constant (defined in acc_user.h). Refer to Table 113 for

a list of all of the type constants that can be returned by acc_fetch_type().

Many Verilog HDL objects can have a type and a fulltype. The type of an object is its general Verilog HDL

type classification. The fulltype is the specific type of the object. Table 143 illustrates the difference

between the type of an object and the fulltype of the same object.

The example shown in Figure 94 uses acc_fetch_type() to identify the type of an object (the functions

display_primitive_type and display_timing_check_type used in this example are presented in

the usage examples in 23.19).

acc_fetch_type()

Synopsis: Get the type of an object.

Syntax: acc_fetch_type(object_handle)

Type Description

Returns: PLI_INT32 A predefined integer constant from the list shown in 22.6

Type Name Description

Arguments: handle object_handle Handle of the object

Related
routines:

Use acc_fetch_fulltype() to get the full type classification of an object

Use acc_fetch_type_str() to get the type as a character string

Table 156—The difference between the type and the fulltype of an object

For a handle to acc_fetch_type() shall return acc_fetch_fulltype() shall return

A setup timing check accTchk accSetup

An and gate primitive accPrimitive accAndGate

A sequential UDP accPrimitive accSeqPrim

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 471
This is an unapproved IEEE Standards Draft, subject to change.

Figure 94—Using acc_fetch_type()

#include "acc_user.h"

PLI_INT32 display_object_type()
{

handle object_handle;

/*initialize environment for ACC routines*/
acc_initialize();

object_handle = acc_handle_tfarg(1);

/*display object type*/
switch(acc_fetch_type(object_handle))

{
case accModule:

io_printf("Object is a module\n");
break;

case accNet:
io_printf("Object is a net\n");
break;

case accPath:
io_printf("Object is a module path\n");
break;

case accPort:
io_printf("Object is a module port\n");
break;

case accPrimitive:
display_primitive_type(object_handle);
break;

case accTchk:
display_timing_check_type(object_handle);
break;

case accTerminal:
io_printf("Object is a primitive terminal\n");
break;

}
acc_close();

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

472 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.35 acc_fetch_type_str()

The ACC routine acc_fetch_type_str() shall return the character string that specifies the type of its argu-

ment. The argument passed to acc_fetch_type_str() should be an integer value returned from either

acc_fetch_type() or acc_fetch_fulltype().

The return value for this routine is placed in the ACC internal string buffer. See 22.9 for explanation of

strings in ACC routines.

In the example shown in Figure 95, a handle to an argument is passed to a C application. The application

displays the name of the object and the type of the object.

Figure 95—Using acc_fetch_type_str()

In this example, if the application is passed a handle to an object named top.param1, the application shall

produce the following output:

Object top.param1 is of type accParameter

The output string, accParameter, is the name of the integer constant that represents the parameter type.

acc_fetch_type_str()

Synopsis: Get a string that indicates the type of its argument.

Syntax: acc_fetch_type_str(type)

Type Description

Returns: PLI_BYTE8 * Pointer to a character string

Type Name Description

Arguments: PLI_INT32 type A predefined integer constant that stands for an object type

or fulltype

Related
routines:

Use acc_fetch_type() to get the type of an object as an integer constant

Use acc_fetch_fulltype() to get the fulltype of an object as an integer constant

#include "acc_user.h"
PLI_INT32 display_object_type(object)
handle object;
{
 PLI_INT32 type = acc_fetch_type(object);

 io_printf("Object %s is of type %s \n",
acc_fetch_fullname(object),
acc_fetch_type_str(type));

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 473
This is an unapproved IEEE Standards Draft, subject to change.

23.36 acc_fetch_value()

The ACC routine acc_fetch_value() shall return logic simulation values for scalar or vector nets, reg, and

integer, time and real variables; acc_fetch_value() shall return strength values for scalar nets and scalar regs

only.

The routine acc_fetch_value() shall return the logic and strength values in one of two ways:

— The value can be returned as a string
— The value can be returned as an aval/bval pair in a predefined structure.

The return method used by acc_fetch_value() shall be controlled by the format_string argument, as shown

in Table 157.

The string value returned shall have the same form as output from the formatted built-in system task $dis-

play, in terms of value lengths and value characters used. The length shall be of arbitrary size, and unknown

and high-impedance values shall be obtained. Note that strings are placed in a temporary buffer, and they

should be preserved if not used immediately. Refer to 22.9 for details on preserving strings.

acc_fetch_value()

Synopsis: Get the logic or strength value of a net, reg, or variable.

Syntax: acc_fetch_value(object_handle, format_string, value)

Type Description

Returns: PLI_BYTE8 * Pointer to a character string

Type Name Description

Arguments: handle object_handle Handle of the object

quoted string or

PLI_BYTE8 *

format_string A literal string or character string pointer with one of the

following specifiers for formatting the return value:

“%b” “%d” “%h” “%o” “%v” “%%”

Optional s_acc_value * value Pointer to a structure in which the value of the object is

returned when the format string is “%%” (should be set to

null when not used)

Related
routines:

Use acc_fetch_size() to determine how many bits wide the object is

Use acc_set_value() to put a logic value on the object

Table 157—How acc_fetch_value() returns values

format_specifier Return format Description

“%b” binary Value shall be retrieved as a string, and a character pointer to the

string shall be returned
“%d” decimal

“%h” hexadecimal

“%o” octal

“%v” strength

“%%” s_acc_value
structure

Value shall be retrieved and placed in a structure variable pointed

to by the optional value argument

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

474 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The “%v” format shall return a three character string containing the strength code of a scalar net. Refer to

17.1.1.5 for the strength representations.

When a format_string of “%%” is specified, acc_fetch_value() shall retrieve the logic value and strength to

a predefined structure, s_acc_value, which is defined in acc_user.h and is shown below [note that this

structure definition is also used with the acc_set_value() routine].

.

Figure 96—s_acc_value structure

To use the “%%” format_string to retrieve values to a structure requires the following steps:

a) A structure variable shall first be declared of type s_acc_value.

b) The format field of the structure has to be set to a predefined constant. The format controls which

fields in the s_acc_value structure shall be used when acc_fetch_value() returns the value. The

predefined constants for the format shall be one of the constants shown in Table 158.

c) The structure variable has to be passed as the third argument to acc_fetch_value().

d) The function return value from acc_fetch_value() should be ignored.

Table 158—Format constants for the s_acc_value structure

Format constant acc_fetch_value() shall return the
value to the s_acc_value union field Description

accBinStrVal str value is retrieved in the same format as “%b”

accOctStrVal str value is retrieved in the same format as “%o”

accDecStrVal str value is retrieved in the same format as “%d”

accHexStrVal str value is retrieved in the same format as “%h”

accStringVal str value is converted to a string, see 2.6 for a descrip-

tion of Verilog strings

accScalarVal scalar value is retrieved as one of the constants: acc0,

acc1, accZ or accX

accIntVal integer value is retrieved as a C integer

accRealVal real value is retrieved as a C double

accVectorVal vector value is represented as aval/bval pairs stored in an

array of s_acc_vecval structures

typedef struct t_setval_value
{
 PLI_INT32 format;
 union
 {
 PLI_BYTE8 *str;
 PLI_INT32 scalar;
 PLI_INT32 integer;
 double real;
 p_acc_vecval vector;
 } value;
} s_setval_value, *p_setval_value, s_acc_value, *p_acc_value;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 475
This is an unapproved IEEE Standards Draft, subject to change.

For example, calling acc_fetch_value() with the following setup would return a string in the value.str
field. (This is essentially the same as using acc_fetch_value() with a %b format string.)

s_acc_value value;
value.format = accBinStrVal;
(void)acc_fetch_value(Net, “%%”, &value);

If the format field for acc_fetch_value() is set to accVectorVal, then the value shall be placed in the

record(s) pointed to by the value field. The value field shall be a pointer to an array of one or more

s_acc_vecval structures. The s_acc_vecval structure is defined in the acc_user.h file and is listed in

Figure 97. The structure shall contain two integers: aval and bval. Each s_acc_vecval record shall repre-

sent 32 bits of a vector. The encoding for each bit value is shown in Table 159.

.

Figure 97—s_acc_vecval structure

The array of s_acc_vecval structures shall contain a record for every 32 bits of the vector, plus a record

for any remaining bits. If a vector has N bits, then there shall be ((N-1)/32)+1 s_acc_vecval records.

The routine acc_fetch_size() can be used to determine the value of N. The lsb of the vector shall be repre-

sented by the lsb of the first record of s_acc_vecval array. The 33rd bit of the vector shall be represented

by the lsb of the second record of the array, and so on. See Figure 99 for an example of

acc_fetch_value() used in this way.

Note that when using aval/bval pairs, the s_acc_value record and the appropriately sized s_acc_vecval
array shall first be declared. Setting the second parameter to acc_fetch_value() to “%%” and the third

parameter to null shall be an error.

Table 159—Encoding of bits in the s_acc_vecval structure

aval bval Value

0 0 0

1 0 1

0 1 Z

1 1 X

typedef struct t_acc_vecval
{
 PLI_INT32 aval;
 PLI_INT32 bval;
} s_acc_vecval, *p_acc_vecval;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

476 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The example application shown in Figure 98 uses acc_fetch_value() to retrieve the logic values of all nets

in a module as strings.

Figure 98—Using acc_fetch_value() to retrieve the logic values as strings

The example in Figure 99 uses acc_fetch_value() to retrieve a value into a structure, and then prints the

value. The example assumes the application, my_fetch_value, is called from the following user-defined

system task:

#include "acc_user.h"
PLI_INT32 display_net_values()
{
 handle mod, net;

/*initialize environment for ACC routines*/
acc_initialize();

/*get handle for module*/
mod = acc_handle_tfarg(1);

/*get all nets in the module and display their values*/
/* in binary format*/
net = null;
while(net = acc_next_net(mod, net))

io_printf("Net value: %s\n", acc_fetch_value(net,"%b", null));

acc_close();
}

$my_fetch_value(R);

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 477
This is an unapproved IEEE Standards Draft, subject to change.

Figure 99—Using acc_fetch_value() to retrieve values into a data structure

#include "acc_user.h"

PLI_INT32 my_fetch_value()
{

handle reg = acc_handle_tfarg(1);
PLI_INT32 size = ((acc_fetch_size(reg) - 1) / 32) + 1;
s_acc_value value;
int index1, min_size;
static PLI_BYTE8 table[4] = {’0’,’1’,’z’,’x’};
static PLI_BYTE8 outString[33];

io_printf("The value of %s is ",acc_fetch_name(reg));

value.format = accVectorVal;
value.value.vector = (p_acc_vecval)malloc(size*sizeof(s_acc_vecval));

(void)acc_fetch_value(reg, "%%",&value);

for (index1 = size - 1; index1 >= 0; index1--)
{

int index2;
PLI_INT32 abits = value.value.vector[index1].aval;
PLI_INT32 bbits = value.value.vector[index1].bval;

if (index1 == size - 1)
{

min_size = (acc_fetch_size(reg) % 32);
if (!min_size)
min_size = 32;

}
else

min_size = 32;
outString[min_size] = ’\0’;
min_size--;
outString[min_size] = table[((bbits & 1) << 1) | (abits & 1)];
abits >>= 1;

for (index2 = min_size - 1; index2 >= 0; index2--)
{

outString[index2] = table[(bbits & 2) | (abits & 1)];
abits >>= 1;
bbits >>= 1;

}
io_printf("%s", outString);

}
io_printf("\n");
return(0);

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

478 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.37 acc_free()

The ACC routine acc_free() shall deallocate memory that was allocated by the routine acc_collect().

The example shown in Figure 100 uses acc_free() to deallocate memory allocated by acc_collect() to col-

lect handles to all nets in a module.

Figure 100—Using acc_free()

acc_free()

Synopsis: Frees memory allocated by acc_collect().

Syntax: acc_free(handle_array_pointer)

Type Description

Returns: void No return

Type Name Description

Arguments: handle * handle_array_pointer Pointer to the array of handles allocated by acc_collect()

Related
routines:

Use acc_collect() to collect handles returned by acc_next_ routines

#include "acc_user.h"

PLI_INT32 display_nets()
{

handle *list_of_nets, module_handle;
PLI_INT32 net_count, i;

/*initialize environment for ACC routines*/
acc_initialize();

/*get handle for module*/
module_handle = acc_handle_tfarg(1);

/*collect and display all nets in the module*/
list_of_nets = acc_collect(acc_next_net, module_handle, &net_count);
for(i=0; i < net_count; i++)

io_printf("Net name is: %s\n", acc_fetch_name(list_of_nets[i]));

/*free memory used by array list_of_nets*/
acc_free(list_of_nets);

acc_close();
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 479
This is an unapproved IEEE Standards Draft, subject to change.

23.38 acc_handle_by_name()

The ACC routine acc_handle_by_name() shall return the handle to any named object based on its specified

name and scope. The routine can be used in two ways, as shown in Table 160.

The routine acc_handle_by_name() combines the functionality of acc_set_scope() and

acc_handle_object(), making it possible to obtain handles for objects that are not in the local scope without

having to first change scopes. Object searching shall conform to rules in 12.4 on hierarchical name

referencing.

Table 161 lists the objects in a Verilog HDL description for which acc_handle_by_name() shall return a

handle.

acc_handle_by_name()

Synopsis: Get the handle to any named object based on its name and scope.

Syntax: acc_handle_by_name(object_name, scope_handle)

Type Description

Returns: handle A handle to the specified object

Type Name Description

Arguments: quoted string or

PLI_BYTE8 *

object_name Literal name of an object or a character string pointer to the

object name

handle scope_handle Handle to scope, or null

Related
Routines

Use acc_handle_object() to get a handle based on the local instance name of an object

Table 160—How acc_handle_by_name() works

When the scope_handle is acc_handle_by_name() shall

A valid scope handle Search for the object_name in the scope specified

null Search for the object_name in the module containing the

current system task or function

Table 161—Named objects supported by acc_handle_by_name()

Modules Parameters

Primitives Specparams

Nets Named blocks

Regs Verilog HDL tasks

Integer, time and real variables Verilog HDL functions

Named events

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

480 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The routine acc_handle_by_name() does not return handles for module paths, intermodule paths, data

paths, or ports. Use an appropriate acc_next_ or other ACC routines for these objects.

The example shown in Figure 101 uses acc_handle_by_name() to set the scope and get the handle to an

object if the object is in the module.

Figure 101—Using acc_handle_by_name()

Note that in this example

net_handle = acc_handle_by_name(net_name, module_handle);

could also have been written as follows:

acc_set_scope(module_handle);
net_handle = acc_handle_object(net_name);

#include "acc_user.h"

PLI_INT32 is_net_in_module(module_handle, net_name)
handle module_handle;
PLI_BYTE8 *net_name;
{

handle net_handle;

/*set scope to module and get handle for net */
net_handle = acc_handle_by_name(net_name, module_handle);

if (net_handle)
io_printf("Net %s found in module %s\n",

net_name,
acc_fetch_fullname(module_handle));

else
io_printf("Net %s not found in module %s\n",

net_name,
acc_fetch_fullname(module_handle));

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 481
This is an unapproved IEEE Standards Draft, subject to change.

23.39 acc_handle_calling_mod_m

The ACC routine acc_handle_calling_mod_m shall return a handle to the module that contains the instance

of the user-defined system task or function that called the PLI application.

acc_handle_calling_mod_m

Synopsis: Get a handle to the module containing the instance of the user-defined system task or function that called the

PLI application.

Syntax: acc_handle_calling_mod_m

Type Description

Returns: handle Handle to a module

Type Name Description

Arguments: None

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

482 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.40 acc_handle_condition()

The ACC routine acc_handle_condition() shall return a handle to a conditional expression for the specified

module path, data path, or timing check terminal. The routine shall return null when

— The module path, data path, or timing check terminal has no condition specified
— The module path has an ifnone condition specified

To determine if a module path has an ifnone condition specified, use the ACC routine acc_object_of_type()
to check for the property type of accModPathHasIfnone.

The example shown in Figure 102 provides functionality to see if a path is conditional, and, if it is, whether

it is level-sensitive or edge-sensitive. The application assumes that the input is a valid handle to a module

path.

Figure 102—Using acc_handle_condition()

acc_handle_condition()

Synopsis: Get a handle to the conditional expression of a module path, data path, or timing check terminal.

Syntax: acc_handle_condition(path_handle)

Type Description

Returns: handle Handle to a conditional expression

Type Name Description

Arguments: handle path_handle Handle to a module path, data path, or timing check

terminal

int is_path_conditional(path)
{

if (acc_handle_condition(path))
return(TRUE);

else
return(FALSE);

}

int is_level_sensitive(path)
{

int flag;
handle path_in = acc_next_input(path, null);

if (is_path_conditional(path) && acc_fetch_edge(path_in))
flag = FALSE; /* path is edge-sensitive */

else
flag = TRUE; /* path is level_sensitive */

acc_release_object(path_in);

return (flag);
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 483
This is an unapproved IEEE Standards Draft, subject to change.

23.41 acc_handle_conn()

The ACC routine acc_handle_conn() shall return a handle to the net connected to a primitive terminal, path

terminal, or timing check terminal. This handle can then be passed to other ACC routines to traverse a design

hierarchy or to extract information about the design.

The example shown in Figure 103 displays the net connected to the output terminal of a gate.

Figure 103—Using acc_handle_conn()

acc_handle_conn()

Synopsis: Get the handle to the net connected to a primitive terminal, path terminal, or timing check terminal.

Syntax: acc_handle_conn(terminal_handle)

Type Description

Returns: handle Handle of a net

Type Name Description

Arguments: handle terminal_handle Handle of the primitive terminal, path terminal, or timing

check terminal

Related
routines:

Use acc_handle_terminal() or acc_next_terminal() to obtain a terminal_handle

#include "acc_user.h"

PLI_INT32 display_driven_net()
{

 handle gate_handle, terminal_handle, net_handle;

/*initialize environment for ACC routines*/
acc_initialize();

/*get handle for the gate*/
gate_handle = acc_handle_tfarg(1);

/*get handle for the gate’s output terminal*/
terminal_handle = acc_handle_terminal(gate_handle, 0);

/*get handle for the net connected to the output terminal*/
net_handle = acc_handle_conn(terminal_handle);

/*display net name*/
io_printf("Gate %s drives net %s\n",

acc_fetch_fullname(gate_handle),
acc_fetch_name(net_handle));

acc_close();
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

484 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.42 acc_handle_datapath()

The ACC routine acc_handle_datapath() shall return a handle to the data path associated with an edge-sen-

sitive module path. If there is no data path, null shall be returned.

A data path is part of the Verilog HDL description for edge-sensitive module paths, as illustrated below:

The example shown in Figure 104 uses acc_handle_datapath() to find the data path corresponding to the

specified module path and displays the source and destination port names for the data path.

Figure 104—Using acc_handle_datapath()

acc_handle_datapath()

Synopsis: Get a handle to a data path for an edge-sensitive module path.

Syntax: acc_handle_datapath(modpath_handle)

Type Description

Returns: handle Handle of a data path

Type Name Description

Arguments: handle modpath_handle Handle to a module path

posedge (clk => (q +: d)) = (3,2);

module path

data path

PLI_INT32 display_datapath_terms(modpath)
handle modpath;
{

handle datapath = acc_handle_datapath(modpath);
handle pathin = acc_next_input(datapath, null);
handle pathout = acc_next_output(datapath, null);

/* there is only one input and output to a datapath */
io_printf("DATAPATH INPUT: %s\n", acc_fetch_fullname(pathin));
io_printf("DATAPATH OUTPUT: %s\n", acc_fetch_fullname(pathout));
acc_release_object(pathin);
acc_release_object(pathout);

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 485
This is an unapproved IEEE Standards Draft, subject to change.

23.43 acc_handle_hiconn()

The ACC routine acc_handle_hiconn() shall return the hierarchically higher net connection for a scalar port

or a bit-select of one of the following:

— Vector port
— Part-select of a port
— Concatenation of scalar ports, vector ports, part-selects of ports, or other concatenations

The hiconn is the net connected one level above the hierarchical scope of a module port, as illustrated below:

The example shown in Figure 105 uses acc_handle_hiconn() and acc_handle_loconn() to display the

higher and lower connections of a module port.

acc_handle_hiconn()

Synopsis: Get the hierarchically higher net connection to a scalar module port or a bit-select of a vector port.

Syntax: acc_handle_hiconn(port_ref_handle)

Type Description

Returns: handle Handle of a net

Type Name Description

Arguments: handle port_ref_handle Handle to a scalar port or a bit-select of a vector port

Related
routines:

Use acc_next_hiconn() to find all nets connected to a scalar port or bit-select of a port

Use acc_handle_loconn() to get the hierarchically lower net connection of a port

module

loconn hiconn

(lower net connection) (higher net connection)

module port bit

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

486 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Figure 105—Using acc_handle_hiconn() and acc_handle_loconn()

PLI_INT32 display_port_info(mod, index)
handle mod;
PLI_INT32 index;
{

handle port = acc_handle_port (mod, index);
handle hiconn, loconn, port_bit;

if (acc_fetch_size(port) == 1) {
hiconn = acc_handle_hiconn (port);
loconn = acc_handle_loconn (port);
io_printf (" hi: %s lo: %s\n",

acc_fetch_fullname(hiconn), acc_fetch_fullname(loconn));
}
else {

port_bit = null;
while (port_bit = acc_next_bit (port, port_bit))
{

hiconn = acc_handle_hiconn (port_bit);
loconn = acc_handle_loconn (port_bit);
io_printf (" hi: %s lo: %s\n",

acc_fetch_fullname(hiconn), acc_fetch_fullname(loconn));
}

}
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 487
This is an unapproved IEEE Standards Draft, subject to change.

23.44 acc_handle_interactive_scope()

The ACC routine acc_handle_interactive_scope() shall return a handle to the Verilog HDL design scope

where the interactive mode of a software product is currently pointing.

A scope shall be

— A top-level module
— A module instance
— A named begin-end block
— A named fork-join block
— A Verilog HDL task
— A Verilog HDL function

acc_handle_interactive_scope()

Synopsis: Get a handle to the current interactive scope of the software tool.

Syntax: acc_handle_interactive_scope()

Type Description

Returns: handle Handle of a Verilog hierarchy scope

Type Name Description

Arguments: None

Related
routines:

Use acc_fetch_type() or acc_fetch_fulltype() to determine the scope type returned

Use acc_set_interactive_scope() to change the interactive scope

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

488 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.45 acc_handle_loconn()

The ACC routine acc_handle_loconn() shall return the hierarchically lower net connection for a scalar port

or a bit-select of one of the following:

— Vector port
— Part-select of a port
— Concatenation of scalar ports, vector ports, part-selects of ports, or other concatenations

The loconn is the net connected within the hierarchical scope of a module port, as illustrated below:

Refer to the usage example in 23.43 for an example of using acc_handle_loconn().

acc_handle_loconn()

Synopsis: Gets the hierarchically lower net connection to a scalar module port or a bit-select of a vector port.

Syntax: acc_handle_loconn(port_ref_handle)

Type Description

Returns: handle Handle of a net

Type Name Description

Arguments: handle port_ref_handle Handle to a scalar port or a bit-select of a vector port

Related
routines:

Use acc_next_loconn() to find all nets connected to a scalar port or bit-select of a port

Use acc_handle_hiconn() to get the hierarchically higher net connection of a port

module

loconn hiconn

(lower net connection) (higher net connection)

module port bit

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 489
This is an unapproved IEEE Standards Draft, subject to change.

23.46 acc_handle_modpath()

The ACC routine acc_handle_modpath() shall return a handle to a module path if one can be found. If a

module path cannot be found the return value shall be null, the acc_error_flag will not be set. If any of the

input args are improper a null shall be returned and the acc_error_flag will be set.

acc_handle_modpath()

Synopsis: Gets a handle to a module path.

Syntax: acc_handle_modpath(module_handle, source_name, destination_name,
 source_handle, destination_handle)

Type Description

Returns: handle Handle of a module path

Type Name Description

Arguments: handle module_handle Handle of the module

quoted string or

PLI_BYTE8 *

source_name Literal string or character string pointer with the name of a

net connected to a module path source

quoted string or

PLI_BYTE8 *

destination_name Literal string or character string pointer with the name of a

net connected to a module path destination

Optional handle source_handle Handle of a net connected to a module path source (used

when accEnableArgs is set and source_name is null)

Optional handle destination_handle Handle of a net connected to a module path destination

(used when accEnableArgs is set and destination_name is

null)

Related
routines:

Use acc_configure(accEnableArgs, “acc_handle_modpath”) to use the source_handle and destination_handle

Table 162—How acc_handle_modpath() works

Setting of accEnableArgs acc_handle_modpath() shall

“no_acc_handle_modpath” (the default setting) Use the name arguments and ignore both handle argu-

ments (the handle arguments can be dropped)

“acc_handle_modpath” and either source_name
or destination_name is null

Use the handle argument of the null name argument; if

the name argument is not null, the name shall be used

and the associated handle argument ignored

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

490 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

A module path is the specify block path for delays in the Verilog HDL description. For example:

The example shown in Figure 106 uses acc_handle_modpath() to obtain handles for paths that connect the

sources and destinations listed in the file pathconn.dat. The format of pathconn.dat is shown below.

Figure 106—Using acc_handle_modpath()

(in *> out) = 1.8;

posedge (clk => (q +: d)) = (3,2);

module path

module path

•
•

top.mod1 in out

•
•

path source

path destination

module name

#include <stdio.h>
#include "acc_user.h"

#define NAME_SIZE 256

PLI_INT32 get_paths()
{

FILE *infile;
PLI_BYTE8 mod_name[NAME_SIZE], src_name[NAME_SIZE],

dest_name[NAME_SIZE];
handle path_handle, mod_handle;

/* initialize the environment for ACC routines */
acc_initialize();

/* set accPathDelimStr to "_" */
acc_configure(accPathDelimStr, "_");

/* read delays from file - "r" means read only */
infile = fopen("pathconn.dat","r");
while (fscanf(infile, "%s %s %s",mod_name,src_name,dest_name) != EOF)
{

/* get handle for module mod_name */
mod_handle = acc_handle_object(mod_name);
path_handle = acc_handle_modpath(mod_handle, src_name, dest_name);
if (path_handle)

io_printf("Path %s was found\n",
acc_fetch_fullname(path_handle));

else
io_printf("Path %s_%s was not found\n", src_name, dest_name);

}
acc_close();

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 491
This is an unapproved IEEE Standards Draft, subject to change.

23.47 acc_handle_notifier()

The ACC routine acc_handle_notifier() shall return a handle to the notifier reg associated with a timing

check.

The example shown in Figure 117 uses acc_handle_notifier() to display the name of a notifier associated

with a timing check.

acc_handle_notifier()

Synopsis: Get the notifier reg associated with a particular timing check.

Syntax: acc_handle_notifier(tchk)

Type Description

Returns: handle Handle to a timing check notifier

Type Name Description

Arguments: handle tchk Handle of a timing check

Related
routines:

Use acc_handle_tchk() to get a handle to a specific timing check

Use acc_next_tchk() to get handles to all timing checks in a module

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

492 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.48 acc_handle_object()

The ACC routine acc_handle_object() shall return a handle to a named object. The object_name argument

shall be a quoted string or pointer to a string. The object_name can include a Verilog hierarchy path. The

routine shall search for the object using the rules given in Table 163.

The ACC routine acc_handle_object() shall use the current PLI scope as a basis for searching for objects.

The PLI scope shall default to the Verilog scope of the system task/function that called the C application of

the user, and it can be changed from within the application using acc_set_scope().

Table 141 lists the objects in a Verilog HDL description for which acc_handle_object() shall return a

handle.

acc_handle_object

Synopsis: Get a handle for any named object.

Syntax: acc_handle_object(object_name)

Type Description

Returns: handle Handle to an object

Type Name Description

Arguments: quoted string or

PLI_BYTE8 *

object_name Literal string or character string pointer with the full or rel-

ative hierarchical path name of an object

Related
routines:

Use acc_set_scope() to set the scope when using relative path names for an object

Table 163—How acc_handle_object() works

If object_name contains acc_handle_object() shall

A full hierarchical path name
(a full hierarchical path begins with a top-level module)

Return a handle to the object; no search is performed

No path name
or

a relative path name

Search for object starting in the current PLI scope, fol-

lowing search rules defined in 12.6

Table 164—Named objects

Modules Named events

Module ports Parameters

Data paths Specparams

Primitives Named blocks

Nets Verilog HDL tasks

Regs Verilog HDL functions

Integer, time and real variables

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 493
This is an unapproved IEEE Standards Draft, subject to change.

The example shown in Figure 107 uses acc_handle_object() to retrieve handles for net names read from a

file called primdelay.dat. The format of the file is shown below. Note that this example assumes that each

net is driven by only one primitive.

Figure 107—Using acc_handle_object()

•
•

top.m1.net7 10.4 8.5

•
•name of net

rise delay

fall delay

#include <stdio.h>
#include "acc_user.h"
#define NAME_SIZE 256

PLI_INT32 write_prim_delays()
{

FILE *infile;
PLI_BYTE8 full_net_name[NAME_SIZE];
double rise, fall;
handle net_handle, driver_handle, prim_handle;

/*initialize the environment for ACC routines*/
acc_initialize();

/*set accPathDelayCount parameter for rise and fall delays only*/
acc_configure(accPathDelayCount, "2");

/*read delays from file - "r" means read only*/
infile = fopen("primdelay.dat","r");
while (fscanf(infile,"%s %lf %lf",full_net_name,&rise,&fall) != EOF)
{

/*get handle for the net*/
net_handle = acc_handle_object(full_net_name);

/*get primitive connected to first net driver*/
driver_handle = acc_next_driver(net_handle, null);
prim_handle = acc_handle_parent(driver_handle);

/*replace delays with new values*/
acc_replace_delays(prim_handle, rise, fall);

}
acc_close();

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

494 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.49 acc_handle_parent()

The ACC routine acc_handle_parent() shall return a handle to the parent of any object. A parent is an

object that contains another object.

— The parent of a terminal shall be the primitive that contains the terminal.
— The parent of a port bit shall be the port that contains the bit.
— The parent of any other object (except a top-level module) shall be the module instance that contains

the object.
— Top-level modules do not have parents. When a top-level module handle is passed to

acc_handle_parent(), it shall return null.

The example shown in Figure 108 uses acc_handle_parent() to determine which terminals of a primitive

drive a net.

Figure 108—Using acc_handle_parent()

acc_handle_parent()

Synopsis: Get a handle for the parent primitive instance or module instance of an object.

Syntax: acc_handle_parent(object_handle)

Type Description

Returns: handle Handle of a primitive, port or module

Type Name Description

Arguments: handle object_handle Handle of an object

#include "acc_user.h"

PLI_INT32 get_primitives(net_handle)
handle net_handle;
{

handle primitive_handle;
handle driver_handle;

/*get primitive that owns each terminal that drives the net*/
driver_handle = null;
while (driver_handle = acc_next_driver(net_handle, driver_handle))
{

primitive_handle = acc_handle_parent(driver_handle);
io_printf("Primitive %s drives net %s\n",

acc_fetch_fullname(primitive_handle),
acc_fetch_fullname(net_handle));

}
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 495
This is an unapproved IEEE Standards Draft, subject to change.

23.50 acc_handle_path()

The ACC routine acc_handle_path() shall return a handle to an intermodule path. An intermodule path

shall be a net path that connects an output or inout port of one module to an input or inout port of another

module.

The example shown in Figure 109 is a C code fragment that uses acc_handle_path() to fetch min:typ:max

delays for the intermodule path referenced by intermod_path.

Figure 109—Using acc_handle_path()

acc_handle_path()

Synopsis: Get a handle to an intermodule path that represents the connection from an output or inout port to an input or

inout port.

Syntax: acc_handle_path(port_output_handle, port_input_handle)

Type Description

Returns: handle Handle of the intermodule path

Type Name Description

Arguments: handle port_output_handle Handle to one of the following:

• A scalar output port

• A scalar bidirectional port

• 1 bit of a vector output port

• 1 bit of a vector bidirectional port

handle port_input_handle Handle to one of the following:

• A scalar input port

• A scalar bidirectional port

• 1 bit of a vector input port

• 1 bit of a vector bidirectional port

Related
routines:

Use acc_next_port() or acc_handle_port() to retrieve a handle to a scalar port

Use acc_next_bit() to retrieve a handle to a bit of a vector port or a bit of a concatenated port

Use acc_fetch_direction() to determine whether a port is an input, an output, or bidirectional

#include "acc_user.h"
PLI_INT32 fetch_mintypmax_delays(port_output, port_input)
handle port_output, port_input;
{

. . .
handle intermod_path;
double delay_array[9];
. . .
acc_configure(accMinTypMaxDelays, "true");
. . .
intermod_path = acc_handle_path(port_output, port_input);
acc_fetch_delays(intermod_path, delay_array);
. . .

}

acc_handle_path() returns a handle

to a net path that represents the

connection from an output or inout

port to an input (or inout) port

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

496 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.51 acc_handle_pathin()

The ACC routine acc_handle_pathin() shall return a handle to the net connected to the first source in a

module path. If a module path has more than one input source, only the handle to the net connected to the

first source shall be returned. For example:

The example shown in Figure 110 uses acc_handle_pathin() to find the net connected to the input of a

path.

Figure 110—Using acc_handle_pathin()

acc_handle_pathin()

Synopsis: Get a handle for the first net connected to a module path source.

Syntax: acc_handle_pathin(path_handle)

Type Description

Returns: handle Handle to a net

Type Name Description

Arguments: handle path_handle Handle of the module path

Related
routines:

Use acc_next_modpath() or acc_handle_modpath() to get path_handle

(posedge clk => (q +: d)) = (3,2);

(a,b,c *> d,e,f) = 1.8;

pathin is first terminal

pathin

#include "acc_user.h"

PLI_INT32 get_path_nets(path_handle)
handle path_handle;
{

handle pathin_handle, pathout_handle;

pathin_handle = acc_handle_pathin(path_handle);
pathout_handle = acc_handle_pathout(path_handle);
io_printf("Net connected to input is: %s\n",

acc_fetch_name(pathin_handle));
io_printf("Net connected to output is: %s\n",

acc_fetch_name(pathout_handle));
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 497
This is an unapproved IEEE Standards Draft, subject to change.

23.52 acc_handle_pathout()

The ACC routine acc_handle_pathout() shall return a handle to the net connected to the first destination in

a module path. If a module path has more than one output destination, only the handle to the net connected

to the first destination shall be returned. For example:

The example shown in Figure 111 uses acc_handle_pathout() to find the net connected to the output of a

path.

Figure 111—Using acc_handle_pathout()

acc_handle_pathout()

Synopsis: Get a handle for the first net connected to a module path destination.

Syntax: acc_handle_pathout(path_handle)

Type Description

Returns: handle Handle to a net

Type Name Description

Arguments: handle path_handle Handle of the module path

Related
routines:

Use acc_next_modpath() or acc_handle_modpath() to get path_handle

(posedge clk => (q +: d)) = (3,2);

(a,b,c *> d,e,f) = 1.8;

pathout is first terminal

pathout

#include "acc_user.h"

PLI_INT32 get_path_nets(path_handle)
handle path_handle;
{

handle pathin_handle, pathout_handle;

pathin_handle = acc_handle_pathin(path_handle);
pathout_handle = acc_handle_pathout(path_handle);
io_printf("Net connected to input is: %s\n",

acc_fetch_name(pathin_handle));
io_printf("Net connected to output is: %s\n",

acc_fetch_name(pathout_handle));
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

498 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.53 acc_handle_port()

The ACC routine acc_handle_port() shall return a handle to a specific port of a module, based on the posi-

tion of the port in the module declaration.

The index of a port shall be its position in a module definition in the source description. The indices shall be

integers that start at 0 and increase from left to right. Table 165 shows how port indices are derived.

The example shown in Figure 112 uses acc_handle_port() to identify whether a particular module port is

an output.

acc_handle_port()

Synopsis: Get a handle for a module port, based on the position of the port.

Syntax: acc_handle_port(module_handle, port_index)

Type Description

Returns: handle Handle to a module port

Type Name Description

Arguments: handle module_handle Handle of a module

PLI_INT32 port_index An integer index of the desired port

Related
routines:

Use acc_next_port() to get handles to all ports of a module

Table 165—Deriving port indices

For Indices shall be

Implicit ports:
 module A(q, a, b);

0 for port q
1 for port a
2 for port b

Explicit ports:
 module top;

 reg ra, rb;

 wire wq;

 explicit_port_mod epm1(.b(rb), .a(ra), .q(wq));

 endmodule

 module explicit_port_mod(q, a, b);

 input a, b;

 output q;

 nand (q, a, b);

 endmodule

0 for explicit port epm1.q
1 for explicit port epm1.a
2 for explicit port epm1.b

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 499
This is an unapproved IEEE Standards Draft, subject to change.

Figure 112—Using acc_handle_port()

#include "acc_user.h"

int is_port_output(module_handle,port_index)
handle module_handle;
PLI_INT32 port_index;
{

handle port_handle;
PLI_INT32 direction;

/*check port direction*/
port_handle = acc_handle_port(module_handle, port_index);
direction = acc_fetch_direction(port_handle);
if (direction == accOutput || direction == accInout)

return(true);
else

return(false);
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

500 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.54 acc_handle_scope()

The ACC routine acc_handle_scope() shall return the handle to the scope of an object. A scope shall be

— A top-level module
— A module instance
— A named begin-end block
— A named fork-join block
— A Verilog HDL task
— A Verilog HDL function

The example shown in Figure 113 uses acc_handle_scope() to display the scope that contains an object.

Figure 113—Using acc_handle_scope()

acc_handle_scope()

Synopsis: Get a handle to the scope that contains an object.

Syntax: acc_handle_scope(object_handle)

Type Description

Returns: handle Handle of a scope

Type Name Description

Arguments: handle object_handle Handle to an object

Related
routines:

Use acc_fetch_type() or acc_fetch_fulltype() to determine the scope type returned

PLI_INT32 get_scope(obj)
handle obj;
{

handle scope = acc_handle_scope(obj);

io_printf ("Scope %s contains object %s\n",
acc_fetch_fullname(scope), acc_fetch_name(obj);

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 501
This is an unapproved IEEE Standards Draft, subject to change.

23.55 acc_handle_simulated_net()

The ACC routine acc_handle_simulated_net() shall return a handle to the simulated net that is associated

with a specified collapsed net. If a handle to a net that is not collapsed is passed into the routine, a handle to

that same net shall be returned.

When a Verilog HDL source description connects modules together, a chain of nets with different scopes

and names are connected, as is illustrated in the following simple diagram:

In this small circuit, nets out1, w5, and in1 are all tied together, effectively becoming the same net. Soft-

ware products can collapse nets that are connected together within the data structure of the product. The

resultant net after collapsing is referred to as the simulated net; the other nets are referred to as collapsed

nets. The ACC routines can obtain a handle to any net, whether it is collapsed or not. The routine

acc_object_of_type() can be used to determine if a net has been collapsed, and the routine

acc_handle_simulated_net() can be used to find the resultant net from the net collapsing process.

The example shown in Figure 114 uses acc_handle_simulated_net() to find all simulated nets within a par-

ticular scope. The application then displays each collapsed net, along with the simulated net. The ACC rou-

tine acc_object_of_type() is used with the property accCollapsedNet to determine whether a net has been

collapsed onto another net.

acc_handle_simulated_net()

Synopsis: Get the simulated net associated with the collapsed net passed as an argument.

Syntax: acc_handle_simulated_net(collapsed_net_handle)

Type Description

Returns: handle Handle of the simulated net

Type Name Description

Arguments: handle collapsed_net_handle Handle of a collapsed net

Related
routines:

Use acc_object_of_type() to determine if a net has been collapsed

module instance i1 module instance i2

out1 in1w5

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

502 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Figure 114—Using acc_handle_simulated_net()

#include "acc_user.h"

PLI_INT32 display_simulated_nets()
{

handle mod_handle;
handle simulated_net_handle;
handle net_handle;

/*reset environment for ACC routines*/
acc_initialize();

/*get scope-first argument passed to user-defined system task*/
/* associated with this routine*/
mod_handle = acc_handle_tfarg(1);
io_printf("In module %s:\n",acc_fetch_fullname(mod_handle));
net_handle = null;

/*display name of each collapsed net and its net of origin*/
while(net_handle = acc_next_net(mod_handle,net_handle))
{

if (acc_object_of_type(net_handle, accCollapsedNet))
{

simulated_net_handle = acc_handle_simulated_net(net_handle);
io_printf(" net %s was collapsed onto net %s\n",

 acc_fetch_name(net_handle),
 acc_fetch_name(simulated_net_handle));

}
}

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 503
This is an unapproved IEEE Standards Draft, subject to change.

23.56 acc_handle_tchk()

The ACC routine acc_handle_tchk() shall return a handle to a timing check based on arguments that

describe the type of timing check, signals used, and edge qualifiers for the signals. The signals used to

describe the timing check shall be passed as either signal names (passed as either a quoted string or a charac-

ter string pointer) or signal handles. The number of signal arguments required by acc_handle_tchk() shall

depend on the type of timing check.

acc_handle_tchk()

Synopsis: Get a handle for the specified timing check of a module (or cell).

Syntax: acc_handle_tchk(module_handle, timing_check_type,
 first_arg_conn_name, first_arg_edge_type,
 second_arg_conn_name, second_arg_edge_type,
 first_arg_conn_handle, second_arg_conn_handle)

Type Description

Returns: handle Handle to a timing check

Type Name Description

Arguments: handle module_handle Handle of the module

integer constant timing_check_type One of the following predefined constants:

accHold accSetup
accNochange accSkew
accPeriod accWidth
accRecovery

quoted string or

PLI_BYTE8 *

first_arg_conn_name Name of the net connected to first timing check argument

integer constant first_arg_edge_type Edge of the net connected to first timing check argument

One of the following predefined constants:

accNegedge accNoedge accPosedge

or a list of the following constants, separated by +:

accEdge01 accEdge0x accEdgex1

or a list of the following constants, separated by +:

accEdge10 accEdge1x accEdgex0

Conditional quoted string or

PLI_BYTE8 *

second_arg_conn_name Name of the net connected to second timing check argu-

ment (depends on type of timing check)

Conditional integer constant second_arg_edge_type Edge of the net connected to second timing check argu-

ment (depends on type of timing check)

Uses same constants as first_arg_edge_type

Optional handle first_arg_conn_handle Handle of the net connected to first timing check argu-

ment (required if accEnableArgs is set and

first_arg_conn_name is null)

Optional handle second_arg_conn_handle Handle of the net connected to second timing check argu-

ment (required if accEnableArgs is set and

second_arg_conn_name is null)

Related
routines:

Use acc_configure(accEnableArgs, “acc_handle_tchk”) to enable the optional first_arg_conn_handle and

second_arg_conn_handle arguments

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

504 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Table 166 shows how the number of arguments for acc_handle_tchk() is determined.

NOTE—Unused arguments can be dropped if they do not precede any required arguments; otherwise, the unused argu-

ments should be specified as null.

The routine acc_handle_tchk() shall use predefined edge group constants to represent groups of transitions

among 0, 1, and X edge values, as described in Table 167. The routine shall treat transitions to or from a

logic Z as transitions to or from a logic X.

The routine acc_handle_tchk() shall recognize predefined edge-specific constants that represent individual

transitions among 0, 1, and X edge values that trigger timing checks, as described in Table 168.

Table 166—How acc_handle_tchk() works

If acc_handle_tchk() shall

tchk_type is accWidth or accPeriod ignore arguments: second_arg_conn_name,

second_arg_edge_type, and optional

second_arg_conn_handle

tchk_type is accHold, accNochange, accRecovery, accSetup, or

accSkew
use arguments: second_arg_conn_name,

second_arg_edge_type, and optional

second_arg_conn_handle

Default mode, or

acc_configure(accEnableArgs, “no_acc_handle_tchk”)
has been called

Use the name arguments and ignore both optional

handle arguments

The routine

acc_configure(accEnableArgs, “acc_handle_tchk”)
has been called, and either first_arg_conn_name or

second_arg_conn_name is null

Use the associated handle argument of the null
name argument—if the name argument is not

null, the name shall be used and the associated

handle argument ignored

Table 167—Edge group constants

Edge group constant Description of edge trigger

accPosedge
accPosEdge

Any positive transition:
0 to 1
0 to x
x to 1

accNegedge
accNegEdge

Any negative transition:

1 to 0
1 to x
x to 0

accNoedge
accNoEdge

Any transition:

0 to 1
1 to 0
0 to x
x to 1
1 to x
x to 0

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 505
This is an unapproved IEEE Standards Draft, subject to change.

The Verilog HDL allows multiple edges to be specified for timing checks. The routine acc_handle_tchk()
shall recognize multiple edges using edge sums. Edge sums are lists of edge-specific constants connected by

plus (+) signs. They represent the Verilog-HDL edge-control specifiers used by particular timing checks.

Figure 115 shows a call to acc_handle_tchk() that accesses a $width timing check containing edge-con-

trol specifiers.

Figure 115—Edge sums model edge-control specifiers

The example shown in Figure 116 uses acc_handle_tchk() to identify all cells in a module that contain

either or both of the following timing checks:

— A $period timing check triggered by a positive edge on the clock signal clk
— A $setup timing check triggered on signal d by any transition and on signal clk by either of these

clock edge transitions: 1 to 0 or X to 0

Note that in this example:

a) Both calls to acc_handle_tchk() supply names for all relevant connections; therefore, the optional

handle arguments are not supplied.

b) For $period timing checks, acc_handle_tchk() ignores the second_arg_conn_name and

second_arg_edge_type arguments; therefore, these arguments are not supplied.

Table 168—Edge specific constants

Edge specific constant Description of edge trigger

accEdge01 Transition from 0 to 1

accEdge0x Transition from 0 to x

accEdgex1 Transition from x to 1

accEdge10 Transition from 1 to 0

accEdge1x Transition from 1 to x

accEdgex0 Transition from x to 0

This ACC routine call Accesses this timing check

acc_handle_tchk(cell_handle,
 accWidth,
 "clk",

accEdge10+accEdgex0);

$width(edge[10,x0]clk, limit);

edge sum
models
edge-control specifier

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

506 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Figure 116—Using acc_handle_tchk()

#include "acc_user.h"

PLI_INT32 get_ps_tchks()
{

handle module_handle, port_handle, net_handle, cell_handle;

/*initialize environment for ACC routines*/
acc_initialize();

/*get handle for module*/
module_handle = acc_handle_tfarg(1);
io_printf("Module is %s\n", acc_fetch_name(module_handle));

/*scan all cells in module for: */
/* period timing checks triggered by a positive clock edge */
/* setup timing checks triggered by 1->0 and x->0 clock edges */
cell_handle = null;
while(cell_handle = acc_next_cell(module_handle, cell_handle))
{
 if(acc_handle_tchk(cell_handle,accPeriod,"clk",accPosedge))
 io_printf(

 "positive clock edge triggers period check in cell %s\n",
 acc_fetch_fullname(cell_handle));

 if(acc_handle_tchk(cell_handle,accSetup,"d",accNoedge,
"clk",accEdge10+accEdgex0))

 io_printf("10 and x0 edges trigger setup check in cell %s\n",
 acc_fetch_fullname(cell_handle));

}
acc_close();

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 507
This is an unapproved IEEE Standards Draft, subject to change.

23.57 acc_handle_tchkarg1()

The ACC routine acc_handle_tchkarg1() shall return a handle to the timing check terminal associated with

the first argument of a timing check.

In order to trace a timing check terminal in the Verilog HDL description, or to display the name of the termi-

nal, it is first necessary to obtain a handle to the net connected to the terminal. The routine

acc_handle_conn() with the timing check terminal handle as the argument can be used to obtain the net

handle.

The example shown in Figure 117 uses acc_handle_tchkarg1() and acc_handle_tchkarg2() to obtain the

nets connected to the first and second arguments of each setup timing check in each cell under a module.

acc_handle_tchkarg1()

Synopsis: Get a handle for the timing check terminal connected to the first argument of a timing check.

Syntax: acc_handle_tchkarg1(tchk_handle)

Type Description

Returns: handle Handle of a timing check terminal

Type Name Description

Arguments: handle tchk_handle Handle of a timing check

Related
routines:

Use acc_handle_conn() to get the net connected to a timing check terminal

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

508 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Figure 117—Using acc_handle_tchkarg1(),
acc_handle_tchkarg2() and acc_handle_notifier()

#include "acc_user.h"

PLI_INT32 show_check_nets()
 {
 handle module_handle, cell_handle;
 handle tchk_handle, tchkarg1_handle, tchkarg2_handle, notifier_handle;
 PLI_INT32 tchk_type, counter;

 /* initialize environment for ACC routines */
 acc_initialize();

 /* get handle for module*/
 module_handle = acc_handle_tfarg(1);
 io_printf("module is %s\n", acc_fetch_fullname(module_handle));

 /* scan all cells in module for timing checks */
 cell_handle = null;
 while (cell_handle = acc_next_cell(module_handle, cell_handle))
 {
 io_printf("cell is: %s\n", acc_fetch_fullname(cell_handle));
 counter = 0;
 while (tchk_handle = acc_next_tchk(cell_handle, tchk_handle))
 {
 /* get nets connected to timing check arguments */
 tchk_type = acc_fetch_type(tchk_handle);
 if (tchk_type == accSetup)
 {
 counter++;
 io_printf(" for setup check #%d:\n", counter);
 tchkarg1_handle = acc_handle_tchkarg1(tchk_handle);
 io_printf(" data net is %s\n",
 acc_fetch_name(acc_handle_conn(tchkarg1_handle));
 tchkarg2_handle = acc_handle_tchkarg2(tchk_handle);
 io_printf(" reference net is %s\n",
 acc_fetch_name(acc_handle_conn(tchkarg2_handle));
 notifier_handle = acc_handle_notifier(tchk_handle);
 if (notifier_handle != null)
 io_printf(" notifier reg is %s\n",
 acc_fetch_name(acc_handle_conn(notifier_handle)));
 else
 io_printf(" no notifier reg\n");
 }
 }
 }
 acc_close();
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 509
This is an unapproved IEEE Standards Draft, subject to change.

23.58 acc_handle_tchkarg2()

The ACC routine acc_handle_tchkarg2() shall return a handle to the timing check terminal associated with

the second argument of a timing check.

In order to trace a timing check terminal in the Verilog HDL description, or to display the name of the termi-

nal, it is first necessary to obtain a handle to the net connected to the terminal. The routine

acc_handle_conn() with the timing check terminal handle as the argument can be used to obtain the net

handle.

Refer to Figure 117 for an example of using acc_handle_tchkarg2().

acc_handle_tchkarg2()

Synopsis: Get a handle for the timing check terminal connected to the second argument of a timing check.

Syntax: acc_handle_tchkarg2(tchk_handle)

Type Description

Returns: handle Handle to a timing check terminal

Type Name Description

Arguments: handle tchk_handle Handle of a timing check

Related
routines:

Use acc_handle_conn() to get the net connected to a timing check terminal

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

510 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.59 acc_handle_terminal()

The ACC routine acc_handle_terminal() shall return a handle of a primitive terminal based on the position

of the terminal in the Verilog HDL source description.

The index of a terminal shall be its position in a gate, switch, or UDP declaration. The indices shall be inte-

gers that start at zero and increase from left to right. Table 169 shows how terminal indices are derived.

The example shown in Figure 118 uses acc_handle_terminal() to identify the name of a net connected to a

primitive terminal.

Figure 118—Using acc_handle_terminal()

acc_handle_terminal()

Synopsis: Get a handle for a primitive terminal based on the position of the primitive terminal.

Syntax: acc_handle_terminal(primitive_handle, terminal_index)

Type Description

Returns: handle Handle of a primitive terminal

Type Name Description

Arguments: handle primitive_handle Handle of a primitive

PLI_INT32 terminal_index Integer index of the desired terminal

Related
routines

Use acc_handle_conn() to get the net connected to a primitive terminal

Table 169—Deriving terminal indices

For Indices shall be

nand g1(out, in1, in2);
0 for terminal out
1 for terminal in1
2 for terminal in2

#include "acc_user.h"

PLI_INT32 print_terminal_net(gate_handle, term_index)
handle gate_handle;
PLI_INT32 term_index;
{

handle term_handle;
term_handle = acc_handle_terminal(gate_handle, term_index);
io_printf("%s terminal net #%d is %s\n",

acc_fetch_name(gate_handle), term_index,
acc_fetch_name(acc_handle_conn(term_handle)));

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 511
This is an unapproved IEEE Standards Draft, subject to change.

23.60 acc_handle_tfarg(), acc_handle_itfarg()

The ACC routine acc_handle_tfarg() shall return a handle to an argument in the current instance of a user-

defined system task/function. The ACC routine acc_handle_itfarg() shall return a handle to an argument in

a specific instance of a user-defined system task/function.

Argument numbers shall start at 1 and increase from left to right in the order that they appear in the system

task or function call.

The system task/function argument can be:

— A module instance
— A primitive instance
— A net, reg, integer variable, time variable, or real variable
— A legal bit-select of a net, reg, integer variable or time variable

acc_handle_tfarg(), acc_handle_itfarg()

Synopsis: Get a handle for the specified argument of a user-defined system task or function.

Syntax: acc_handle_tfarg(argument_number)
acc_handle_itfarg(argument_number, instance_handle)

Type Description

Returns: handle Handle to an object

Type Name Description

Arguments: PLI_INT32 argument_number Integer number that references an argument in the system

task or function call by its position in the argument list

handle instance_handle Handle to an instance of a system task/function

Related
routines:

Use acc_fetch_tfarg() and related routines to get the value of a system task/function argument

Table 170—How acc_handle_tfarg() operates

When acc_handle_tfarg() shall

The system task or function argument is an

unquoted Verilog HDL identifier

Return a handle to the object

The system task or function argument is a quoted

string name of any object

Function similar to acc_handle_object() by searching for an

object matching the string and, if found, returning a handle to

the object.

The object shall be searched for in the following order:

a) The current PLI scope [as set by acc_set_scope()]
b) The scope of the system task/function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

512 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The example shown in Figure 119 uses acc_handle_tfarg() in a C language application that has the follow-

ing characteristics:

a) It changes the rise and fall delays of a gate.

b) It takes three arguments—the first is a Verilog HDL gate and the others are double-precision

floating-point constants representing rise and fall delay values.

c) It associates through the PLI interface mechanism with a Verilog HDL system task called

$timing_task.

To invoke the application, the system task $timing_task is called from the Verilog HDL source descrip-

tion, as in the following sample call:

$timing_task(top.g12, 8.4, 9.2);

When Verilog encounters this call, it executes new_timing. A handle to the first argument, the gate

top.g12, is retrieved using acc_handle_tfarg(), while the other two arguments—the delay values—are

retrieved using acc_fetch_tfarg().

Figure 119—Using acc_handle_tfarg()

#include "acc_user.h"

PLI_INT32 new_timing()
{

handle gate_handle;
double new_rise, new_fall;

/*initialize and configure ACC routines*/
acc_initialize();
acc_configure(accToHiZDelay, "max");

/*get handle to gate*/
gate_handle = acc_handle_tfarg(1);

/* get new delay values */
new_rise = acc_fetch_tfarg(2);
new_fall = acc_fetch_tfarg(3);

/*place new delays on the gate*/
acc_replace_delays(gate_handle,new_rise,new_fall);

/* report action */
io_printf("Primitive %s has new delays %d %d\n",

 acc_fetch_fullname(gate_handle),
 new_rise, new_fall);

acc_close();
}

9.2

8.4

top.g12

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 513
This is an unapproved IEEE Standards Draft, subject to change.

23.61 acc_handle_tfinst()

The ACC routine acc_handle_tfinst() is used to obtain a handle of the user-defined system task/function call

that invoked the current PLI application.

acc_handle_tfinst()

Synopsis: Get a handle to the current user-defined system task or function call.

Syntax: acc_handle_tfinst()

Type Description

Returns: handle Handle of a user-defined system task or function

Type Name Description

Arguments: None

Related
routines:

Use acc_fetch_type() or acc_fetch_fulltype() to determine the type of the handle returned

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

514 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.62 acc_initialize()

The ACC routine acc_initialize() shall perform the following functions:

— Initialize all configuration parameters to their default values
— Allocate memory for string handling and other internal uses

The routine acc_initialize() should be called in a C language application before invoking any other ACC

routines. Potentially, multiple PLI applications running in the same simulation session can interfere with

each other because they share the same set of configuration parameters. To guard against application inter-

ference, both acc_initialize() and acc_close() reset any configuration parameters that have changed from

their default values.

The example shown in Figure 120 uses acc_initialize() to initialize the environment for ACC routines.

Figure 120—Using acc_initialize()

acc_initialize()

Synopsis: Initializes the environment for ACC routines.

Syntax: acc_initialize()

Type Description

Returns: PLI_INT32 1 if successful; 0 if an error is encountered

Type Name Description

Arguments: None

Related
routines:

Use acc_configure() to set configuration parameter after calling acc_initialize()

Use acc_close() at the end of a routine that called acc_initialize()

#include "acc_user.h"
PLI_INT32 append_mintypmax_delays()
{

handle prim;
double delay_array[9];
int i;

/* initialize environment for ACC routines */
acc_initialize();

/* configure ACC routine environment */
acc_configure(accMinTypMaxDelays, "true");

/* append delays for primitive as specified in task/function args */
prim = acc_handle_tfarg(1);
for (i = 0; i < 9; i++)

delay_array[i] = acc_fetch_tfarg(i+2);
acc_append_delays(prim, delay_array);

/* close the environment for ACC routines */
acc_close();

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 515
This is an unapproved IEEE Standards Draft, subject to change.

23.63 acc_next()

The ACC routine acc_next() shall scan for and return handles to one or more types of objects within a scope.

This routine performs a more general function than the object-specific acc_next_ routines, such as

acc_next_net() and acc_next_primitive(), which scan only one type of object within a scope.

The objects for which acc_next() is to scan shall be listed as an array of object types or fulltypes in a static

integer array. The array shall contain any number and combination of the predefined integer constants listed

in Table 171. The array list shall be terminated by a 0. The routine acc_next() can return objects in an arbi-

trary order.

The following C language statement is an example of declaring an array of object types called

net_reg_list:

static PLI_INT32 net_reg_list[3] = {accNet,accRegister,0};

When this array is passed to acc_next(), the ACC routine shall return handles to nets and regs within the ref-

erence object.

Note that a Verilog HDL function contains an object with the same name, size, and type as the function. If

the function is scanned for objects of the type of the function, a handle to this object shall be returned.

The objects for which acc_next() shall obtain handles are listed in Table 171.

acc_next()

Synopsis: Get handles to objects of each type specified in an array within the reference scope.

Syntax: acc_next(object_type_array, reference_handle, object_handle)

Type Description

Returns: handle Handle of the object found

Type Name Description

Arguments: static

PLI_INT32

array

object_type_array Static integer array containing one or more predefined inte-

ger constants that represent the types of objects desired; the

last element has to be 0

handle reference_handle Handle of a scope

handle object_handle Handle of the previous object found; initially null

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

516 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Table 171—Type and fulltype constants supported by acc_next()

Description Predefined integer constant

General object types Integer variable accIntegerVar

Module accModule

Named event accNamedEvent

Net accNet

Primitive accPrimitive

Real variable accRealVar

Reg accRegister

Time variable accTimeVar

Parameter accParameter

Module fulltypes Top-level module accTopModule

Module instance accModuleInstance

Cell module instance accCellInstance

Net fulltypes Wire nets accWire
accTri

Wired-AND nets accWand
accTriand

Wired-OR nets accWor
accTrior

Pulldown, pullup nets accTri0
accTri1

Supply nets accSupply0
accSupply1

Storage nets accTrireg

Parameter fulltypes Integer parameters accIntegerParam

Real parameters accRealParam

String parameters accStringParam

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 517
This is an unapproved IEEE Standards Draft, subject to change.

The example shown in Figure 121 uses acc_next() to find all nets and regs in a module. The application

then displays the names of these nets and reg.

Primitive fulltypes N-input, 1-output gates accAndGate
accNandGate
accNorGate
accOrGate

accXnorGate
accXorGate

1-input, N-output gates accBufGate
accNotGate

Tri-state gates accBufif0
accBufif1
accNotif0
accNotif1

MOS gates accNmosGate
accPmosGate

accRnmosGate
accRpmosGate

CMOS gates accCmosGate
accRcmosGate

Bidirectional pass gates accRtranGate
accRtranif0Gate
accRtranif1Gate

accTranGate
accTranif0Gate
accTranif1Gate

Pulldown, pullup gates accPulldownGate
accPullUpGate

Combinational

UDP

accCombPrim

Sequential

UDP

accSeqPrim

Table 171—Type and fulltype constants supported by acc_next() (continued)

Description Predefined integer constant

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

518 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Figure 121—Using acc_next()

#include “acc_user.h”

PLI_INT32 display_nets_and_registers()
{

static PLI_INT32 net_reg_list[3] = {accNet,accRegister,0};
handle mod_handle, obj_handle;

/*reset environment for ACC routines*/
acc_initialize();

/*get handle for module-first argument passed to*/
/* user-defined system task associated with this routine*/
mod_handle = acc_handle_tfarg(1);
io_printf("Module %s contains these nets and registers:\n",

acc_fetch_fullname(mod_handle));

/*display names of all nets and registers in the module*/
obj_handle = null;
while (obj_handle = acc_next(net_reg_list,mod_handle,obj_handle))

io_printf(" %s\n", acc_fetch_name(obj_handle));

 acc_close();
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 519
This is an unapproved IEEE Standards Draft, subject to change.

23.64 acc_next_bit()

The ACC routine acc_next_bit() shall obtain handles to the bits of a vector port, an expanded vector, or a

path terminal.

An expanded vector is a vector for which a software product shall permit access to the discrete bits of the

vector. The routine acc_object_of_type() can be used to determine if a vector reference handle is expanded

before calling acc_next_bit() with the vector handle. For example:

if (acc_object_of_type(vector_handle, accExpandedVector))
 while (bit_handle = acc_next_bit(vector_handle, bit_handle))
 ...

When the reference_handle object is a vector, the first call to acc_next_bit() shall return the handle to the

msb (leftmost bit) of the object. Subsequent calls shall return the handles to the remaining bits down to the

lsb (rightmost bit). The call after the return of the handle to the lsb returns null. When the reference_handle
is scalar, acc_next_bit() shall treat the object as a 1-bit vector.

acc_next_bit()

Synopsis: Get handles to bits in a port or expanded vector.

Syntax: acc_next_bit(reference_handle, bit_handle)

Type Description

Returns: handle Handle of a port bit, vector bit or path terminal bit

Type Name Description

Arguments: handle reference_handle Handle of a port, expanded vector or path terminal

handle bit_handle Handle of the previous bit found; initially null

Related
routines:

Use acc_next_port() to return the next port of a module

Use acc_handle_port() to return the handle for a module port

Use acc_object_of_type() to determine if a vector is expanded

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

520 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The example shown in Figure 122 uses acc_next_bit() to display the lower connection of each bit of a port.

Figure 122—Using acc_next_bit() with module ports

The example shown in Figure 123 uses acc_next_bit() to assign a VCL monitor flag to each bit of a vector

net.

Figure 123—Using acc_next_bit() with a vector net

#include "acc_user.h"
PLI_INT32 display_port_bits(module_handle, port_number)
handle module_handle;
PLI_INT32 port_number;
{

handle port_handle, bit_handle;

/* get handle for port */
port_handle = acc_handle_port(module_handle, port_number);

/* display port number and module instance name */
io_printf("Port %d of module %s contains the following bits: \n",
 port_number, acc_fetch_fullname(module_handle));
/* display lower hierarchical connection of each bit */
bit_handle = null;
while (bit_handle = acc_next_bit(port_handle, bit_handle))
 io_printf(" %s\n",acc_fetch_fullname(bit_handle));

}

#include "acc_user.h"
PLI_INT32 monitor_bits()
{

handle bit_handle, net_handle, mod_handle;

/* reset environment for ACC routines */
acc_initialize();

/* get handle for system task argument associated with this routine */
mod_handle = acc_handle_tfarg(1);

/* get handles to all nets in the module */
net_handle = null;
while (net_handle = acc_next_net(mod_handle, net_handle))
{

/* add VCL monitor each bit of expanded vector nets */
if (acc_object_of_type(net_handle, accExpandedVector))
{

bit_handle = null;
while (bit_handle = acc_next_bit(net_handle, bit_handle))

acc_vcl_add(bit_handle, net_consumer, null, vcl_verilog_logic);
}

 }
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 521
This is an unapproved IEEE Standards Draft, subject to change.

23.65 acc_next_cell()

The ACC routine acc_next_cell() shall return handles to the cell module instances in the reference scope

and all module instance scopes below the reference scope. The routine shall not find cells that are instanti-

ated inside other cells.

A cell instance shall be a module instance that has either of these characteristics:

— The module definition appears between the compiler directives `celldefine and `endcellde-
fine.

— The module definition is in a model library, where a library is a collection of module definitions in a
file or directory that are read by library invocation options.

The example shown in Figure 124 uses acc_next_cell() to list all cell instances at or below a given hierarchy

scope.

Figure 124—Using acc_next_cell()

acc_next_cell()

Synopsis: Get handles to cell instances within a region that includes the entire hierarchy below a module.

Syntax: acc_next_cell(reference_handle, cell_handle)

Type Description

Returns: handle Handle of a cell module

Type Name Description

Arguments: handle reference_handle Handle of a module

handle cell_handle Handle of the previous cell found; initially null

#include "acc_user.h"
PLI_INT32 list_cells()
{

handle module_handle, cell_handle;

/*initialize environment for ACC routines*/
acc_initialize();

/*get handle for module*/
module_handle = acc_handle_tfarg(1);
io_printf("%s contains the following cells:\n",

acc_fetch_fullname(module_handle));

/*display names of all cells in the module*/
cell_handle = null;
while(cell_handle = acc_next_cell(module_handle,cell_handle))

io_printf(" %s\n",acc_fetch_fullname(cell_handle));

acc_close();
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

522 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.66 acc_next_cell_load()

The ACC routine acc_next_cell_load() shall return handles to the cell module instances that are driven by a

net. The handle for a cell load shall be a primitive input terminal connected to an input or inout port of the

cell load instance.

The routines acc_next_load() and acc_next_cell_load() have different functionalities. The routine

acc_next_load() shall return every primitive input terminal driven by a net, whether it is inside a cell or a

module instance. The routine acc_next_cell_load() shall return only one primitive input terminal per cell

input or inout port driven by a net. Figure 125 illustrates the difference, using a circuit in which net1 drives

primitive gates in cell1, cell2, and module1. For this circuit, acc_next_load() returns four primitive

input terminals as loads on net1, while acc_next_cell_load() returns two primitive input terminals as loads

on net1.

Figure 125—The difference between acc_next_load() and acc_next_cell_load()

acc_next_cell_load()

Synopsis: Get handles for cell loads on a net.

Syntax: acc_next_cell_load(reference_handle, load_handle)

Type Description

Returns: handle Handle of a primitive input terminal

Type Name Description

Arguments: handle reference_handle Handle of a scalar net or bit-select of a vector net

handle load_handle Handle of the previous load found; initially null

Related
routines:

Use acc_next_load() to get a handle to all primitive input terminal loads

net1

cell1

cell2

module1

3

2

2

1

4

acc_next_cell_load()
returns two primitive
input terminals

acc_next_load()
returns four primitive
input terminals

1

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 523
This is an unapproved IEEE Standards Draft, subject to change.

The example shown in Figure 126 uses acc_next_cell_load() to find all cell loads on a net.

Figure 126—Using acc_next_cell_load()

#include "acc_user.h"

PLI_INT32 get_cell_loads()
{

handle net_handle;
handle load_handle, load_net_handle;

/*initialize environment for ACC routines*/
acc_initialize();

/*get handle for net*/
net_handle = acc_handle_tfarg(1);

/*display names of all cell loads on the net*/
load_handle = null;
while(load_handle = acc_next_cell_load(net_handle,load_handle))
{

load_net_handle = acc_handle_conn(load_handle);
io_printf("Cell load is connected to: %s\n",

 acc_fetch_fullname(load_net_handle));
}
acc_close();

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

524 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.67 acc_next_child()

The ACC routine acc_next_child() shall return handles to the module instances (children) within the refer-

ence module. The routine shall also return handles to top-level modules, as shown in Table 172.

The ACC routine acc_next_topmod() does not work with acc_collect() or acc_count(), but

acc_next_child() with a null reference handle argument can be used in place of acc_next_topmod(). For

example:

acc_count(acc_next_child, null); /* counts top-level modules */

acc_collect(acc_next_child, null, &count); /*collect top-level modules*/

Figure 127 shows the use of acc_next_child() to display the names of all modules instantiated within a

module.

Figure 127—Using acc_next_child()

acc_next_child()

Synopsis: Get handles for children of a module.

Syntax: acc_next_child(reference_handle, child_handle)

Type Description

Returns: handle Handle of a module instance

Type Name Description

Arguments: handle reference_handle Handle of a module

handle child_handle Handle of the previous child found; initially null

Table 172—How acc_next_child() works

When acc_next_child() shall

The reference_handle is not null Scan for modules instantiated inside the module associated

with reference_handle

The reference_handle is null Scan for top-level modules (same as acc_next_topmod())

#include "acc_user.h"
PLI_INT32 print_children(module_handle)
handle module_handle;
{

handle child_handle;
io_printf("Module %s contains the following module instances:\n",

 acc_fetch_fullname(module_handle));
child_handle = null;
while(child_handle = acc_next_child(module_handle, child_handle))

io_printf(" %s\n",acc_fetch_name(child_handle));
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 525
This is an unapproved IEEE Standards Draft, subject to change.

23.68 acc_next_driver()

The ACC routine acc_next_driver() shall return handles to the primitive output or inout terminals that drive

a net.

The example shown in Figure 128 uses acc_next_driver() to determine which terminals of a primitive drive

a net.

Figure 128—Using acc_next_driver()

acc_next_driver()

Synopsis: Get handles to primitive terminals that drive a net.

Syntax: acc_next_driver(reference_handle, driver_handle)

Type Description

Returns: handle Handle of a primitive terminal

Type Name Description

Arguments: handle reference_handle Handle of a scalar net or bit-select of a vector net

handle driver_handle Handle of the previous driver found; initially null

#include "acc_user.h"

PLI_INT32 print_drivers(net_handle)
handle net_handle;
{

handle primitive_handle;
handle driver_handle;

io_printf("Net %s is driven by the following primitives:\n",
 acc_fetch_fullname(net_handle));

/*get primitive that owns each terminal that drives the net*/
driver_handle = null;
while (driver_handle = acc_next_driver(net_handle, driver_handle))
{

primitive_handle = acc_handle_parent(driver_handle);
io_printf(" %s\n",

acc_fetch_fullname(primitive_handle));
}

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

526 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.69 acc_next_hiconn()

The ACC routine acc_next_hiconn() shall return handles to the hierarchically higher net connections to a

module port. A hierarchically higher connection shall be the part of the net that appears outside the module,

as shown in the following diagram:

When the reference handle passed to acc_next_hiconn() is a vector port, the routine shall return the hiconn

nets bit-by-bit, starting with the msb (leftmost bit) and ending with the lsb (rightmost bit).

The example shown in Figure 129 uses acc_next_hiconn() and acc_next_loconn() to find and display all

net connections made externally (hiconn) and internally (loconn) to a module port.

acc_next_hiconn()

Synopsis: Get handles for hierarchically higher net connections to a module port.

Syntax: acc_next_hiconn(reference_handle, net_handle)

Type Description

Returns: handle Handle of a net

Type Name Description

Arguments: handle reference_handle Handle of a port

handle net_handle Handle of the previous net found; initially null

Related
routines:

Use acc_handle_hiconn() to get a handle to hierarchically higher connection of a specific port bit

Use acc_next_loconn() to get handles to the hierarchically lower connection

module

loconn hiconn

(lower net connection) (higher net connection)

module port

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 527
This is an unapproved IEEE Standards Draft, subject to change.

Figure 129—Using acc_next_hiconn() and acc_next_loconn()

#include "acc_user.h"

PLI_INT32 display_connections(module_handle, port_handle)
handle module_handle, port_handle;
{

handle hiconn_net, loconn_net;

/*get and display low connections*/
io_printf("For module %s, port #%d internal connections are:\n",

 acc_fetch_fullname(module_handle),
 acc_fetch_index(port_handle));

loconn_net = null;
while (loconn_net = acc_next_loconn(port_handle, loconn_net))

io_printf(" %s\n", acc_fetch_fullname(loconn_net));

/*get and display high connections*/
io_printf("For module %s, port #%d external connections are:\n",

 acc_fetch_fullname(module_handle),
 acc_fetch_index(port_handle));

hiconn_net = null;
while (hiconn_net = acc_next_hiconn(port_handle, hiconn_net))

io_printf(" %s\n", acc_fetch_fullname(hiconn_net));
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

528 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.70 acc_next_input()

The ACC routine acc_next_input() shall return handles to the input path terminals of a module path, the

source terminals of a data path or the timing check terminals of a timing check. The routine

acc_handle_conn() can be passed the input path terminal handle to derive the net connected to the terminal.

A module path is the specify block path for delays in the Verilog HDL description. A data path is part of the

Verilog HDL description for edge-sensitive module paths, as shown in the following diagram:

acc_next_input()

Synopsis: Get handles to input path terminals of a module path, source terminals of a data path, or the terminals of a

timing check.

Syntax: acc_next_input (reference_handle, terminal_handle)

Type Description

Returns: handle Handle of a module path terminal, a data path terminal, or a timing check terminal

Type Name Description

Arguments: handle reference_handle Handle to a module path, data path or timing check

handle terminal_handle Handle of the previous terminal found; initially null

Related
routines:

Use acc_handle_conn() to get the net attached to the path terminal

Use acc_release_object() to free memory allocated by acc_next_input()

posedge (clk => (q +: d)) = (3,2);

module path data path source

data path

module path input

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 529
This is an unapproved IEEE Standards Draft, subject to change.

The example shown in Figure 130 uses acc_next_input(). It accepts a handle to a scalar net or a net bit-

select, and a module path. The application returns true if the net is connected to the input of the path.

Figure 130—Using acc_next_input()

int is_net_on_path_input(net, path)
handle net; /* scalar net or bit-select of vector net */
handle path;
{

handle pterm_in, pterm_conn, bit;

/* scan path input terminals */
pterm_in = null;
while (pterm_in = acc_next_input(path, pterm_in))
{

/* retrieve net connected to path terminal */
pterm_conn = acc_handle_conn (pterm_in);

bit = null;
if (acc_object_of_type (pterm_conn, accExpandedVector))
{

bit = null;
while (bit = acc_next_bit (pterm_conn, bit))

if (acc_compare_handles (bit, net))
return (true);

}
else

if (acc_compare_handles(bit, net))
return (true);

}

return (false);
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

530 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.71 acc_next_load()

The ACC routine acc_next_load() shall return handles to the primitive loads that are being driven by a net.

The handle for a load shall be a primitive input terminal.

The routines acc_next_load() and acc_next_cell_load() have different functionalities. The routine

acc_next_load() shall return every primitive input terminal driven by a net, whether it is inside a cell or a

module instance. The routine acc_next_cell_load() shall return only one primitive input terminal per cell

input or inout port driven by a net. Figure 131 illustrates the difference, using a circuit in which net1 drives

primitive gates in cell1, cell2, and module1. For this circuit, acc_next_load() returns four primitive

input terminals as loads on net1, while acc_next_cell_load() returns two primitive input terminals as loads

on net1.

Figure 131—The difference between acc_next_load() and acc_next_cell_load()

acc_next_load()

Synopsis: Get handles to primitive terminals driven by a net.

Syntax: acc_next_load(reference_handle, load_handle)

Type Description

Returns: handle Handle of a primitive terminal

Type Name Description

Arguments: handle reference_handle Handle of a scalar net or bit-select of a vector net

handle load_handle Handle of the previous load found; initially null

Related
routines:

Use acc_next_cell_load() to get cell module loads

net1

cell1

cell2

module1

3

2

2

1

4

acc_next_cell_load()
returns two primitive
input terminals

acc_next_load()
returns four primitive
input terminals

1

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 531
This is an unapproved IEEE Standards Draft, subject to change.

The example shown in Figure 132 uses acc_next_load() to find all terminals driven by a net.

Figure 132—Using acc_next_load()

#include "acc_user.h"

PLI_INT32 get_loads()
{

handle net_handle, load_handle, load_net_handle;

/*initialize the environment for ACC routines*/
acc_initialize();

/*get handle for net*/
net_handle = acc_handle_tfarg(1);
io_printf("Net %s is driven by:\n",acc_fetch_fullname(net_handle));

/*get primitive that owns each terminal driven by the net*/
load_handle = null;
while (load_handle = acc_next_load(net_handle, load_handle))
{

load_net_handle = acc_handle_conn(load_handle);
io_printf(" %s ",

acc_fetch_fullname(load_net_handle));
}
acc_close();

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

532 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.72 acc_next_loconn()

The ACC routine acc_next_loconn() shall return handles to the hierarchically lower net connections to a

module port. A hierarchically lower connection shall be the part of the net that appears inside the module, as

shown in the following diagram:

When the reference handle passed to acc_next_loconn() is a vector port, the routine shall return the loconn

nets bit-by-bit, starting with the msb (leftmost bit) and ending with the lsb (rightmost bit).

Refer to Figure 129 for an example of using acc_next_loconn().

acc_next_loconn()

Synopsis: Get handles to hierarchically lower net connections to a port of a module.

Syntax: acc_next_loconn(reference_handle, net_handle)

Type Description

Returns: handle Handle of a net

Type Name Description

Arguments: handle reference_handle Handle of a port

handle net_handle Handle of the previous net found; initially null

Related
routines:

Use acc_handle_loconn() to get a handle to hierarchically lower connection of a specific port bit

Use acc_next_hiconn() to get handles to the hierarchically higher connection

module

loconn hiconn

(lower net connection) (higher net connection)

module port

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 533
This is an unapproved IEEE Standards Draft, subject to change.

23.73 acc_next_modpath()

The ACC routine acc_next_modpath() shall return handles to the module paths in a module. A module path

is the specify block path for delays in the Verilog HDL description. For example:

The example in Figure 133 uses acc_next_modpath() to list the nets connected to all module paths in a

module.

Figure 133—Using acc_next_modpath()

acc_next_modpath()

Synopsis: Get handles to module paths of a module.

Syntax: acc_next_modpath(reference_handle, path_handle)

Type Description

Returns: handle Handle of a module path

Type Name Description

Arguments: handle reference_handle Handle of a module

handle path_handle Handle of the previous path found; initially null

(in *> out) = 1.8;

(posedge clk => (q +: d)) = (3,2);

module path

module path

#include "acc_user.h"
PLI_INT32 get_path_nets(module_handle)
handle module_handle;
{
 handle path_handle, pathin_handle, pathout_handle;

 /*scan all paths in the module */
 io_printf("For module %s:\n",acc_fetch_fullname(module_handle));
 path_handle = null;
while (path_handle = acc_next_modpath(module_handle, path_handle))

 {
 io_printf(" path %s connections are:\n",acc_fetch_name(path_handle));
 pathin_handle = acc_handle_pathin(path_handle);
 pathout_handle = acc_handle_pathout(path_handle);
 io_printf("net %s connected to input\n",acc_fetch_name(pathin_handle));
 io_printf("net %s connected to output\n",acc_fetch_name(pathout_handle));
 }
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

534 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.74 acc_next_net()

The ACC routine acc_next_net() shall return handles to the nets within a module scope. The routine shall

return a handle to a vector net as a whole; it does not return a handle to each individual bit of a vector net.

The routine acc_object_of_type() can be used to determine if a net is vector or scalar and if it is expanded or

unexpanded. The routine acc_next_bit() can be used to retrieve a handle for each bit of an expanded vector

net.

The example shown in Figure 134 uses acc_next_net() to display the names of all nets in a module.

Figure 134—Using acc_next_net()

acc_next_net()

Synopsis: Get handles to nets in a module.

Syntax: acc_next_net(reference_handle, net_handle)

Type Description

Returns: handle Handle of a net

Type Name Description

Arguments: handle reference_handle Handle of a module

handle net_handle Handle of the previous net found; initially null

Related
routines:

Use acc_object_of_type() to determine if a net is scalar or vector, expanded or unexpanded

Use acc_next_bit() to get handles to all bits of an expanded vector net

#include “acc_user.h”

PLI_INT32 display_net_names()
{

handle mod_handle, net_handle;

/*initialize environment for ACC routines*/
acc_initialize();

/*get handle for module*/
mod_handle = acc_handle_tfarg(1);
io_printf("Module %s contains the following nets:\n",

acc_fetch_fullname(mod_handle));

/*display names of all nets in the module*/
net_handle = null;
while (net_handle = acc_next_net(mod_handle, net_handle))

io_printf(" %s\n", acc_fetch_name(net_handle));

acc_close();
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 535
This is an unapproved IEEE Standards Draft, subject to change.

23.75 acc_next_output()

The ACC routine acc_next_output() shall return handles to the output path terminals of a module path or a

data path. The routine acc_handle_conn() can be passed the output path terminal handle to derive the net

connected to the terminal.

A module path is the specify block path for delays in the Verilog HDL description. A data path is part of the

Verilog HDL description for edge-sensitive module paths, as shown in the following illustration:

The example shown in Figure 135 uses acc_next_output(). It accepts a handle to a scalar net or a net bit-

select, and a module path. The application returns true if the net is connected to the output of the path.

acc_next_output()

Synopsis: Get handles to output path terminals of a module path or data path.

Syntax: acc_next_output(reference_handle, terminal_handle)

Type Description

Returns: handle Handle to a module path terminal or data path terminal

Type Name Description

Arguments: handle reference_handle Handle to a module path or data path

handle terminal_handle Handle of the previous terminal found; initially null

Related
routines:

Use acc_handle_conn() to get the net attached to the path terminal

Use acc_release_object() to free memory allocated by acc_next_output()

posedge clk => (q +: d)) = (3,2);

module path output path terminal

data path

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

536 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Figure 135—Using acc_next_output()

int is_net_on_path_output(net, path)
handle net; /* scalar net or bit-select of vector net */
handle path;
{

handle pterm_out, pterm_conn, bit;

/* scan path output terminals */
pterm_out = null;
while (pterm_out = acc_next_output(path, pterm_out))
{

/* retrieve net connected to path terminal */
pterm_conn = acc_handle_conn (pterm_out);

if (acc_object_of_type (pterm_conn, accExpandedVector))
{

bit = null;
while (bit = acc_next_bit (pterm_conn, bit))

if (acc_compare_handles (bit, net))
return (true);

}
else

if (acc_compare_handles (pterm_conn, net))
return (true);

}

return (false);
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 537
This is an unapproved IEEE Standards Draft, subject to change.

23.76 acc_next_parameter()

The ACC routine acc_next_parameter() shall return handles to the parameters in a scope. This handle can

be passed to acc_fetch_paramtype() and acc_fetch_paramval() to retrieve the data type and value of the

parameter. A scope is a module, task, function, or named block.

The example shown in Figure 136 uses acc_next_parameter() to scan for all parameters in a module.

Figure 136—Using acc_next_parameter()

acc_next_parameter()

Synopsis: Get handles to parameters within a module.

Syntax: acc_next_parameter(reference_handle, parameter_handle)

Type Description

Returns: handle Handle of a parameter

Type Name Description

Arguments: handle reference_handle Handle of a scope

handle parameter_handle Handle of the previous parameter found; initially null

Related
routines:

Use acc_fetch_paramtype() to determine the parameter data type

Use acc_fetch_paramval() to retrieve the parameter value

Use acc_next_specparam() to get handles to specify block parameters

#include "acc_user.h"
PLI_INT32 print_parameter_values(module_handle)
handle module_handle;
{

handle param_handle;
/*scan all parameters in the module and display values according to type*/
param_handle = null;
while (param_handle = acc_next_parameter(module_handle,param_handle))
{
 io_printf("Parameter %s = ",acc_fetch_fullname(param_handle));
 switch (acc_fetch_paramtype(param_handle))
 {

case accRealParam:
 io_printf("%lf\n", acc_fetch_paramval(param_handle));
 break;
case accIntegerParam:
 io_printf("%d\n", (PLI_INT32)acc_fetch_paramval(param_handle));
 break;
case accStringParam:
 io_printf("%s\n",

 (char*)(int)acc_fetch_paramval(param_handle));
 }
}

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

538 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.77 acc_next_port()

The ACC routine acc_next_port() shall return handles to the input, output, and inout ports of a module. The

handles shall be returned in the order specified by the port list in the module declaration, working from left

to right.

The routine acc_next_port() shall be used two ways, as shown in Table 173.

acc_next_port()

Synopsis: Gets handles to the ports of a module, or to ports which are connected to a given net or reg.

Syntax: acc_next_port(reference, port_handle)

Type Description

Returns: handle Handle of a module port

Type Name Description

Arguments: handle reference_handle Handle of a module, net, reg or variable

handle object_handle Handle of the previous port found; initially null

Related
routines:

Use acc_fetch_direction() to determine the direction of a port

Use acc_next_portout() to get handles to just output and inout ports

Table 173—How acc_next_port() works

If the reference handle is acc_next_port() shall return

A handle to a module All ports of the module

A handle to a net, reg or variable All ports connected to the net, reg or vari-

able within the scope of the net, reg or

variable

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 539
This is an unapproved IEEE Standards Draft, subject to change.

The example shown in Figure 137 uses acc_next_port() to find and display the input ports of a module.

Figure 137—Using acc_next_port() with a module handle

The example shown in Figure 138 uses acc_next_port() to find the port that is connected to a net, and then

to display information about other nets connected to each bit of the same port.

Figure 138—Using acc_next_port() with a net handle

#include "acc_user.h"

PLI_INT32 display_inputs(module_handle)
handle module_handle;
{

handle port_handle;
PLI_INT32 direction;

/*get handle for each module port*/
port_handle = null;
while (port_handle = acc_next_port(module_handle, port_handle))
{

/*give the index of each input port*/
if (acc_fetch_direction(port_handle) == accInput)

io_printf("Port #%d of %s is an input\n",
acc_fetch_index(port_handle),
acc_fetch_fullname(module_handle));

}
}

PLI_INT32 display_port_connections()
{

handle net = acc_handle_tfarg(1);
handle port, bit;

port = bit = null;
while (port = acc_next_port(net, port))

if (acc_object_of_type(port, accVectorPort))
while (bit = acc_next_bit(port, bit))

io_printf("PORTBIT: %s LOCONN: %s HICONN: %s/n",
acc_fetch_fullname(bit),
acc_fetch_fullname(acc_handle_loconn(bit)),
acc_fetch_fullname(acc_handle_hiconn(bit)));

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

540 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.78 acc_next_portout()

The ACC routine acc_next_portout() shall return handles to the output and inout ports of a module. The

handles shall be returned in the order specified by the port list in the module declaration, working from left

to right.

The example shown in Figure 139 uses acc_next_portout() to find the output and inout ports of a module.

Figure 139—Using acc_next_portout()

acc_next_portout()

Synopsis: Get handles to output or inout ports of a module.

Syntax: acc_next_portout(reference_handle, port_handle)

Type Description

Returns: handle Handle of a module port

Type Name Description

Arguments: handle reference_handle Handle of a module

handle port_handle Handle of the previous port found; initially null

Related
routines:

Use acc_fetch_direction() to determine the direction of a port

Use acc_next_port() to get handles to input, output, and inout ports

#include "acc_user.h"

PLI_INT32 display_outputs(module_handle)
handle module_handle;
{

handle port_handle;

/*get handle for each module port*/
port_handle = null;
while (port_handle = acc_next_portout(module_handle, port_handle))
{

/*give the index of each output or inout port*/
io_printf("Port #%d of %s is an output or inout\n",

acc_fetch_index(port_handle),
acc_fetch_fullname(module_handle));

}
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 541
This is an unapproved IEEE Standards Draft, subject to change.

23.79 acc_next_primitive()

The ACC routine acc_next_primitive() shall return handles to the built-in and user-defined primitives

within a module.

The example shown in Figure 140 uses acc_next_primitive() to display the definition names of all primi-

tives in a module.

Figure 140—Using acc_next_primitive()

acc_next_primitive()

Synopsis: Get handles to gates, switches, or user-defined primitives (UDPs) within a module.

Syntax: acc_next_primitive(reference_handle, primitive_handle)

Type Description

Returns: handle Handle of a primitive

Type Name Description

Arguments: handle reference_handle Handle of a module

handle primitive_handle Handle of the previous primitive found; initially null

#include "acc_user.h"

PLI_INT32 get_primitive_definitions()
{

handle module_handle, prim_handle;

/*initialize environment for ACC routines*/
acc_initialize();

/*get handle for module*/
module_handle = acc_handle_tfarg(1);

io_printf("Module %s contains the following types of primitives:\n",
 acc_fetch_fullname(module_handle));

/*get and display defining names of all primitives in the module*/
prim_handle = null;
while (prim_handle = acc_next_primitive(module_handle,prim_handle))

io_printf(" %s\n",
acc_fetch_defname(prim_handle));

acc_close();
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

542 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.80 acc_next_scope()

The ACC routine acc_next_scope() shall return the handles to the internal scopes within a given scope.

Internal scopes shall be the immediate children of the reference_handle. The reference scope and the inter-

nal scopes shall be one of the following:

— A top-level module
— A module instance
— A named begin-end block
— A named fork-join block
— A Verilog HDL task
— A Verilog HDL function

acc_next_scope()

Synopsis: Get handles to hierarchy scopes within a scope.

Syntax: acc_next_scope(reference_handle, scope_handle)

Type Description

Returns: handle Handle to a hierarchy scope

Type Name Description

Arguments: handle reference_handle Handle of a scope

handle scope_handle Handle of the previous scope found; initially null

Related
routines:

Use acc_fetch_type() and acc_fetch_fulltype() to determine the type of scope object found

Use acc_next_topmod() to get handles to top-module scopes

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 543
This is an unapproved IEEE Standards Draft, subject to change.

23.81 acc_next_specparam()

The ACC routine acc_next_specparam() shall return handles to the specify block parameters in a module.

This handle can be passed to acc_fetch_paramtype() and acc_fetch_paramval() to retrieve the data type

and value.

The example shown in Figure 141 uses acc_next_specparam() to scan for all specparams in a module.

Figure 141—Using acc_next_specparam()

acc_next_specparam()

Synopsis: Get handles to specify block parameters within a module.

Syntax: acc_next_specparam(reference_handle, specparam_handle)

Type Description

Returns: handle Handle of a specparam

Type Name Description

Arguments: handle module_handle Handle of a module

handle specparam_handle Handle of the previous specparam found; initially null

Related
routines:

Use acc_fetch_paramtype() to determine the parameter data type

Use acc_fetch_paramval() to retrieve the parameter value

Use acc_next_parameter() to get handles to module parameters

#include "acc_user.h"
PLI_INT32 print_specparam_values(module_handle)
handle module_handle;
{

handle sparam_handle;
/*scan all parameters in the module and display values according to type*/
sparam_handle = null;
while (sparam_handle = acc_next_specparam(module_handle,sparam_handle))
{

io_printf("Specparam %s = ", acc_fetch_fullname(sparam_handle));
switch (acc_fetch_paramtype(sparam_handle))
{

case accRealParam:
io_printf("%lf\n", acc_fetch_paramval(sparam_handle));
break;

case accIntegerParam:
io_printf("%d\n",

(int)acc_fetch_paramval(sparam_handle)); break;
case accStringParam:

io_printf("%s\n",
(char*)(int)acc_fetch_paramval(sparam_handle));

}
}

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

544 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.82 acc_next_tchk()

The ACC routine acc_next_tchk() shall return handles to the timing checks within a module. The handles

can be passed to other ACC routines to get the nets or notifier in the timing check, and to read or modify tim-

ing check values.

The example shown in Figure 142 uses acc_next_tchk() to display information about setup timing checks.

acc_next_tchk()

Synopsis: Get handles to timing checks within a module.

Syntax: acc_next_tchk(reference_handle, timing_check_handle)

Type Description

Returns: handle Handle of a timing check

Type Name Description

Arguments: handle reference_handle Handle of a module

handle timing_check_handle Handle of the previous timing check found; initially null

Related
routines:

Use acc_handle_tchk() to get a timing check handle using the timing check description

Use acc_handle_tchkarg1() and acc_handle_tchkarg2() to get handles of the timing check arguments

Use acc_handle_notifier() to get a handle to the timing check notifier reg

Use acc_fetch_delays(), acc_append_delays(), and acc_replace_delays() to read or modify timing check

values

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 545
This is an unapproved IEEE Standards Draft, subject to change.

Figure 142—Using acc_next_tchk()

#include "acc_user.h"
PLI_INT32 show_setup_check_nets()
{

handle mod_handle, cell_handle;
handle tchk_handle, tchkarg1_handle, tchkarg2_handle;
PLI_INT32 tchk_type, counter;

/*initialize environment for ACC routines*/
acc_initialize();

/*get handle for module*/
mod_handle = acc_handle_tfarg(1);

/*scan all cells in module for timing checks*/
cell_handle = null;
while (cell_handle = acc_next_cell(mod_handle, cell_handle))
{

io_printf(“cell is: %s\n”, acc_fetch_name(cell_handle));
counter = 0;
tchk_handle = null;
while (tchk_handle = acc_next_tchk(cell_handle, tchk_handle))
{

/*get nets connected to timing check arguments*/
tchk_type = acc_fetch_fulltype(tchk_handle);
if (tchk_type == accSetup)
{
 counter++;
 io_printf(“ for setup check #%d:\n”,counter);
 tchkarg1_handle = acc_handle_tchkarg1(tchk_handle);
 tchkarg2_handle = acc_handle_tchkarg2(tchk_handle);
 io_printf(" 1st net is %s\n 2nd net is %s\n",

acc_fetch_name(acc_handle_conn(tchkarg1_handle)),
acc_fetch_name(acc_handle_conn(tchkarg2_handle)));

}
}

}
acc_close();

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

546 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.83 acc_next_terminal()

The ACC routine acc_next_terminal() shall return handles to the terminals on a primitive. The handles

shall be returned in the order of the primitive instance statement, starting at terminal 0 (the leftmost termi-

nal).

The example shown in Figure 143 uses acc_next_terminal() together with acc_handle_conn() to retrieve

all nets connected to a primitive.

Figure 143—Using acc_next_terminal()

acc_next_terminal()

Synopsis: Get handles to terminals of a gate, switch, or user-defined primitive (UDP).

Syntax: acc_next_terminal(reference_handle, terminal_handle)

Type Description

Returns: handle Handle of a primitive terminal

Type Name Description

Arguments: handle reference_handle Handle of a gate, switch or UDP

handle terminal_handle Handle of the previous terminal found; initially null

#include "acc_user.h"

PLI_INT32 display_terminals()
{

handle prim_handle,term_handle;

/*initialize environment for ACC routines*/
acc_initialize();

/*get handle for primitive*/
prim_handle = acc_handle_tfarg(1);

io_printf("Connections to primitive %s:\n",
 acc_fetch_fullname(prim_handle));

/*scan all terminals of the primitive
/* and display their nets*/
term_handle = null;
while (term_handle = acc_next_terminal(prim_handle,term_handle))

io_printf(" %s\n",
 acc_fetch_name(acc_handle_conn(term_handle)));

acc_close();
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 547
This is an unapproved IEEE Standards Draft, subject to change.

23.84 acc_next_topmod()

The ACC routine acc_next_topmod() shall return handles to the top-level modules in a design.

The ACC routine acc_next_topmod() does not work with acc_collect() or acc_count(), but

acc_next_child() with a null reference handle argument can be used in place of acc_next_topmod(). For

example:

acc_count(acc_next_child, null); /* counts top-level modules */

acc_collect(acc_next_child, null, &count); /*collect top-level modules*/

The example shown in Figure 144 uses acc_next_topmod() to display the names of all top-level modules.

Figure 144—Using acc_next_topmod()

acc_next_topmod()

Synopsis: Get handles to top-level modules.

Syntax: acc_next_topmod(module_handle)

Type Description

Returns: handle Handle of a top-level module

Type Name Description

Arguments: handle module_handle Handle of the previous top-level module found; initially

null

Related
routines:

Use acc_next_child() with a null reference_handle to collect or count top-level modules with acc_collect()

and acc_count()

#include "acc_user.h"

PLI_INT32 show_top_modules()
{

handle module_handle;

/*initialize environment for ACC routines*/
acc_initialize();

/*scan all top-level modules*/
io_printf("The top-level modules are:\n");
module_handle = null;
while (module_handle = acc_next_topmod(module_handle))

/*display the instance name of each module*/
io_printf(" %s\n", acc_fetch_name(module_handle));

acc_close();
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

548 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.85 acc_object_in_typelist()

The ACC routine acc_object_in_typelist() shall determine whether an object fits one of a list of types,

fulltypes, or special properties. The properties for which acc_object_in_typelist() is to check shall be listed

as an array of constants in a static integer array. The array can contain any number and combination of the

predefined integer constants, and it shall be terminated by a 0.

The following C language statement shows an example of how to declare an array of object types called

wired_nets:

static PLI_INT32
wired_nets[5]={accWand,accWor,accTriand,accTrior,0};

When this array is passed to acc_object_in_typelist(), the ACC routine shall return true if its

object_handle argument is a wired net.

All type and fulltype constants shall be supported by acc_object_in_typelist(). These constants are listed in

Table 113.

The special property constants supported by acc_object_in_typelist() are listed in Table 174.

The example shown in Figure 145 uses acc_object_in_typelist() to determine if a net is a wired net. The

application then displays the name of each wired net found.

acc_object_in_typelist()

Synopsis: Determine whether an object fits a type or fulltype, or special property, as specified in an input array.

Syntax: acc_object_in_typelist(object_handle, object_type_array)

Type Description

Returns: PLI_INT32 true if the type, fulltype, or property of an object matches one specified in the array;

false if there is no match

Type Name Description

Arguments: handle object_handle Handle of an object

static integer

array

object_type_array Static integer array containing one or more predefined inte-

ger constants that represent the types and properties of

objects desired; the last element shall be 0

Related
routines:

Use acc_object_of_type() to check for a match to a single predefined constant

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 549
This is an unapproved IEEE Standards Draft, subject to change.

Figure 145—Using acc_object_in_typelist()

#include “acc_user.h”

PLI_INT32 display_wired_nets()
{

static PLI_INT32 wired_nets[5]={accWand,accWor,accTriand,accTrior,0};
handle net_handle;

/*reset environment for ACC routines*/
acc_initialize();

/*get handle for net*/
net_handle = acc_handle_tfarg(1);

/*if a wired logic net, display its name*/
if (acc_object_in_typelist(net_handle,wired_nets))

io_printf("Net %s is a wired net\n",acc_fetch_name(net_handle));
else

io_printf("Net %s is not a wired net\n",acc_fetch_name(net_handle));

acc_close();
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

550 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.86 acc_object_of_type()

The ACC routine acc_object_of_type() shall determine whether an object fits a specified type, fulltype, or

special property. The type, fulltype, or property is an integer constant, defined in acc_user.h. All type and

fulltype constants shall be supported by acc_object_of_type(). These constants are listed in Table 113. The

special property constants supported by acc_object_of_type() are listed in Table 174.

Simulated nets and collapsed nets are defined as follows. When a Verilog HDL source description connects

modules together, a chain of nets with different scopes and names are connected, as is illustrated in the fol-

lowing simple diagram:

acc_object_of_type()

Synopsis: Determine whether an object fits a specified type or fulltype, or special property.

Syntax: acc_object_of_type(object_handle, object_type)

Type Description

Returns: PLI_INT32 true if the type, fulltype, or property of an object matches the object_type argument

false if there is no match

Type Name Description

Arguments: handle object_handle Handle of an object

PLI_INT32 object_type An integer constant that represents a type, fulltype, or spe-

cial property

Related
routines:

Use acc_object_in_typelist() to check for a match to any of several predefined constants

Table 174—Special object properties

Property of object Predefined integer constant

Scalar accScalar

Vector accVector

Collapsed net accCollapsedNet

Expanded vector accExpandedVector

Unexpanded vector accUnExpandedVector

Hierarchy scope accScope

Module path with ifnone condition accModPathHasIfnone

module instance i1 module instance i2

out1 in1w5

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 551
This is an unapproved IEEE Standards Draft, subject to change.

In this small circuit, nets out1, w5, and in1 are all tied together, effectively becoming the same net. Soft-

ware products can collapse nets that are connected together within the data structure of the product. The

resultant net after collapsing is referred to as a simulated net; the other nets are referred to as collapsed nets.

The ACC routines can obtain a handle to any net, whether it is collapsed or not. The routine

acc_object_of_type() can be used to determine if a net has been collapsed. The routine

acc_handle_simulated_net() can be used to find the resultant net from the net collapsing process.

Expanded and unexpanded vectors determine if ACC routines can access a vector as a whole or access the

bits within a vector. If a vector has the property accExpandedVector, then access to the discrete bits of the

vector shall be permitted. This property has to be true in order for certain ACC routines, such as

acc_next_bit(), to access each bit of a vector. If a vector has the property accUnExpandedVector, then

access to the vector as a whole shall be permitted. This property has to be true in order for certain ACC

routines to access the complete vector. A vector object can have just one of these properties true, or both

can be true.

acc_object_of_type() with an accScope type constant will return true if the reference object is a Verilog

scope. A scope is a module, task, function or named block.

acc_object_of_type() with an accModPathHasIfnone type constant will return true if the reference object

is a Verilog module path, and there is an ifnone condition specified for the path.

The example shown in Figure 146 uses acc_object_of_type() to determine whether nets are collapsed nets.

The application then displays each collapsed net, along with the simulated net.

Figure 146—Using acc_object_of_type()

#include "acc_user.h"

PLI_INT32 display_collapsed_nets()
{

handle mod_handle;
handle net_handle;
handle simulated_net_handle;

/*reset environment for ACC routines*/
acc_initialize();

/*get scope-first argument passed to user-defined system task*/
/* associated with this routine*/
mod_handle = acc_handle_tfarg(1);
io_printf("In module %s:\n",acc_fetch_fullname(mod_handle));
net_handle = null;

/*display name of each collapsed net and its net of origin*/
while (net_handle = acc_next_net(mod_handle,net_handle))
{

if (acc_object_of_type(net_handle,accCollapsedNet))
{

simulated_net_handle = acc_handle_simulated_net(net_handle);
io_printf(" net %s was collapsed onto net %s\n",

 acc_fetch_name(net_handle),
 acc_fetch_name(simulated_net_handle));

}
}

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

552 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.87 acc_product_type()

The ACC routine acc_product_type() shall return a predefined integer constant that identifies the class of

software product that is calling the PLI application. This information can be useful when a PLI application

needs to customize the routine to specific types of software implementations. For example, a delay calcula-

tor might use typical delays for logic simulation and min:typ:max delays for timing analysis.

The integer constant values returned by acc_product_type() are listed in Table 175.

The example shown in Figure 147 uses acc_product_type() to identify and display the product type being

used.

acc_product_type()

Synopsis: Get the software product type that is calling the PLI application.

Syntax: acc_product_type()

Type Description

Returns: PLI_INT32 A predefined integer constant representing the software product type

Type Name Description

Arguments: None

Table 175—Product types returned by acc_product_type()

If the product is acc_product_type() returns

A logic simulator accSimulator

A timing analyzer accTimingAnalyzer

A fault simulator accFaultSimulator

Some other product accOther

NOTE—Software product vendors can define additional integer constants specific to

their products.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 553
This is an unapproved IEEE Standards Draft, subject to change.

Figure 147—Using acc_product_type()

#include "acc_user.h"
PLI_INT32 show_application()
{
 /* reset environment for ACC routines */
 acc_initialize();

 /* show application type and ACC routine version */
switch (acc_product_type())

 {
 case accSimulator:
 io_printf("Running logic simulation with PLI version %s\n",acc_version());
 break;
 case accTimingAnalyzer:
 io_printf("Running timing analysis with PLI version %s\n",acc_version());
 break;
 case accFaultSimulator:
 io_printf("Running fault simulation with PLI version %s\n",acc_version());
 break;
 default:
 io_printf("Running other product with PLI version %s\n",acc_version());
 }
 acc_close();
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

554 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.88 acc_product_version()

The ACC routine acc_product_version() shall return a pointer to a character string that indicates the ver-

sion of the software product that called the PLI application. The return value for this routine is placed in the

ACC internal string buffer. See 22.9 for explanation of strings in ACC routines.

The character string shall be in the following format:

<product_name> Version <version_number>

For example:

“Verilog Simulator Version OVIsim 1.0"

The string returned by acc_product_version() shall be defined by the software tool vendor.

The example shown in Figure 148 uses acc_product_version() to identify the version of the software prod-

uct that is linked to ACC routines.

Figure 148—Using acc_product_version()

acc_product_version()

Synopsis: Get the version of the software product that is linked to the ACC routines.

Syntax: acc_product_version()

Type Description

Returns: PLI_BYTE8 * Pointer to a character string

Type Name Description

Arguments: None

Related
routines:

Use acc_product_type() to get the type of software product

Use acc_version() to get the version of PLI ACC routines

#include "acc_user.h"

PLI_INT32 show_versions()
{

/*initialize environment for ACC routines*/
acc_initialize();

/*show version of ACC routines*/
/* and version of Verilog that is linked to ACC routines*/
io_printf("Running %s with %s\n",acc_version(),acc_product_version());

acc_close();
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 555
This is an unapproved IEEE Standards Draft, subject to change.

23.89 acc_release_object()

The ACC routine acc_release_object() shall deallocate memory that was allocated by a call to

acc_next_input() or acc_next_output(). The routine should be called after using these ACC routines under

the following circumstances:

— Not all inputs or outputs were scanned.
— The input or output path had only one terminal.
— An error was returned.

The example shown in Figure 149 finds the data path corresponding to an input module path, and it displays

the source and destination port names for the data path. The example calls acc_next_input() and

acc_next_output() to get the first input and output, respectively, for a given path. Since these routines are

only called once, acc_release_object() is called to free the memory allocated for the input and output

handles.

Figure 149—Using acc_release_object()

acc_release_object()

Synopsis: Deallocate memory allocated by calls to acc_next_input() and acc_next_output().

Syntax: acc_release_object(object_handle)

Type Description

Returns: PLI_INT32 0 if successful; 1 if an error is encountered

Type Name Description

Arguments: handle object_handle Handle to an input or output terminal path

Related
routines:

Use acc_next_input() to get handles to module path inputs and data path inputs

Use acc_next_output() to get handles to module path outputs and data path outputs

PLI_INT32 display_datapath_terms(modpath)
handle modpath;
{

handle datapath = acc_handle_datapath(modpath);
handle pathin = acc_next_input(datapath, null);
handle pathout = acc_next_output(datapath, null);
/* there is only one input and output to a data path */
io_printf("DATAPATH INPUT: %s\n", acc_fetch_fullname(pathin));
io_printf("DATAPATH OUTPUT: %s\n", acc_fetch_fullname(pathout));
acc_release_object(pathin);
acc_release_object(pathout);

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

556 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.90 acc_replace_delays()

acc_replace_delays() for single delay values (accMinTypMaxDelays set to “false”)

Synopsis: Replace existing delays for primitives, module paths, timing checks, module input ports, and inter-

module paths.

Syntax:

Primitives acc_replace_delays(object_handle, rise_delay, fall_delay, z_delay)

Module paths

Intermodule paths

Ports or port bits

acc_replace_delays(object_handle,
 d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12)

Timing checks acc_replace_delays(object_check_handle, limit)

Type Description

Returns: PLI_INT32 1 if successful; 0 if an error occurred

Type Name Description

Arguments: handle object_handle Handle of a primitive, module path, timing check, module

input port, bit of a module input port, or intermodule path

double rise_delay

fall_delay

Rise and fall delay for 2-state primitives or 3-state primitives

Conditional double z_delay If accToHiZDelay is set to “from_user”:

turn-off (to Z) transition delay for 3-state primitives

double d1 For module/intermodule paths and input ports/port bits:

If accPathDelayCount is set to “1”:

delay for all transitions

If accPathDelayCount is set to “2” or “3”:

rise transition delay

If accPathDelayCount is set to “6” or “12”:

0->1 transition delay

Conditional double d2 For module/intermodule paths and input ports/port bits:

If accPathDelayCount is set to “2” or “3”:

fall transition delay

If accPathDelayCount is set to “6” or “12”:

1->0 transition delay

Conditional double d3 For module/intermodule paths and input ports/port bits:

If accPathDelayCount is set to “3”:

turn-off transition delay

If accPathDelayCount is set to “6” or “12”:

0->Z transition delay

Conditional double d4

d5

d6

For module/intermodule paths and input ports/port bits:

If accPathDelayCount is set to “6” or “12”:

d4 is Z->1 transition delay

d5 is 1->Z transition delay

d6 is Z->0 transition delay

Conditional double d7

d8

d9

d10

d11

d12

For module/intermodule paths and input ports/port bits:

If accPathDelayCount is set to “12”:

d7 is 0->X transition delay

d8 is X->1 transition delay

d9 is 1->X transition delay

d10 is X->0 transition delay

d11 is X->Z transition delay

d12 is Z->X transition delay

double limit Limit of timing check

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 557
This is an unapproved IEEE Standards Draft, subject to change.

The ACC routine acc_replace_delays() shall work differently depending on how the configuration parame-

ter accMinTypMaxDelays is set. When this parameter is set to false, a single delay per transition shall be

assumed, and delays shall be passed as individual arguments. For this single delay mode, the first syntax

table in this section shall apply.

When accMinTypMaxDelays is set to true, acc_replace_delays() shall pass one or more sets of mini-

mum:typical:maximum delays contained in an array, rather than single delays passed as individual argu-

ments. For this min:typ:max delay mode, the second syntax table in this section shall apply.

The number of delay values replaced by acc_replace_delays() shall be determined by the type of object and

the setting of configuration parameters. Refer to 22.8 for a description of how the number of delay values are

determined.

The routine acc_replace_delays() shall write delays in the timescale of the module that contains the

object_handle.

When altering the delay via acc_replace_delays(), the value of the reject/error region will not be affected

unless the limits exceed the value of the delay. If the reject/error limits exceed the delay they will be trun-

cated down to the new delay limit.

The example shown in Figure 150 uses acc_replace_delays() to replace the current delays on a path with

new delay values read from a file called pathdelay.dat. The format of the file is shown in the following

diagram:

acc_replace_delays() for min:typ:max delays (accMinTypMaxDelays set to “true”)

Synopsis: Replace min:typ:max delay values for primitives, module paths, timing checks, module input ports, or

intermodule paths; the delay values are contained in an array.

Syntax: acc_append_delays(object_handle, array_ptr)

Type Description

Returns: PLI_INT32 1 if successful; 0 if an error is encountered

Type Name Description

Arguments: handle object_handle Handle of a primitive, module path, timing check, module

input port, bit of a module input port, or intermodule path

double address array_ptr Pointer to array of min:typ:max delay values;

the size of the array depends on the type of object and the

setting of accPathDelayCount (see 22.8)

•
•

top.m1 in out 10.4 8.5
•
•

rise delay

fall delay

path source

path destinationname of module

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

558 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Figure 150—Using acc_replace_delays() in single delay mode

The example shown in Figure 151 uses acc_replace_delays() to scale the min:typ:max delays on all primi-

tive delays inside cells within a given scope. The application fetches the existing delays for an object, multi-

plies the delays by a scale factor, and replaces the delays with the new, scaled values. This example assumes

that the user application is associated through the PLI interface mechanism with a user-defined system task

called $scaleprimdelays. The scope and scale factors are passed as arguments as follows:

#include <stdio.h>
#include "acc_user.h"

#define NAME_SIZE 256
PLI_INT32 write_path_delays()
{

FILE *infile;
PLI_BYTE8 full_module_name[NAME_SIZE];
PLI_BYTE8 pathin_name[NAME_SIZE], pathout_name[NAME_SIZE];
double rise, fall;
handle mod_handle, path_handle;

/*initialize the environment for ACC routines*/
acc_initialize();

/*set accPathDelayCount parameter to return rise and fall delays only*/
acc_configure(accPathDelayCount, "2");

/*read delays from file - "r" means read only*/
infile = fopen("pathdelay.dat","r");
fscanf(infile, “%s %s %s %lf %lf”,

 full_module_name,pathin_name,pathout_name,&rise,&fall);

/*get handle for the module and the path*/
mod_handle = acc_handle_object(full_module_name);
path_handle = acc_handle_modpath(mod_handle,pathin_name,pathout_name);

/*replace delays with new values*/
acc_replace_delays(path_handle, rise, fall);

acc_close();
}

$scaleprimdelays(mychip, 0.4, 1.0, 1.6);

scale factor
for

scope

minimum delay
scale factor
for maximum delay

scale factor
for typical delay

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 559
This is an unapproved IEEE Standards Draft, subject to change.

Figure 151—Using acc_replace_delays() in min:typ:max delays mode

#include "acc_user.h"
#include "veriuser.h"

PLI_INT32 scale_prim_delays()
{
 handle top, cell, prim;
 int i;
 double da[9];
 double min_scale_factor, typ_scale_factor, max_scale_factor;

 acc_initialize();
 acc_configure(accMinTypMaxDelays,"true");

 top = acc_handle_tfarg(1);
 min_scale_factor = acc_fetch_tfarg(2);
 typ_scale_factor = acc_fetch_tfarg(3);
 max_scale_factor = acc_fetch_tfarg(4);

 io_printf("Scale min:typ:max delays for primitives in cells below %s\n",
 acc_fetch_fullname(top));
 io_printf("Scaling factors-min:typ:max-%4.2f:%4.2f:%4.2f\n",
 min_scale_factor, typ_scale_factor, max_scale_factor);
 cell = null;
 while (cell = acc_next_cell(top, cell))
 {
 prim = null;
 while (prim = acc_next_primitive(cell, prim))
 {
 acc_fetch_delays(prim,da);
 for (i=0; i<9; i+=3)
 da[i] = da[i]*min_scale_factor;
 for (i=1; i<9; i+=3)
 da[i] = da[i]*typ_scale_factor;
 for (i=2; i<9; i+=3)
 da[i] = da[i]*max_scale_factor;

acc_replace_delays(prim,da);
 }
 }

 acc_close();
}

scale
delays

array has to hold three sets
of min:typ:max values for
rise, fall, and turn-off delays

replace min:typ:max
delays with scaled values

argument #1: Scope

argument #2: Scale factor for minimum delay

argument #3: Scale factor for typical delay

argument #4: Scale factor for maximum delay

fetch min:typ:max
delays and store
in array da as follows:

 da[0]
 da[1]
 da[2]

typical
rise
delay

 da[3]
 da[4]
 da[5]

typical
fall
delay

 da[6]
 da[7]
 da[8]

typical
turn-off
delay

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

560 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.91 acc_replace_pulsere()

The ACC routine acc_replace_pulsere() shall replace existing pulse handling reject_limit and e_limit val-

ues for a module path, intermodule path and module input port. The reject_limit and e_limit values are used

to control how pulses are propagated through paths.

A pulse is defined as two transitions that occur in a shorter period of time than the delay. Pulse control values

determine whether a pulse should be rejected, propagated through to the output, or considered an error. The

pulse control values consist of a reject_limit and an e_limit pair of values, where:

— The reject_limit shall set a threshold for determining when to reject a pulse—any pulse less than the
reject_limit shall not propagate to the output

— The e_limit shall set a threshold for determining when a pulse is considered to be an error—any
pulse less than the e_limit and greater than or equal to the reject_limit shall propagate a logic x

— A pulse that is greater than or equal to the e_limit shall propagate
— The example in Table 176 illustrates the relationship between the reject_limit and the e_limit.

acc_replace_pulsere()

Synopsis: Replace existing pulse handling reject_limit and e_limit for a module path, intermodule path or module input

port.

Syntax: acc_replace_pulsere(object,r1,e1, r2,e2, r3,e3, r4,e4, r5,e5, r6,e6,
 r7,e7, r8,e8, r9,e9, r10,e10, r11,e11, r12,e12)

Type Description

Returns: PLI_INT32 1 if successful; 0 if an error is encountered

Type Name Description

Arguments: handle object Handle of module path, intermodule path or module input

port

double r1...r12 reject_limit values; the number of arguments is determined

by accPathDelayCount

double e1...e12 e_limit values; the number of arguments is determined by

accPathDelayCount

Related
routines:

Use acc_fetch_pulsere() to get current pulse handling values

Use acc_append_pulsere() to append existing pulse handling values

Use acc_set_pulsere() to set pulse handling values as a percentage of the path delay

Use acc_configure() to set accPathDelayCount

Table 176—Pulse control example

When The pulse shall be

reject_limit = 10.5

e_limit = 22.6

Rejected if < 10.5

An error if >= 10.5 and < 22.6

Passed if >= 22.6

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 561
This is an unapproved IEEE Standards Draft, subject to change.

The following rules shall apply when specifying pulse handling values:

a) The value of reject_limit shall be less than or equal to the value of e_limit.

b) The reject_limit and e_limit shall not be greater than the delay.

If any of the limits do not meet the above rules, they will be truncated.

The number of pulse control values that acc_replace_pulsere() sets shall be controlled using the ACC rou-

tine acc_configure() to set the delay count configuration parameter accPathDelayCount, as shown in

Table 177.

The minimum number of pairs of reject_limit and e_limit arguments to pass to acc_replace_pulsere() shall

equal the value of accPathDelayCount. Any unused reject_limit and e_limit argument pairs shall be

ignored by acc_replace_pulsere() and can be dropped from the argument list.

If accPathDelayCount is not set explicitly, it shall default to 6, and therefore six pairs of pulse reject_limit

and e_limit arguments have to be passed when acc_replace_pulsere() is called. Note that the value assigned

to accPathDelayCount also affects acc_append_delays(), acc_fetch_delays(), acc_replace_delays(),
acc_append_pulsere(), and acc_fetch_pulsere().

Table 177—How the value of accPathDelayCount affects acc_replace_pulsere()

When accPathDelayCount is acc_replace_pulsere() shall write

“1” One pair of reject_limit and e_limit values:

one pair for all transitions, r1 and e1

“2”
Two pairs of reject_limit and e_limit values:

one pair for rise transitions, r1 and e1

one pair for fall transitions, r2 and e2

“3”

Three pairs of reject_limit and e_limit values:

one pair for rise transitions, r1 and e1

one pair for fall transitions, r2 and e2

one pair for turn-off transitions, r3 and e3

“6”
(the default)

Six pairs of reject_limit and e_limit values—a different pair

for each possible transition among 0, 1, and Z:

one pair for 0->1 transitions, r1 and e1

one pair for 1->0 transitions, r2 and e2

one pair for 0->Z transitions, r3 and e3

one pair for Z->1 transitions, r4 and e4

one pair for 1->Z transitions, r5 and e5

one pair for Z->0 transitions, r6 and e6

“12”

Twelve pairs of reject_limit and e_limit values—a different

pair for each possible transition among 0, 1, X and Z:

one pair for 0->1 transitions, r1 and e1

one pair for 1->0 transitions, r2 and e2

one pair for 0->Z transitions, r3 and e3

one pair for Z->1 transitions, r4 and e4

one pair for 1->Z transitions, r5 and e5

one pair for Z->0 transitions, r6 and e6

one pair for 0->X transitions, r7 and e7

one pair for X->1 transitions, r8 and e8

one pair for 1->X transitions, r9 and e9

one pair for X->0 transitions, r10 and e10

one pair for X->Z transitions, r11 and e11

one pair for Z->X transitions, r12 and e12

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

562 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Pulse control values shall be replaced using the timescale of the module that contains the object handle.

The example shown in Figure 152 uses acc_replace_pulsere() to replace rise and fall pulse handling values

of paths listed in a file path.dat.

Figure 152—Using acc_replace_pulsere()

#include <stdio.h>
#include "acc_user.h"

#define NAME_SIZE 256

PLI_INT32 replace_halfpulsevals()
{
 FILE *infile;
 PLI_BYTE8 mod_name[NAME_SIZE];
 PLI_BYTE8 pathin_name[NAME_SIZE], pathout_name[NAME_SIZE];
 handle mod, path;
 double rise_reject_limit=0.0, rise_e_limit=0.0,

fall_reject_limit=0.0, fall_e_limit=0.0;

 /*initialize environment for ACC routines*/
acc_initialize();

 /*set accPathDelayCount to return two pairs of pulse handling values;*/
 /* one each for rise and fall transitions*/

acc_configure(accPathDelayCount, "2");

 /*read all module path specifications from file "path.dat"*/
infile = fopen("path.dat", "r");
while(fscanf(infile,"%s %s %s",mod_name,pathin_name,pathout_name)!=EOF)
{

mod=acc_handle_object(mod_name);
path=acc_handle_modpath(mod,pathin_name,pathout_name);
rise_reject_limit = .05;
if(acc_replace_pulsere(path, &rise_reject_limit, &rise_e_limit,

&fall_reject_limit, &fall_e_limit))
{

io_printf("rise reject limit = %lf, rise e limit = %lf\n",
rise_reject_limit, rise_e_limit);

io_printf("fall reject limit = %lf, fall e limit = %lf\n",
fall_reject_limit, fall_e_limit);

}
}
acc_close();

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 563
This is an unapproved IEEE Standards Draft, subject to change.

23.92 acc_reset_buffer()

The ACC routine acc_reset_buffer() shall reset the string buffer to its beginning. The string buffer shall be

used as temporary storage by other ACC routines that return a pointer to a character string. Refer to 22.9 for

more information on the character string buffer.

acc_reset_buffer()

Synopsis: Reset the string buffer to the beginning.

Syntax: acc_reset_buffer()

Type Description

Returns: void

Type Name Description

Arguments None

Related
routines:

All ACC routines that return a pointer to a character string

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

564 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.93 acc_set_interactive_scope()

The ACC routine acc_set_interactive_scope() shall set the Verilog HDL design scope where the interactive

mode of the software product is operating.

A scope shall be

— A top-level module
— A module instance
— A named begin-end block
— A named fork-join block
— A Verilog HDL task
— A Verilog HDL function

acc_set_interactive_scope()

Synopsis: Set the interactive scope of a software tool.

Syntax: acc_set_interactive_scope(scope, callback_flag)

Type Description

Returns: handle Handle of a Verilog hierarchy scope

Type Name Description

Arguments: handle scope Handle to the scope which will be the new interactive scope

PLI_INT32 callback_flag If set to TRUE, then the misctf routines shall be called with

reason reason_scope immediately. If set to FALSE, then

the misctf routines are not called

Related
routines:

Use acc_handle_interactive_scope() to get a handle for the current interactive scope

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 565
This is an unapproved IEEE Standards Draft, subject to change.

23.94 acc_set_pulsere()

The ACC routine acc_set_pulsere() shall set the pulse handling values reject_percentage and e_percentage
for a module path, intermodule path or module input port, specified as a percentage multiplier of the delay.

A pulse is defined as two transitions that occur in a shorter period of time than the delay. Pulse control values

determine whether a pulse should be rejected, propagated through to the output, or considered an error. The

pulse control values consist of a reject_percentage and an e_percentage pair of values, where

— The reject_percentage shall set a threshold for determining when to reject a pulse—any pulse less
than the reject_percentage shall not propagate

— The e_percentage shall set a threshold for determining when a pulse is considered to be an error—
any pulse less than the e_percentage and greater than or equal to the reject_percentage shall propa-
gate a logic x

— A pulse that is greater than or equal to the e_percentage shall propagate
— The example in Table 178 illustrates the relationship between the reject_percentage and the

e_percentage.

acc_set_pulsere()

Synopsis: Set the pulse handling values for a module path, intermodule path or module input port as a percentage of the

delay.

Syntax: acc_set_pulsere(object, reject_percentage, e_percentage)

Type Description

Returns: PLI_INT32 Always returns 0

Type Name Description

Arguments: handle object Handle of a module path, intermodule path or module input

port

double reject_percentage Multiplier of the delay value that forms the upper limit for

rejecting a path output pulse

double e_percentage Multiplier of the delay value that forms the upper

limit for setting a path output pulse to x.

Related
routines:

Use acc_fetch_pulsere() to get current pulse handling values

Use acc_append_pulsere() to append existing pulse handling values

Use acc_replace_pulsere() to replace existing pulse handling values

Table 178—Pulse control example

Given a path with a delay of 5.0

When A pulse shall be

reject_percentage = 0.5

e_percentage = 1.0

Rejected if < 2.5 (50% of path delay)

An error if >= 2.5 and < 5.0 (between 50% and 100% of path delay)

Passed if >= 5.0 (greater than or equal to 100% of path delay)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

566 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The following rules shall apply when specifying pulse handling values:

a) The reject_percentage and e_percentage shall be greater than or equal to 0.0 and less than or equal to

1.0.

b) The value of reject_percentage shall be less than or equal to the value of e_percentage.

The example shown in Figure 153 uses acc_set_pulsere() to set pulse control values for each path in a mod-

ule such that all pulses between 0 and the path delay generate an X at the path output.

Figure 153—Using acc_set_pulsere()

#include "acc_user.h"

PLI_INT32 set_pulse_control_e(module)
handle module;
{

handle path;

/*set pulse control values for all paths in the module*/
path = null;
while (path = acc_next_modpath(module, path))

acc_set_pulsere(path, 0.0, 1.0);
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 567
This is an unapproved IEEE Standards Draft, subject to change.

23.95 acc_set_scope()

The ACC routine acc_set_scope() shall set the scope and search rules for the routine acc_handle_object().
The way that acc_set_scope() functions shall be dependent on the setting of configuration parameters as

shown in Table 179.

acc_set_scope()

Synopsis: Set a scope for acc_handle_object() to use when searching in the design hierarchy.

Syntax: acc_set_scope(module_handle, module_name)

Type Description

Returns: PLI_BYTE8 * Pointer to a character string containing the full hierarchical name of the scope set; null if
an error occurred

Type Name Description

Arguments: handle module_handle A handle to a module

Optional quoted string or

PLI_BYTE8 *

module_name Quoted string or pointer to a character string with the name

of a module instance (optional: used when accEnableArgs
is set and module_handle is null)

Related
routines:

Use acc_handle_object() to get a handle to any named object

Use acc_configure(accEnableArgs, “acc_set_scope”) to use the module_name argument

Use acc_set_interactive_scope() to set the interactive scope

Table 179—How acc_set_scope() works

If acc_set_scope() shall

Default mode, or

acc_configure(accEnableArgs, “no_acc_set_scope”)
is called, and

module_handle is a valid handle

Set the scope to the level of module_handle in the design

hierarchy and ignore the optional module_name argument

Default mode, or

acc_configure(accEnableArgs, “no_acc_set_scope”)
is called, and

module_handle is null

Set the scope to the top-level module that appears first in

the source description

The routine

acc_configure(accEnableArgs, “acc_set_scope”)
has been called, and

module_handle is null

Set scope to the level of module_name in the design

hierarchy

The routine

acc_configure(accEnableArgs, “acc_set_scope”)
has been called, and

module_handle is a valid handle

Set scope to the level of module_handle in the design hier-

archy and ignore the optional module_name argument

The routine

acc_configure(accEnableArgs, “acc_set_scope”)
has been called, and

module_handle and module_name are both null

Set scope to the top-level module that appears first in the

source description

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

568 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

To use the optional module_name argument, the configuration parameter accEnableArgs first has to be set

by calling acc_configure() as follows:

acc_configure(accEnableArgs, “acc_set_scope”);

If accEnableArgs is not set for acc_set_scope(), the routine shall ignore its optional argument. When the

optional argument is not required for a call to acc_set_scope(), the argument can be dropped.

The example shown in Figure 154 uses acc_set_scope() to set a scope for the ACC routine

acc_handle_object() to determine if a net is in a module.

Figure 154—Using acc_set_scope()

#include “acc_user.h”

PLI_INT32 is_net_in_module(module_handle,net_name)
handle module_handle;
PLI_BYTE8 *net_name;
{

handle net_handle;

/*set scope to module*/
acc_set_scope(module_handle);

/*get handle for net*/
net_handle = acc_handle_object(net_name);

if (net_handle)
io_printf("Net %s found in module %s\n",

net_name,
acc_fetch_fullname(module_handle));

else
io_printf("Net %s not found in module %s\n",

net_name,
acc_fetch_fullname(module_handle));

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 569
This is an unapproved IEEE Standards Draft, subject to change.

23.96 acc_set_value()

The ACC routine acc_set_value() shall set and propagate a value onto a reg, integer variable, time variable,

real variable, or a sequential UDP. The routine shall also perform procedural assign/deassign or procedural

force/release functions.

The acc_set_value() routine shall also return the value of a system function by passing a handle to the user-

defined system function as the object handle. This should only occur during execution of the calltf routine

for the system function. Attempts to use acc_set_value() with a handle to the system function when the

calltf routine is not active shall be ignored. Should the calltf routine for a user defined system function fail to

put a value during its execution, the default value of 0 shall be applied.

The logic value and propagation delay information shall be placed in separate structures. To use

acc_set_value() to propagate a value, follow these basic steps:

a) Allocate memory for the structures s_setval_value, s_setval_delay, and if using vectors,

s_acc_vecval.

b) Set the appropriate fields in each structure to the desired values.

c) Call acc_set_value() with an object handle and pointers to the s_setval_value and

s_setval_delay structures.

The structure s_setval_value shall contain the value to be written. A value can be entered into this struc-

ture as a string, scalar, integer, real, or as an aval/bval pair. The s_setval_value structure is defined in

acc_user.h and listed in Figure 155 (note that this structure is also used with the acc_fetch_value()
routine).

The format field in the s_setval_value structure shall indicate the value type. The format shall be a pre-

defined integer constant, listed in Table 180.

The value union in the s_setval_value structure shall be the value to be written. The value is placed in

the appropriate field within the union for the format selected.

acc_set_value()

Synopsis: Set and propagate a value on a reg, variable, user-defined system function or a sequential UDP; procedurally

assign a reg or variable; force a reg, variable, or net.

Syntax: acc_set_value(object_handle, value_p, delay_p)

Type Description

Returns: PLI_INT32 Zero if no errors; nonzero if an error occurred

Type Name Description

Arguments: handle object_handle Handle to a reg, variable, net, user-defined system function,

or sequential UDP

p_setval_value value_p Pointer to a structure containing value to be set

p_setval_delay delay_p Pointer to a structure containing delay before value is set

Related
routines:

Use acc_fetch_value() to retrieve a logic value

Use acc_fetch_size() to get the number of bits in a vector

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

570 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Figure 155—The s_setval_value structure used by acc_set_value()

When the format field of the s_acc_vecval structure is set to accVectorVal, the value union field used

shall be vector. The vector field is set to a pointer or an array of s_acc_vecval structures that contain aval/
bval pairs for each bit of the vector. The s_acc_vecval structure is listed in Figure 156.

Figure 156—s_acc_vecval structure

Table 180—Predefined constants for the format field of s_setval_value

Value format Definition

accScalarVal One of: acc0, acc1, accZ, accX

accVectorVal aval and bval bit groups, with each group being an integer quantity

accIntVal An integer quantity

accRealVal A real-valued quantity

accStringVal For integers and appropriately sized regs, any ASCII string;

for real-valued objects, any string that represents a real number

accBinStrVal A base 2 representation as a string

accOctStrVal A base 8 representation as a string

accDecStrVal A base 10 representation as a string

accHexStrVal A base 16 representation as a string

typedef struct t_setval_value
{
 PLI_INT32 format;
 union
 {
 PLI_BYTE8 *str;
 PLI_INT32 scalar;
 PLI_INT32 integer;
 double real;
 p_acc_vecval vector;
 } value;
} s_setval_value, *p_setval_value, s_acc_value, *p_acc_value;

typedef struct t_acc_vecval
{
 PLI_INT32 aval;
 PLI_INT32 bval;
} s_acc_vecval, *p_acc_vecval;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 571
This is an unapproved IEEE Standards Draft, subject to change.

The array of s_acc_vecval structures shall contain a record for every 32 bits of the vector, plus a record

for any remaining bits. Memory has to be allocated by the user for the array of s_acc_vecval structures. If

a vector has N bits, the size of the array shall be ((N-1)/32)+1 s_acc_vecval records. The routine

acc_fetch_size() can be used to determine the value of N.

The lsb of the vector shall be represented by the lsb of the first record of s_acc_vecval array. The 33rd bit

of the vector shall be represented by the lsb of the second record of the array, and so on. Each bit of the vec-

tor shall be encoded as an aval/bval pair. The encoding for each bit is shown in Table 181.

The structure s_setval_delay shall control how values are to be propagated into the Verilog HDL data

structure. The structure is defined in acc_user.h and is listed in Figure 157.

The time field in the s_setval_delay structure shall indicate the delay that shall take place before a reg

value assignment. The time field shall be of type s_acc_time structure, as shown in Figure 158.

The model field in the s_setval_delay structure shall determine how the delay shall be applied, and how

other simulation events scheduled for the same object shall be affected. The delay model shall be specified

using predefined integer constants, listed in Table 182 and Table 184.

Figure 157—The s_setval_delay structure for acc_set_value()

Table 181—Encoding of bits in the s_acc_vecval structure

aval bval Value

0 0 0

1 0 1

0 1 Z

1 1 X

Table 182—Predefined delay constants for the model field of s_setval_delay

Integer constant Delay model Description

accNoDelay
No delay Sets a reg, variable or sequential UDP to the indi-

cated value with no delay; other events scheduled

for the object are not affected

accInertialDelay
Inertial delay Sets a reg or variable to the indicated value after the

specified delay; all scheduled events on the object

are removed before this event is scheduled

accTransportDelay
Modified transport delay Sets a reg or variable to the indicated value after the

specified delay; all scheduled events on the object

for times later than this event are removed

accPureTransportDelay
Pure transport delay Sets a reg or variable to the indicated value after the

specified delay; no scheduled events on the object

are removed

typedef struct t_setval_delay
{
 s_acc_time time;
 PLI_INT32 model;
} s_setval_delay, *p_setval_delay;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

572 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

When setting the value of a sequential UDP, the model field shall be accNoDelay, and the new value shall be

assigned with no delay even if the UDP instance has a delay.

The s_acc_time structure shall hold the delay value that shall be used by acc_set_value(). The

s_acc_time structure is defined in acc_user.h and is listed in Figure 158.

The type field in the s_acc_time structure shall indicate the data type of the delay that shall be stored in the

structure. The type shall be specified using predefined integer constants, listed in Table 183.

The low field shall be an integer that represents the lower 32 bits of a 64-bit delay value.

The high field shall be an integer that represents the upper 32 bits of a 64-bit delay value.

The real field shall be a double that represents the delay as a real number value.

Figure 158—The s_acc_time structure for acc_set_value()

The routine acc_set_value() shall be used to perform a procedural continuous assignment of a value to a reg

or variable or to deassign the reg or variable. This shall be the same functionality as the procedural assign and

deassign keywords in the Verilog HDL.

The routine acc_set_value() shall also be used to perform a procedural force of a value onto a reg, variable or

net, or to release the reg, variable or net. This shall be the same functionality as the procedural force and

release keywords in the Verilog HDL.

When an object is deassigned or released using acc_set_value(), the current value of the object shall be

returned to the s_setval_value structure.

To assign, deassign, force, or release an object using acc_set_value(), the s_setval_value and

s_setval_delay structures shall be allocated and the fields shall be set to the appropriate values. For the

model field of the s_setval_delay structure, one of the predefined constants listed in Table 184 shall be

used.

Table 183—Predefined time constants for the type field of s_acc_time

Integer constant Description

accTime Delay is a 64-bit integer; time shall be scaled to the timescale in effect

for the module containing the object.

accSimTime Delay is a 64-bit integer; time shall be scaled to the time units being

used by the simulator

accRealTime Delay is a real number; time shall be scaled to the timescale in effect for

the module containing the object.

typedef struct t_acc_time
{
 PLI_INT32 type;
 PLI_INT32 low,
 high;
 double real;
} s_acc_time, *p_acc_time;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 573
This is an unapproved IEEE Standards Draft, subject to change.

The example shown in Figure 159 uses acc_set_value() to set and propagate a value onto a reg. This exam-

ple assumes the application is linked to a user-defined system task (using the PLI interface mechanism)

called $my_set_value(), which has the following usage for a four bit reg, r1:

$my_set_value(r1, “x011”, 2.4);

Figure 159—Using acc_set_value()

Table 184—Predefined assign/force constants for the model field of s_setval_delay

Integer constant Description

accAssignFlag
Assigns a reg or variable to the indicated value with no delay; other

events scheduled for the object are overridden.

Same functionality as the Verilog HDL procedural assign keyword.

accDeassignFlag
Deassigns an assigned reg or variable; other events scheduled for the

object are no longer overridden. Same functionality as the Verilog HDL

procedural deassign keyword.

accForceFlag
Forces a value onto a reg, variable or net; other events scheduled for the

object are overridden. Same functionality as the Verilog HDL proce-

dural force keyword.

accReleaseFlag

Releases a forced reg, variable or net; other events scheduled for the

object are no longer overridden, and nets immediately return to the cur-

rent driven value. Same functionality as the Verilog HDL procedural

release keyword.

PLI_INT32 my_set_value()
{

static s_setval_delay delay_s = {{accRealTime},accInertialDelay};

static s_setval_value value_s = {accBinStrVal};

handle reg = acc_handle_tfarg(1);

value_s.value.str = acc_fetch_tfarg_str(2);

delay_s.time.real= acc_fetch_tfarg(3);

acc_set_value(reg, &value_s, &delay_s);
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

574 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.97 acc_vcl_add()

The ACC routine acc_vcl_add() shall set up a callback monitor on an object that shall call a user-defined

consumer routine when the object changes value. The consumer routine shall be passed logic value informa-

tion or logic value and strength information about the object.

The acc_vcl_add() routine requires four arguments, as described in the following paragraphs.

The object_handle argument is a handle to the object to be monitored by an application. The VCL shall

monitor value changes for the following objects:

— Scalar regs and bit-selects of vector regs
— Scalar nets, unexpanded vector nets, and bit-selects of expanded vector nets
— Integer, real and time variables
— Module ports
— Primitive output or inout terminals
— Named events

NOTE—Adding a value change link to a module port is equivalent to adding a value change link to the loconn of the

port. The vc_reason returned shall be based on the loconn of the port.

The object_handle passed to acc_vcl_add() is not returned when the consumer routine is called. However,

the handle can be passed using the user_data argument.

The consumer_routine argument is a pointer to a C application. This application shall be called whenever the

object changes value. When a value change callback occurs, the consumer_routine shall be passed the

user_data argument and a pointer to a vc_record structure, which shall contain information about the

change.

Refer to 22.10 for a full description of consumer routines and the vc_record structure.

acc_vcl_add()

Synopsis: Set a callback to a consumer routine with value change information whenever an object changes value.

Syntax: acc_vcl_add(object_handle,consumer_routine,user_data, vcl_flag)

Type Description

Returns: void

Type Name Description

Arguments: handle object_handle Handle to an object to be monitored (such as a reg or net)

C routine pointer consumer_routine Unquoted name of the C routine to be called when the

object changes value

PLI_BYTE8 * user_data User-defined data that is passed back to the consumer rou-

tine when the object changes value

PLI_INT32 vcl_flag Predefined integer constant that selects the type of change

information reported to the consumer routine

Related
routines:

Use acc_vcl_delete() to remove a VCL callback monitor

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 575
This is an unapproved IEEE Standards Draft, subject to change.

The user_data argument is user-defined data, such as the object name, the object handle, the object value, or

a pointer to a data structure. The value of the user_data argument shall be passed to the consumer routine

each time a callback occurs. Note that the user_data argument is defined as character string pointer, and

therefore any other type should be cast to a PLI_BYTE8*.

The vcl_flag argument shall set the type of information the callback mechanism shall report. There are two

types of flags, as shown in Table 185.

If an application calls acc_vcl_add() with the same arguments more than once, the VCL callback mecha-

nism shall only call the consumer routine once when the object changes value. If any of the VCL arguments,

including the user_data, are different, the VCL callback mechanism shall call the consumer routine multiple

times, once for each unique acc_vcl_add().

NOTE—It is not recommended that multiple VCL flags be added with the same object, consumer and user_data. If mul-

tiple flags with the same values are added, then each call to acc_vcl_delete() with those values shall delete one flag; the

order of deletion is indeterminate.

If multiple PLI applications monitor the same object at the same time, each application shall receive a sepa-

rate call whenever that object changes value. Typically, multiple applications have distinct consumer rou-

tines and user_data pointers. These different consumer routines allow the value change information to be

processed in different ways.

Refer to 22.10 for an example of using acc_vcl_add().

Table 185—vcl_flag constants used in acc_vcl_add()

vcl_flag What it does

vcl_verilog_logic Indicates the VCL callback mechanism shall report

information on logic value changes

vcl_verilog_strength Indicates the VCL callback mechanism shall report

information on logic value and strength changes

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

576 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

23.98 acc_vcl_delete()

The ACC routine acc_vcl_delete() shall remove a VCL callback monitor previously requested with a call to

acc_vcl_add(). The acc_vcl_delete() routine requires four arguments, as described in the following para-

graphs. When multiple PLI applications are monitoring the same object, acc_vcl_delete() shall stop moni-

toring the object only for the application associated with a specific acc_vcl_add() call.

The object_handle argument is a handle to the object for which the VCL callback monitor is to be removed.

This has to be a handle to the same object that was used when acc_vcl_add() was called.

The consumer_routine argument is the unquoted name of the C application called by the VCL callback mon-

itor. This has to be the same C application that was specified when acc_vcl_add() was called.

The user_data argument is user-defined data that is passed to the consumer routine each time the object

changes value. This has to be the same value that was specified when acc_vcl_add() was called.

The vcl_flag argument is a predefined integer constant and has to be vcl_verilog. This constant shall be used

in place of the vcl_flag values used with acc_vcl_add().

Refer to 22.10 for an example of using acc_vcl_delete().

acc_vcl_delete()

Synopsis: Removes a VCL callback monitor.

Syntax: acc_vcl_delete(object_handle, consumer_routine, user_data, vcl_flag)

Type Description

Returns: void

Type Name Description

Arguments: handle object_handle Handle to the object to be monitored specified in the call to

acc_vcl_add()

C routine pointer consumer_routine Unquoted name of the C routine specified in the call to

acc_vcl_add()

PLI_BYTE8 * user_data User-defined data specified in the call to acc_vcl_add()

PLI_INT32 vcl_flag Predefined integer constant; vcl_verilog

Related
routines:

Use acc_vcl_add() to place a VCL callback monitor on an object

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 577
This is an unapproved IEEE Standards Draft, subject to change.

23.99 acc_version()

The ACC routine acc_version() shall return a pointer to a character string that indicates the version of the

ACC routines used in the software product that called the PLI application. The return value for this routine is

placed in the ACC internal string buffer. See 22.9 for explanation of strings in ACC routines.

The character string shall be in the following format:

Access routines Version <version_number>

For example, if the software product is using the IEEE Std 1364 PLI version of ACC routines, acc_version()
might return a pointer to the following string:

“Access routines Version IEEE 1364 PLI”

NOTE—The string returned by acc_version() shall be defined by the software product vendor.

The example shown in Figure 160 uses acc_version() to identify the version of ACC routines linked to the

application.

Figure 160—Using acc_version()

acc_version()

Synopsis: Get a pointer to a character string that indicates version number of the ACC routine software.

Syntax: acc_version()

Type Description

Returns: PLI_BYTE8 * Character string pointer

Type Name Description

Arguments: None

Related
routines:

Use acc_product_version() to get the version of the software product in use

Use acc_product_type() to get the type of software product in use

#include "acc_user.h"

PLI_INT32 show_versions()
{

/*initialize environment for ACC routines*/
acc_initialize();

/*show version of ACC routines*/
/* and version of Verilog that is linked to ACC routines*/
io_printf("Running %s with %s\n",acc_version(),acc_product_version());

acc_close();
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

578 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

24. Using TF routines

This clause provides an overview of the types of operations that are done with the PLI task/function (TF)

routines. Detailed descriptions of the routines are provided in the next section.

24.1 TF routine definition

The PLI TF routines, sometimes referred to as utility routines, provide a mechanism to manipulate the argu-

ments of user-defined system tasks and functions and to synchronize interaction between a task and the sim-

ulator. Appropriate applications include stimulus generation, error checking, and interfaces to C models.

24.2 TF routine system task/function arguments

The number of arguments passed to a system task shall be returned by tf_nump(). A type for each argument

shall be returned by tf_typep() and is primarily used to determine if an argument is writable.

An argument shall be considered read-only if, in the Verilog HDL source description, the argument cannot

be used on the left-hand side of a procedural assignment statement. Signals declared as one of the net data

types or the event data type, or bit-selects, part-selects, or concatenations of net data types, shall be read-

only. A module instance name or a primitive instance name shall also be read-only.

Arguments shall be considered writable from the PLI if the arguments can be used on the left-hand side of

procedural assignment in the Verilog HDL source description. Signals declared as reg, integer, time, or real

shall be writable, as well as bit-selects, part-selects, and concatenations of these data types.

24.3 Reading and writing system task/function argument values

User-defined system task and function argument values can be determined and altered in a number of ways

with the TF routines, depending on factors such as value type, data size, and desired format.

24.3.1 Reading and writing 2-state parameter argument values

To access the 2-state (logic 0 and 1) value of a system task/function argument of size less than or equal to 32

bits, the routine tf_getp() can be used. To set the 2-state value of an argument of size less than or equal to 32

bits, tf_putp() can be used. If the argument is 33–64 bits, tf_getlongp() and tf_putlongp() can be used. For

arguments of type real, tf_getrealp() and tf_putrealp() can be used. Logic X and Z bits in the argument

value shall be interpreted as 0.

24.3.2 Reading and writing 4-state values

If 4-states (logic 0, 1, X, and Z) are required and a string representation of the value is appropriate,

tf_strgetp() can be used to access the value. The routines tf_strdelputp(), tf_strlongdelputp(), and

tf_strrealdelputp() can be used to write 4-state values to writable arguments. For applications with a high

frequency of PLI calls, the overhead of these string-based routines can be excessive. The following para-

graph describes an alternative.

4-state values can also be accessed with the routine tf_exprinfo(). This routine shall create a persistent struc-

ture that contains the 4-state value of an argument encoded in an s_vecval structure. After tf_exprinfo()
has been called once for an argument, the pointer to the s_vecval structure can be saved. The argument

value can be changed using that structure along with routines tf_propagatep() to send the value in the struc-

ture into a simulation and tf_evaluatep() to update the value in the structure to the current simulation value.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 579
This is an unapproved IEEE Standards Draft, subject to change.

24.3.3 Reading and writing strength values

Strength values on scalar net arguments can be accessed with the routine tf_nodeinfo().

24.3.4 Reading and writing to memories

Memory array values can be accessed with the routine tf_nodeinfo(). This routine returns a pointer to a

memval structure that represents the array in the Verilog HDL software product. Setting a value in the

memval structure shall make it available for the software tool access, but this does not automatically cause

the value to be propagated to any right-hand-side memory references.

24.3.5 Reading and writing string values

The routine tf_getcstringp() shall return the string representation of a string constant or a vector argument.

There is no direct method to write string values using TF routines, but it can be accomplished by writing 8-

bit ASCII character values to 8-bit reg elements in a vector reg using the tf_exprinfo() value structure.

24.3.6 Writing return values of user-defined functions

2-state values can be set as the return value of a user-defined function using tf_putp(), tf_putlongp() and

tf_putrealp() with an argument value of 0. It is illegal to schedule the return value of a system function at a

future simulation time. The routines tf_strdelputp(), tf_strlongdelputp(), and tf_strrealdelputp() cannot

be used to return the value of a system function. Should the calltf routine for a user defined system function

fail to put a value during its execution, the default value of 0 shall be applied.

NOTE—calling put routines to TF argument 0 (return of a function) shall only return a value in a calltf application, when

the call to the function is active. The action of the put routine shall be ignored when the function is not active.

24.3.7 Writing the correct C data types

It is important to ensure that the data type of the argument to any of the tf_put routines is consistent with the

data type required by the routine and specified argument.

The following examples illustrate what cautions should be taken.

If the second argument of a system task/function instance is of type tf_readwritereal, meaning the argument

is declared as a real variable in the Verilog HDL source description, the following tf_put routines shall pro-

duce valid results:

PLI_INT32 i = 5;
tf_putp(2, i); /* write an integer value to 2nd argument */

This example sets the second task/function argument to 5.0—assigning an integer value to a real

variable is legal in the Verilog HDL.

double d = 5.7;
tf_putrealp(2, d); /* write a real value to 2nd argument */

This example sets the second task/function argument to 5.7.

The following routines, however, shall produce invalid results for the following reasons:

PLI_INT32 i = 5;
tf_putrealp(2, i); /* invalid result */

The statement PLI_INT32 i = 5 passes a 32-bit integer to tf_putrealp(), which expects a 64-bit

double value type. Since there is no data type checking, tf_putrealp() shall read 32 bits of undefined

data and try to use it as if it were valid data. The result is unpredictable.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

580 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

float f = 5;
tf_putrealp(2, f); /* invalid result */

The float statement passes a 32-bit float to tf_putrealp(), which is expecting a 64-bit double value

type. The result is unpredictable.

double d = 5.7;
tf_putp(2, d); /* invalid result */

The tf_putp() routine shall take only the lower 32 bits of the 64-bit double passed to it by the

statement double d = 5.7.

24.4 Value change detection

Value changes on system task/function arguments can be detected by enabling asynchronous callbacks with

tf_asynchon(). The callbacks can be disabled with tf_asynchoff(). When argument change callbacks are

enabled with tf_asynchon(), whenever an argument changes value, the misctf application associated with

the user-defined system task/function shall be called back with three integer arguments: data, reason, and

paramvc. Argument reason shall be reason_paramvc. The value change can be examined immediately, or a

second callback can be requested later in the same time step (as described in 24.6). By setting a second call-

back at the end of the time step, an application can process all argument value changes within in a time step

at once. The routines tf_copypvc_flag(), tf_movepvc_flag(), tf_testpvc_flag(), and tf_getpchange() can be

used to determine all the arguments that changed in a time step.

24.5 Simulation time

TF routines are provided to read simulation time and to scale delays to simulation time scales.

The routines tf_gettime() and tf_getlongtime() shall return the current simulation time in unsigned format.

These times shall be scaled to the timescale of the module where the system task or function is invoked. The

routine tf_strgettime() shall return unscaled simulation time in a string format.

PLI TF routines that involve time shall automatically scale delay values to the timescale of the module con-

taining the instance of the user-defined task or function.

The routines tf_gettimeunit() and tf_gettimeprecision() can be used to obtain the timescale unit and preci-

sion of a module. These routines can also be used to obtain the internal simulation time unit, which is the

smallest precision of all modules within a simulation. The routines tf_scale_longdelay(),
tf_scale_realdelay(), tf_unscale_longdelay(), and tf_unscale_realdelay() can be used to convert between

scaled delays and internal simulation time.

24.6 Simulation synchronization

There are TF routines that allow synchronized calling of the misctf application associated with a user-

defined system task or function. The misctf application can be called at the end of the current time step or at

some future time step.

The routines tf_synchronize() and tf_rosynchronize() shall cause the misctf application associated with a

user-defined system task to be called back in the current simulation time step.

The tf_synchronize() routine shall place a callback at the end of the inactive event queue for the current

time step. The misctf application shall be called with reason_synch. It is possible for subsequent events to

be added to the current time step after the tf_synchronize() callback (for this reason, when the callback

occurs, the next scheduled time step cannot be determined). The misctf application can propagate new val-

ues in reason_synch mode.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 581
This is an unapproved IEEE Standards Draft, subject to change.

The tf_rosynchronize() callback shall occur after all active, inactive, and nonblocking assign events for a

time step have been processed. The misctf application shall be called with reason_rosynch. With

reason_rosynch, it is possible to determine the time of the next scheduled time step using

tf_getnextlongtime(). Values cannot be written to system task/function arguments during a reason_rosynch
callback (the 'ro' indicates read-only). Placing a callback for tf_rosynchronize() during a callback for rea-

son reason_rosynch will result in another reason_rosynch callback occurring during the same time slice.

The routine tf_setdelay() and its variations shall schedule the misctf application to be called back at a

specified time with reason argument reason_reactivate. The routine tf_clearalldelays() shall remove any

previously scheduled callbacks of this type.

24.7 Instances of user-defined tasks or functions

The routine tf_getinstance() shall return a unique identifier for each instance of a user-defined system task

or function in the Verilog HDL source description. This value can then be used as the instance_p argument

to all the tf_i* routines so that the arguments of one instance can be manipulated from another task or func-

tion instance.

24.8 Module and scope instance names

The full hierarchical path name of the module that contains an instance shall be returned by the routine

tf_mipname(). The full name of the containing scope, which can be a Verilog HDL task or function, a

named block, or a module instance, shall be returned by tf_spname().

24.9 Saving information from one system TF call to the next

The TF routines tf_setworkarea() and tf_getworkarea() provide a special storage work area that can be

used for:

— Saving data during one call to a PLI application that can be retrieved in a subsequent call to the appli-
cation.

— Passing data from one type of PLI application to another, such as from a checktf application to a
calltf application.

24.10 Displaying output messages

The routine io_printf() can be used in place of the C printf() statement. This routine has essentially the

same syntax and semantics as printf(), but it displays the output message to both the output channel of the

software product which invoked the PLI application and to the log file of the software product.

The routine io_mcdprintf() is also similar to the C printf(), but permits writing information to files that

were opened within the Verilog HDL source description using the $fopen() built-in system function.

The routines tf_warning(), tf_error(), tf_message(), and tf_text() can be used to display warning and error

messages that are automatically formatted to a similar format as the warning and error messages for the soft-

ware product. The routines tf_error() and tf_message() shall also provide control for aborting the software

product execution when an error is detected.

24.11 Stopping and finishing

The routines tf_dostop() and tf_dofinish() are the PLI equivalents to the built-in system tasks $stop and

$finish.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

582 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25. TF routine definitions

This clause defines the PLI TF routines, explaining their function, syntax, and usage. The routines are listed

in alphabetical order. See Clause 23 for conventions that are used in the definitions of the PLI routines.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 583
This is an unapproved IEEE Standards Draft, subject to change.

25.1 io_mcdprintf()

The TF routine io_mcdprintf() shall write a formatted message to one or more open files, as described by

the multi-channel descriptor mcd. This routine uses the descriptors created by the $fopen system task or the

VPI routine vpi_mcd_open(). See 17.2.1 for the functional description of $fopen, and 27.25 for the descrip-

tion of vpi_mcd_open().

The format strings shall use the same format as the C routine fprintf().

The maximum number of arguments that can be used in the format control string is 12.

io_mcdprintf()

Synopsis: Write a formatted message to one or more files.

Syntax: io_mcdprintf(mcd, format, arg1,...arg12)

Type Description

Returns: void

Type Name Description

Arguments: PLI_INT32 mcd An integer multi-channel descriptor value representing one

or more open files

quoted string or

PLI_BYTE8 *

format A quoted character string or pointer to a character string

that controls the message to be written

(optional) arg1...arg12 1 to 12 optional arguments of the format control string; the

type of each argument should be consistent with how it is

used in the format string

Related
routines:

Use io_printf() to write messages to the output channel of the software product which invoked the PLI
application and to the Verilog product log file

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

584 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.2 io_printf()

The TF routine io_printf() shall write a formatted message as text output. The functionality is similar to the

C printf() function. However, io_printf() differs from printf() because it ensures the message is written to

both the output channel of the software product which invoked the PLI application and the output log file of

the product.

The format control string uses the same formatting controls as the C printf() function (for example, %d).

The maximum number of arguments that can be used in the format control string is 12.

io_printf()

Synopsis: Print a formatted message to the output channel of the software product which invoked the PLI appli-
cation and to the log file of the product.

Syntax: io_printf(format, arg1,...arg12)

Type Description

Returns: void

Type Name Description

Arguments: quoted string or

PLI_BYTE8 *

format A quoted character string or pointer to a character string

that controls the message to be written

(optional) arg1...arg12 1 to 12 optional arguments of the format control string; the

type of each argument should be consistent with how it is

used in the format string

Related
routines:

Use io_mcdprintf() to write a formatted message to one or more open files

Use tf_message(), tf_error(), or tf_warning() to write error or warning messages

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 585
This is an unapproved IEEE Standards Draft, subject to change.

25.3 mc_scan_plusargs()

The TF routine mc_scan_plusargs() shall scan all software product invocation command options and match

a given string to a plus argument. The match is case sensitive.

The routine mc_scan_plusargs() shall

— Return null if startarg is not found

— Return the remaining part of the command argument if startarg is found (e.g., if the invocation
option string is “+siz64”, and startarg is “siz”, then “64” is returned)

— Return a pointer to a C string with a null terminator if there is no remaining part of a found plus
argument

mc_scan_plusargs()

Synopsis: Scan software product invocation command line for plus (+) options.

Syntax: mc_scan_plusargs(startarg)

Type Description

Returns: PLI_BYTE8 * Pointer to a string with the result of the search

Type Name Description

Arguments: quoted string or

PLI_BYTE8 *

startarg A quoted string or pointer to a character string with the first

part of the invocation option to search for

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

586 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.4 tf_add_long()

The TF routine tf_add_long() shall add two 64-bit values. After calling tf_add_long(), the variables used to

pass the first operand shall contain the results of the addition. Figure 161 shows the high and low 32 bits of

two 64-bit integers and how tf_add_long() shall add them.

Figure 161—Adding with tf_add_long()

tf_add_long()

Synopsis: Add two 64-bit integers.

Syntax: tf_add_long(aof_low1, aof_high1, low2, high2)

Type Description

Returns: PLI_INT32 Always returns 0

Type Name Description

Arguments: PLI_INT32 * aof_low1 Pointer to least significant 32 bits of first operand

PLI_INT32 * aof_high1 Pointer to most significant 32 bits of first operand

PLI_INT32 low2 Least significant 32 bits of second operand

PLI_INT32 high2 Most significant 32 bits of second operand

Related
routines:

Use tf_subtract_long() to subtract two 64-bit integers

Use tf_multiply_long() to multiply two 64-bit integers

Use tf_divide_long() to divide two 64-bit integers

Use tf_compare_long() to compare two 64-bit integers

high2 low2

high1 low1

high 32 bits low 32 bits

integer2

integer1

integer1 = integer1 + integer2

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 587
This is an unapproved IEEE Standards Draft, subject to change.

25.5 tf_asynchoff(), tf_iasynchoff()

The TF routines tf_asynchoff() and tf_iasynchoff() shall disable further calling of the misctf application for

reason_paramvc for the current instance or a specific instance of a user-defined system task or function.

Asynchronous calling is first enabled by the routines tf_asynchon() or tf_iasynchon().

tf_asynchoff(), tf_iasynchoff()

Synopsis: Disable asynchronous calling of the misctf application.

Syntax: tf_asynchoff()
tf_iasynchoff(instance_p)

Type Description

Returns: PLI_INT32 Always returns 0

Type Name Description

Arguments: PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_asynchon() or tf_iasynchon() to enable asynchronous calling of the misctf application

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

588 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.6 tf_asynchon(), tf_iasynchon()

The TF routines tf_asynchon() and tf_iasynchon() shall enable a misctf user application to be called asyn-

chronously whenever a system task/function argument value changes in the current instance or in a specific

instance of a user-defined system task or function. After enabling, the routine specified by misctf in the PLI

interface mechanism shall be called with a reason of reason_paramvc each time any task/function argument

changes value or strength. The index number of the argument that changed is passed to the misctf applica-

tion as a third C argument, paramvc.

The value change can be examined immediately, or a second callback can be requested later in the same time

step (as described in 24.6). By setting a second callback at the end of the time step, an application can pro-

cess all argument value changes within a time step at once. The routines tf_copypvc_flag(),
tf_movepvc_flag(), tf_testpvc_flag(), and tf_getpchange() can be used to determine all the arguments that

changed in a time step.

Task/function argument index numbering shall proceed from left to right, and the left-most argument shall

be number 1.

tf_asynchon(), tf_iasynchon()

Synopsis: Enable asynchronous calling of the misctf application for system task/function argument value changes.

Syntax: tf_asynchon()
tf_iasynchon(instance_p)

Type Description

Returns: PLI_INT32 0 if successful; 1 if an error occurred

Type Name Description

Arguments: PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_asynchoff() or tf_iasynchoff() to disable asynchronous calling of the misctf application

Use tf_getpchange() or tf_igetpchange() to get the index number of the argument that changed

Use tf_copypvc_flag() or tf_icopypvc_flag() to copy pvc flags

Use tf_movepvc_flag() or tf_imovepvc_flag() to move a pvc flag to the saved pvc flag

Use tf_testpvc_flag() or tf_itestpvc_flag() to get the value of a saved pvc flag

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 589
This is an unapproved IEEE Standards Draft, subject to change.

25.7 tf_clearalldelays(), tf_iclearalldelays()

The TF routines tf_clearalldelays() and tf_iclearalldelays() shall clear all reactivation delays, which shall

remove the effect of all previous tf_setdelay() or tf_isetdelay() calls for the current instance or specific

instance of a user-defined system task or function.

tf_clearalldelays(), tf_iclearalldelays()

Synopsis: Clear all scheduled reactivations by tf_setdelay() or tf_isetdelay().

Syntax: tf_clearalldelays()
tf_iclearalldelays(instance_p)

Type Description

Returns: PLI_INT32 Always returns 1

Type Name Description

Arguments: PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_setdelay() or tf_isetdelay() to schedule a reactivation

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

590 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.8 tf_compare_long()

The TF routine tf_compare_long() shall compare two 64-bit integers and return one of the values given in

Table 186.

tf_compare_long()

Synopsis: Compare two 64-bit integer values.

Syntax: tf_compare_long(low1, high1, low2, high2)

Type Description

Returns: PLI_INT32 An integer flag indicating the result of the comparison

Type Name Description

Arguments: PLI_UINT32 low1 Least significant 32 bits of first operand

PLI_UINT32 high1 Most significant 32 bits of first operand

PLI_UINT32 low2 Least significant 32 bits of second operand

PLI_UINT32 high2 Most significant 32 bits of second operand

Related
routines:

Use tf_add_long() to add two 64-bit integers

Use tf_subtract_long() to subtract two 64-bit integers

Use tf_multiply_long() to multiply two 64-bit integers

Use tf_divide_long() to divide two 64-bit integers

Table 186—Return values for tf_compare_long()

When tf_compare_long() shall
return

operand1 < operand2 -1

operand1 = operand2 0

operand1 > operand 2 1

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 591
This is an unapproved IEEE Standards Draft, subject to change.

25.9 tf_copypvc_flag(), tf_icopypvc_flag()

The TF routines tf_copypvc_flag() and tf_icopypvc_flag() shall copy the current pvc flag to the saved pvc

flag and return the value of the flag that was copied. The argument narg is the index number of an argument

in the current instance or a specific instance of a user-defined system task or function. Task/function argu-

ment index numbering shall proceed from left to right, with the left-most argument being number 1. If narg
is -1, then all argument pvc flags shall be copied and the logical OR of all saved flags returned.

Argument Value Change (pvc) flags shall be used to indicate whether a particular user-defined system task

or function argument has changed value. Each argument shall have two pvc flags: a current pvc flag, which

shall be set by a software product when the change occurs, and a saved pvc flag, which shall be controlled by

the user.

NOTE—PVC flags shall not be set by the software product until tf_asynchon() or tf_iasynchon() has been called.

tf_copypvc_flag(), tf_icopypvc_flag()

Synopsis: Copy system task/function argument value change flags.

Syntax: tf_copypvc_flag(narg)
tf_icopypvc_flag(narg, instance_p)

Type Description

Returns: PLI_INT32 The value of the pvc flag

Type Name Description

Arguments: PLI_INT32 narg Index number of the user-defined system task or function

argument, or -1

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_asynchon() or tf_iasynchon() to enable pvc flags

Use tf_getpchange() or tf_igetpchange() to get the index number of the argument that changed

Use tf_movepvc_flag() or tf_imovepvc_flag() to move a pvc flag to the saved pvc flag

Use tf_testpvc_flag() or tf_itestpvc_flag() to get the value of a saved pvc flag

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

592 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.10 tf_divide_long()

The TF routine tf_divide_long() shall divide two 64-bit values. After calling tf_divide_long(), the variables

used to pass the first operand shall contain the result of the division.

The operands shall be assumed to be in two’s complement form. Figure 162 shows the high and low

32 bits of two 64-bit integers and how tf_divide_long() shall divide them.

Figure 162—Dividing with tf_divide_long()

tf_divide_long()

Synopsis: Divide two 64-bit integers.

Syntax: tf_divide_long(aof_low1, aof_high1, low2, high2)

Type Description

Returns: void

Type Name Description

Arguments: PLI_INT32 * aof_low1 Pointer to least significant 32 bits of first operand

PLI_INT32 * aof_high1 Pointer to most significant 32 bits of first operand

PLI_INT32 low2 Least significant 32 bits of second operand

PLI_INT32 high2 Most significant 32 bits of second operand

Related
routines:

Use tf_add_long() to add two 64-bit integers

Use tf_subtract_long() to subtract two 64-bit integers

Use tf_multiply_long() to multiply two 64-bit integers

Use tf_compare_long() to compare two 64-bit integers

high2 low2

high1 low1

high 32 bits low 32 bits

integer2

integer1

integer1 = integer1 / integer2

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 593
This is an unapproved IEEE Standards Draft, subject to change.

25.11 tf_dofinish()

The TF routine tf_dofinish() shall finish the software product execution the same as if a $finish() built-in

system task had been executed in the Verilog HDL source description.

tf_dofinish()

Synopsis: Exit software product execution.

Syntax: tf_dofinish()

Type Description

Returns: PLI_INT32 Always returns 0

Type Name Description

Arguments: None

Related
routines:

Use tf_dostop() to cause a product to enter interactive mode

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

594 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.12 tf_dostop()

The TF routine tf_dostop() shall cause a software product to enter into its interactive mode as if a $stop()
built-in system task had been executed in the Verilog HDL source description.

tf_dostop()

Synopsis: Cause software product to enter interactive mode.

Syntax: tf_dostop()

Type Description

Returns: PLI_INT32 Always returns 0

Type Name Description

Arguments: None

Related
routines:

Use tf_dofinish() exit software product execution

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 595
This is an unapproved IEEE Standards Draft, subject to change.

25.13 tf_error()

The TF routine tf_error() shall provide an error reporting mechanism compatible with error messages gen-

erated by the software product.

— The format control string uses the same formatting controls as the C printf() function (for
example, %d).

— The maximum number of arguments that can be used in the format control string is five.

— The location information (file name and line number) of the current instance of the user-defined sys-
tem task or function is appended to the message using a format compatible with error messages gen-
erated by the software product.

— The message is written to both the output channel of the software product which invoked the PLI
application and the output log file of the product.

If tf_error() is called by the checktf application associated with the user-defined system task or function, the

following rules shall apply:

— If the checktf application is called when the Verilog HDL source code was being parsed or compiled,
parsing or compilation shall be aborted after the error is reported.

— If the checktf application is called when the user-defined task or function was invoked on the interac-
tive command line, the interactive command shall be aborted.

tf_error()

Synopsis: Report an error message.

Syntax: tf_error(format, arg1,...arg5)

Type Description

Returns: PLI_INT32 Always returns 0

Type Name Description

Arguments: quoted string or

PLI_BYTE8 *

format A quoted character string or pointer to a character string

that controls the message to be written

(optional) arg1...arg5 One to five optional arguments of the format control string;

the type of each argument should be consistent with how it

is used in the format string

Related
routines:

Use tf_message() to write error messages with additional format control

Use tf_warning() to write a warning message

Use io_printf() or io_mcdprintf() to write a formatted message

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

596 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.14 tf_evaluatep(), tf_ievaluatep()

The TF routines tf_evaluatep() and tf_ievaluatep() shall evaluate the current value of the specified argu-

ment in the current instance or a specific instance of a user-defined system task or function. The current

value shall be returned to the value cell in the tf_exprinfo structure returned from a previous call to the

routine tf_exprinfo() or tf_iexprinfo(). This can be a more efficient way to obtain the current value of an

expression than to call tf_exprinfo() or tf_iexprinfo() repeatedly.

The argument narg shall be the index number of an argument in a user-defined system task or function. Task/

function argument index numbering shall proceed from left to right, with the left-most argument being num-

ber 1.

tf_evaluatep(), tf_ievaluatep()

Synopsis: Evaluate a system task/function argument expression.

Syntax: tf_evaluatep(narg)
tf_ievaluatep(narg, instance_p)

Type Description

Returns: PLI_INT32 0 if successful; 1 if an error occurred

Type Name Description

Arguments: PLI_INT32 narg Index number of the user-defined system task or function

argument

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_exprinfo() or tf_iexprinfo() to get a pointer to the s_tfexprinfo structure

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 597
This is an unapproved IEEE Standards Draft, subject to change.

25.15 tf_exprinfo(), tf_iexprinfo()

The TF routines tf_exprinfo() and tf_iexprinfo() shall return a pointer to a structure containing general

information about the specified argument in the current instance or a specific instance of a user-defined sys-

tem task or function. The information shall be stored in the C structure s_tfexprinfo.

Memory space shall first be allocated to hold the information before calling tf_exprinfo() or tf_iexprinfo().
For example:

{
s_tfexprinfo info; /* declare a variable of the structure type */
tf_exprinfo(n, &info);/* pass tf_exprinfo a pointer to the variable */
...
}

This routine shall return the second argument, which is the pointer to the information structure. If narg is out

of range, or if some other error is found, then 0 shall be returned. The argument narg shall be the index num-

ber of an argument in a user-defined system task or function. Task/function argument index numbering shall

proceed from left to right, with the left-most argument being number 1.

tf_exprinfo(), tf_iexprinfo()

Synopsis: Get system task/function argument expression information.

Syntax: tf_exprinfo(narg, exprinfo_p)
tf_iexprinfo(narg, exprinfo_p, instance_p)

Type Description

Returns: struct t_tfexprinfo * Pointer to a structure containing the value of the second argument if successful;

0 if an error occurred

Type Name Description

Arguments: PLI_INT32 narg Index number of the user-defined system task or

function argument

struct t_tfexprinfo * exprinfo_p Pointer to a variable declared as a

t_tfexprinfo structure type

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined

system task or function

Related
routines:

Use tf_nodeinfo() or tf_inodeinfo() for additional information on writable arguments

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

598 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The s_tfexprinfo structure is defined in veriuser.h and is listed in Figure 163.

Figure 163—The s_tfexprinfo structure definition

The expr_type of the s_tfexprinfo structure shall indicate the Verilog HDL data type of the argument,

and it shall be one of the predefined constants as given in Table 187 and defined in veriuser.h.

If the expression type is tf_readonly, tf_readwrite, tf_rwbitselect, tf_rwpartselect, or tf_rwmemselect,
the expr_value_p of the s_tfexprinfo structure shall be a pointer to an array of s_vecval structures

that shall contain the resultant value of the expression. The s_vecval structure for representing vector val-

ues is defined in veriuser.h and is listed in Figure 164.

Table 187—Predefined constants used with tf_exprinfo()

Predefined constant Description

tf_nullparam For null or non-existent arguments

tf_string For string arguments

tf_readonly For net, net bit-select, net part-select

and constant integer arguments

tf_readonlyreal For constant real number arguments

tf_readwrite For reg, integer and time variable

arguments

tf_readwritereal For real variable arguments

tf_rwbitselect For bit-select of reg, integer and

time variable arguments

tf_rwpartselect For part-select of reg, integer and

time variable arguments

tf_rwmemselect For memory word arguments

typedef struct t_tfexprinfo
{
 PLI_INT16 expr_type;
 PLI_INT16 padding;
 struct t_vecval *expr_value_p;
 double real_value;
 PLI_BYTE8 *expr_string;
 PLI_INT32 expr_ngroups;
 PLI_INT32 expr_vec_size;
 PLI_INT32 expr_sign;
 PLI_INT32 expr_lhs_select;
 PLI_INT32 expr_rhs_select;
} s_tfexprinfo, *p_tfexprinfo;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 599
This is an unapproved IEEE Standards Draft, subject to change.

Figure 164—The s_vecval structure definition

If the number of bits in the vector (defined by the expr_vec_size field of the s_tfexprinfo structure) is

less than or equal to 32, then there shall only be one s_vecval group in the expr_value_p array. For

33 bits to 64 bits, there shall be two groups in the array, and so on. The number of groups shall also be given

by the value of the expr_ngroups field of the s_tfexprinfo structure. The components avalbits and bval-
bits of the s_vecval structure shall hold the bit patterns making up the value of the argument. The lsb in

the value shall be represented by the lsb’s in the avalbits and bvalbits components, and so on. The bit coding

shall be as given in Table 188.

If the expression type is tf_readonlyreal or tf_readwritereal, the real_value field of the s_tfexprinfo
structure shall contain the value.

If the expression is of type tf_string, the expr_string field of the s_tfexprinfo structure shall point to

the string.

If the expression type is tf_readonly, tf_readwrite, tf_rwbitselect, tf_rwpartselect, or tf_rwmemselect,
the expr_ngroups of the s_tfexprinfo structure shall indicate the number of groups for the argument

expression value and determine the array size of the expr_value_p value structure pointer. If the expression

type is tf_readonlyreal or tf_readwritereal, expr_ngroups shall be 0.

If the expression type is tf_readonly, tf_readwrite, tf_rwbitselect, tf_rwpartselect, or tf_rwmemselect,
the expr_vec_size field of the s_tfexprinfo structure shall indicate the total number of bits in the array

of expr_value_p value structures. If the expression type is tf_readonlyreal or tf_readwritereal,
expr_vec_size shall be 0.

The expr_sign field of the s_tfexprinfo structure shall indicate the sign type of the expression. It shall

be 0 for unsigned or nonzero for signed.

The expr_lhs_select and expr_rhs_select fields shall contain the select information about the object if it is a

reg bit-select, net bit-select, part-select, variable array word-select, or memory word-select.

Table 188—avalbits/bvalbits encoding

aval / bval Logic value

00 0

10 1

01 High impedance

11 Unknown

typedef struct t_vecval
{
 PLI_INT32 avalbits;
 PLI_INT32 bvalbits;
} s_vecval, *p_vecval;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

600 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.16 tf_getcstringp(), tf_igetcstringp()

The TF routines tf_getcstringp() and tf_igetcstringp() shall return a character string representing the value

of the specified argument in the current instance or a specific instance of a user-defined system task or

function. If the argument identified by narg is a literal string, reg, integer variable, time variable, or an

expression, then tf_getcstringp() or tf_igetcstringp() shall convert its value to a C language ASCII string

by

a) Eliminating leading zeros

b) Converting each group of 8 bits to an ASCII character

c) Adding a “\0” string termination character to the end

If the argument identified by narg is null or if narg is out of range, then a null shall be returned. If the

argument identified by narg is a real variable or an expression that evaluates to a real value, then

tf_getcstringp() and tf_igetcstringp() shall return NULL.

The argument narg shall be the index number of an argument in a user-defined system task or function. Task/

function argument index numbering shall proceed from left to right, with the left-most argument being num-

ber 1.

tf_getcstringp(), tf_igetcstringp()

Synopsis: Get system task/function argument value as a string.

Syntax: tf_getcstringp(narg)
tf_igetcstringp(narg, instance_p)

Type Description

Returns: PLI_BYTE8 * Pointer to a character string

Type Name Description

Arguments: PLI_INT32 narg Index number of the user-defined system task or function

argument

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_getp() or tf_igetp() to get an argument value as a 32-bit integer

Use tf_getlongp() or tf_igetlongp() to get an argument value as a 64-bit integer

Use tf_getrealp() or tf_igetrealp() to get an argument value as a double

Use tf_strgetp() or tf_istrgetp() to get an argument value as a formatted string

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 601
This is an unapproved IEEE Standards Draft, subject to change.

25.17 tf_getinstance()

The TF routine tf_getinstance() shall return a pointer that identifies the current instance of the user-defined

task or function in the Verilog HDL source code. The pointer returned by tf_getinstance() can be used later

in other TF routine calls to refer to this instance of the task or function. Many of the TF routines are in two

forms. One deals with the current task or function instance. The other deals with some other instance of the

task or function, where the instance pointer for the other instance was previously obtained using

tf_getinstance() during a call to a user routine initiated by that instance.

tf_getinstance()

Synopsis: Get a pointer to the current instance of a user-defined system task or function.

Syntax: tf_getinstance()

Type Description

Returns: PLI_BYTE8 * Pointer to a system task or function instance

Type Name Description

Arguments: None

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

602 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.18 tf_getlongp(), tf_igetlongp()

The TF routines tf_getlongp() and tf_igetlongp() shall return a 64-bit integer value for the argument speci-

fied by narg in the current instance or a specific instance of a user-defined system task or function. If narg is

out of range or the argument is null, then 0 shall be returned. Logic X and Z bits in the argument value

shall be interpreted as 0.

The argument narg shall be the index number of an argument in a user-defined system task or function. Task/

function argument index numbering shall proceed from left to right, with the left-most argument being num-

ber 1.

tf_getlongp(), tf_igetlongp()

Synopsis: Get system task/function argument value as a 64-bit integer.

Syntax: tf_getlongp(aof_highvalue, narg)
tf_igetlongp(aof_highvalue, narg, instance_p)

Type Description

Returns: PLI_INT32 Least significant (right-most) 32 bits of the argument value

Type Name Description

Arguments: PLI_INT32 * aof_highvalue Pointer to most significant (left-most) 32 bits of the argu-

ment value

PLI_INT32 narg Index number of the user-defined system task or function

argument

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_getp() or tf_igetp() to get an argument value as a 32-bit integer

Use tf_getrealp() or tf_igetrealp() to get an argument value as a double

Use tf_getcstringp() or tf_igetcstringp() to get an argument value as a string

Use tf_strgetp() or tf_istrgetp() to get an argument value as a formatted string

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 603
This is an unapproved IEEE Standards Draft, subject to change.

25.19 tf_getlongtime(), tf_igetlongtime()

The TF routines tf_getlongtime() and tf_igetlongtime() shall return the simulation time as a 64-bit integer.

The high 32 bits of simulation time shall be assigned to the aof_hightime argument, and the low 32 bits of

time shall be returned.

Time shall be expressed in the timescale unit of the module containing the current instance or a specific

instance of the user-defined system task or function.

tf_getlongtime(), tf_igetlongtime()

Synopsis: Get current simulation time as a 64-bit integer.

Syntax: tf_getlongtime(aof_hightime)
tf_igetlongtime(aof_hightime, instance_p)

Type Description

Returns: PLI_INT32 Least significant (right-most) 32 bits of simulation time

Type Name Description

Arguments: PLI_INT32 * aof_hightime Pointer to most significant (left-most) 32 bits of simulation

time

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_gettime() to get the simulation time as a 32-bit integer

Use tf_strgettime() to get the simulation time as a character string

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

604 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.20 tf_getnextlongtime()

The TF routine tf_getnextlongtime() shall assign the 64-bit time of the next simulation event to

aof_lowtime and aof_hightime, and it shall return an integer value that indicates the meaning of the time

assigned. The time shall be expressed in the timescale units of the module containing the current user-

defined system task or function instance.

The tf_getnextlongtime() routine shall only return the time for the next simulation event when it is called in

a read-only synchronize mode. A read-only synchronize mode occurs when the misctf user application has

been called with reason_rosynch. If tf_getnextlongtime() is not called in read-only synchronize mode,

then the current simulation time shall be assigned.

Table 189 summarizes the functions of tf_getnextlongtime().

tf_getnextlongtime()

Synopsis: Get next time at which a simulation event is scheduled.

Syntax: tf_getnextlongtime(aof_lowtime, aof_hightime)

Type Description

Returns: PLI_INT32 Integer value representing the meaning of the next event time obtained

Type Name Description

Arguments: PLI_INT32 * aof_lowtime Pointer to least significant (right-most) 32 bits of simula-

tion time

PLI_INT32 * aof_hightime Pointer to most significant (left-most) 32 bits of simulation

time

Table 189—Return values for tf_getnextlongtime()

When tf_getnextlongtime()
shall return

tf_getnextlongtime()
shall assign to aof_lowtime

and aof_hightime

tf_getnextlongtime() was called from a

misctf application that was called with

reason_rosynch

0 The next simulation time for

which an event is scheduled

There are no more future events sched-

uled

1 0

tf_getnextlongtime() was not called

from a misctf application that was called

with reason_rosynch

2 The current simulation time

NOTE—Case 2 shall take precedence over case 1.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 605
This is an unapproved IEEE Standards Draft, subject to change.

25.21 tf_getp(), tf_igetp()

The TF routines tf_getp() and tf_igetp() shall return a value of the argument specified by narg in the current

instance or a specific instance of a user-defined system task or function. If the value of the argument is an

integer or a real number, the routines shall return an integer value. If the argument is a literal string, then the

routines shall return a pointer to a “C” type string (a string terminated by a “\0” character). If narg is out of

range or the argument is null, then 0 shall be returned. Logic X and Z bits in the argument value shall be

interpreted as 0.

The argument narg shall be the index number of an argument in a user-defined system task or function. Task/

function argument index numbering shall proceed from left to right, with the left-most argument being num-

ber 1.

The routines tf_getp() and tf_getrealp() differ in the value returned, as shown by the following example.

If the fourth argument in the user-defined system task or function has a value of 9.6 (a real value), then

PLI_INT32 ivalue = tf_getp(4)

would set ivalue to 10, whereas

double dvalue = tf_getrealp(4)

would set dvalue to 9.6.

In the first example, note that the PLI_INT32 conversion rounds off the value of 9.6 to 10 (rather than trun-

cating it to 9). In the second example, note that the real value has to be declared as a “double” (not as a

“float”). Rounding is performed following the Verilog HDL rules.

tf_getp(), tf_igetp()

Synopsis: Get a system task/function argument value as an integer or character string pointer.

Syntax: tf_getp(narg)
tf_igetp(narg, instance_p)

Type Description

Returns: PLI_INT32 Integer value of an argument or character string pointer of argument string value

Type Name Description

Arguments: PLI_INT32 narg Index number of the user-defined system task or function

argument

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_getlongp() or tf_igetlongp() to Get an argument value as a 64-bit integer

Use tf_getrealp() or tf_igetrealp() to get an argument value as a double

Use tf_getcstringp() or tf_igetcstringp() to get an argument value as a string

Use tf_strgetp() or tf_istrgetp() to get an argument value as a formatted string

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

606 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.22 tf_getpchange(), tf_igetpchange()

The TF routines tf_getpchange() and tf_igetpchange() shall return the number of the next argument with a

number greater than narg that changed value for the current instance or for a specific instance of a user-

defined system task or function. The narg argument shall be 0 the first time this routine is called within a

given user routine invocation. The routines shall return the argument number if there is a change in an argu-

ment with a number greater than narg, and they shall return 0 if there are no changes in arguments greater

than narg or if an error is detected. The routine shall use the saved pvc flags, so it is necessary to execute

tf_movepvc_flag(-1) prior to calling the routine.

The argument narg shall be the index number of an argument in a user-defined system task or function. Task/

function argument index numbering shall proceed from left to right, with the left-most argument being num-

ber 1.

PVC flags shall indicate whether a particular user-defined system task or function argument has changed

value. Each argument shall have two pvc flags: a current pvc flag, which shall be set by a software product

when the change occurs, and a saved pvc flag, which shall be controlled by the user.

NOTE—PVC flags shall not be set by the software product until tf_asynchon() or tf_iasynchon() has been called.

tf_getpchange(), tf_igetpchange()

Synopsis: Get the index number of the next system task/function argument that changed value.

Syntax: tf_getpchange(narg)
tf_igetpchange(narg, instance_p)

Type Description

Returns: PLI_INT32 Index number of the argument that changed

Type Name Description

Arguments: PLI_INT32 narg Index number of the user-defined system task or function

argument

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_asynchon() or tf_iasynchon() to enable pvc flags

Use tf_imovepvc_flag(-1) to save pvc flags before calling tf_getpchange()

Use tf_copypvc_flag() or tf_icopypvc_flag() to copy pvc flags

Use tf_testpvc_flag() or tf_itestpvc_flag() to get the value of a saved pvc flag

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 607
This is an unapproved IEEE Standards Draft, subject to change.

25.23 tf_getrealp(), tf_igetrealp()

The TF routines tf_getrealp() and tf_igetrealp() shall return a double-precision value of the argument spec-

ified by narg in the current instance or a specific instance of a user-defined system task or function. If narg is

out of range or the argument is null, then 0 shall be returned. Logic X and Z bits in the argument value shall

be interpreted as 0.

The routines tf_getrealp() and tf_igetrealp() shall return 0.0 if the value being read is a literal string. There-

fore, before calling these routines, tf_typep() or tf_itypep() should be called to check the type of the argu-

ment.

The argument narg shall be the index number of an argument in a user-defined system task or function. Task/

function argument index numbering shall proceed from left to right, with the left-most argument being num-

ber 1.

tf_getrealp(), tf_igetrealp()

Synopsis: Get a system task/function argument value as a double-precision value.

Syntax: tf_getrealp(narg)
tf_igetrealp(narg, instance_p)

Type Description

Returns: double Double-precision value of an argument

Type Name Description

Arguments: PLI_INT32 narg Index number of the user-defined system task or function

argument

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_getp() or tf_igetp() to get an argument value as a 32-bit integer

Use tf_getlongp() or tf_igetlongp() to get an argument value as a 64-bit integer

Use tf_getcstringp() or tf_igetcstringp() to get an argument value as a string

Use tf_strgetp() or tf_istrgetp() to get an argument value as a formatted string

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

608 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.24 tf_getrealtime(), tf_igetrealtime()

The TF routines tf_getrealtime() and tf_igetrealtime() shall return the simulation time as a real number in

double-precision format.

Time shall be expressed in the timescale unit of the module containing the current instance or a specific

instance of a user-defined system task or function.

tf_getrealtime(), tf_igetrealtime()

Synopsis: Get the current simulation time in double-precision format.

Syntax: tf_getrealtime()
tf_igetrealtime(instance_p)

Type Description

Returns: double Current simulation time

Type Name Description

Arguments: PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_gettime() to get the lower 32-bits of simulation time as an integer

Use tf_gettime() to get the full 64-bits of simulation time as an integer

Use tf_strgettime() to get simulation time as a character string

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 609
This is an unapproved IEEE Standards Draft, subject to change.

25.25 tf_gettime(), tf_igettime()

The TF routines tf_gettime() and tf_igettime() shall return the lower 32 bits of simulation time as an

integer.

Time shall be expressed in the timescale unit of the module containing the current instance or a specific

instance of a user-defined system task or function.

tf_gettime(), tf_igettime()

Synopsis: Get the current simulation time as a 32-bit integer.

Syntax: tf_gettime()
tf_igettime(instance_p)

Type Description

Returns: PLI_INT32 Least significant 32 bits of simulation time

Type Name Description

Arguments: PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_getlongtime() to get the full 64 bits of simulation time

Use tf_getrealtime() to get the simulation time as a double-precision real number

Use tf_strgettime() to get simulation time as a character string

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

610 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.26 tf_gettimeprecision(), tf_igettimeprecision()

The TF routines tf_gettimeprecision() and tf_igettimeprecision() shall return the timescale precision for

the module that contains the current instance or a specific instance of a user-defined system task or function.

The time precision is set by the `timescale Verilog HDL compiler directive in effect when the module

was compiled. The routines shall return an integer code representing the time precision, as shown in

Table 190.

When tf_igettimeprecision() is called with a null instance pointer, the routine shall return the simulation

time unit, which is the smallest time precision used by all modules in a design.

tf_gettimeprecision(), tf_igettimeprecision()

Synopsis: Get the timescale precision of a module or a simulation.

Syntax: tf_gettimeprecision()
tf_igettimeprecision(instance_p)

Type Description

Returns: PLI_INT32 An integer value that represents a time precision

Type Name Description

Arguments: PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function or null to represent the simulation

Related
routines:

Use tf_gettimeunit() or tf_igettimeunit() to get the timescale time units

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

Table 190—Code returned by tf_gettimeprecision() and tf_igettimeprecision()

Integer code returned Simulation time precision

2 100 s

1 10 s

0 1 s

-1 100 ms

-2 10 ms

-3 1 ms

-4 100 us

-5 10 us

-6 1 us

-7 100 ns

-8 10 ns

-9 1 ns

-10 100 ps

-11 10 ps

-12 1 ps

-13 100 fs

-14 10 fs

-15 1 fs

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 611
This is an unapproved IEEE Standards Draft, subject to change.

25.27 tf_gettimeunit(), tf_igettimeunit()

The TF routines tf_gettimeunit() and tf_igettimeunit() shall return the timescale time units for the module

that contains the current instance or a specific instance of a user-defined system task or function. The time

unit for a module is set by the `timescale Verilog HDL compiler directive in effect when the module was

compiled. The routines shall return an integer code representing the time unit, as shown in Table 191.

When tf_igettimeunit() is called with a null instance pointer, the routines shall return the simulation time

unit, which is the smallest time precision used by all modules in a design.

tf_gettimeunit(), tf_igettimeunit()

Synopsis: Get the timescale unit of a module or a simulation.

Syntax: tf_gettimeunit()
tf_igettimeunit(instance_p)

Type Description

Returns: PLI_INT32 An integer value that represents a time unit

Type Name Description

Arguments: PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function or null to represent the simulation

Related
routines:

Use tf_gettimeprecision() or tf_igettimeprecision() to get the timescale time precision

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

Table 191—Code returned by tf_gettimeunit() and tf_igettimeunit()

Integer code returned Simulation time unit

2 100 s

1 10 s

0 1 s

-1 100 ms

-2 10 ms

-3 1 ms

-4 100 u s

-5 10 us

-6 1 u s

-7 100 ns

-8 10 ns

-9 1 ns

-10 100 ps

-11 10 ps

-12 1 ps

-13 100 fs

-14 10 fs

-15 1 fs

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

612 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.28 tf_getworkarea(), tf_igetworkarea()

The TF routines tf_getworkarea() and tf_igetworkarea() shall return the work area pointer value of the

current instance or a specific instance of a user-defined system task or function. The value of the work area

pointer shall be placed there by a previous call to the routine tf_setworkarea() or tf_isetworkarea(). These

routines can be used as a means for two user applications to share information. For example, a checktf user

application might open a file and then place the file pointer into the workarea using tf_setworkarea(). Later,

the calltf user application can retrieve the file pointer using tf_getworkarea().

tf_getworkarea(), tf_igetworkarea()

Synopsis: Get work area pointer.

Syntax: tf_getworkarea()
tf_igetworkarea(instance_p)

Type Description

Returns: PLI_BYTE8 * Pointer to a work area shared by all routines for a specific task/function instance

Type Name Description

Arguments: PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_setworkarea() or tf_isetworkarea() to put a value into the work area pointer

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 613
This is an unapproved IEEE Standards Draft, subject to change.

25.29 tf_long_to_real()

The TF routine tf_long_to_real() shall convert a 64-bit integer to a real (double-precision floating-point)

number. The variable pointed to by aof_real shall contain the converted number upon return from this

routine.

tf_long_to_real()

Synopsis: Convert a 64-bit integer to a real number.

Syntax: tf_long_to_real(low, high, aof_real)

Type Description

Returns: void

Type Name Description

Arguments: PLI_INT32 low Least significant (right-most) 32 bits of a 64-bit integer

PLI_INT32 high Most significant (left-most) 32 bits of a 64-bit integer

double * aof_real Pointer to a double-precision variable

Related
routines:

Use tf_real_to_long() to convert a real number to a 64-bit integer

Use tf_longtime_tostr() to convert a 64-bit integer to a character string

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

614 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.30 tf_longtime_tostr()

The TF routine tf_longtime_tostr() shall convert a 64-bit integer time value to a character string. The time

value shall be unsigned.

tf_longtime_tostr()

Synopsis: Convert 64-bit integer time value to a character string.

Syntax: tf_longtime_tostr(lowtime, hightime)

Type Description

Returns: PLI_BYTE8 * Pointer to a character string representing the simulation time value

Type Name Description

Arguments: PLI_INT32 lowtime Least significant (right-most) 32 bits of simulation time

PLI_INT32 hightime Most significant (left-most) 32 bits of simulation time

Related
routines:

Use tf_getlongtime() to get the current simulation time as a 64-bit integer

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 615
This is an unapproved IEEE Standards Draft, subject to change.

25.31 tf_message()

The TF routine tf_message() shall display warning or error message information using the warning and

error message format for a software product. The location information (file name and line number) of the

current instance of the user-defined system task or function shall be appended to the message using a format

compatible with warning and error messages generated by the software product, and the message shall be

written to both the output channel of the software product which invoked the PLI application and the output

log file of the product.

The level field shall indicate the severity level of the error, specified as a predefined constant. There shall be

five levels: ERR_ERROR, ERR_SYSTEM, ERR_INTERNAL, ERR_MESSAGE, and ERR_WARNING. If

tf_message() is called by the checktf application associated with the user-defined system task or function,

the following rules shall apply:

— If the checktf application is called when the Verilog HDL source code was being parsed or compiled,
and the level is ERR_ERROR, ERR_SYSTEM, or ERR_INTERNAL, then parsing or compilation shall
be aborted after an error message is reported.

— If the checktf application is called when the Verilog HDL source code was being parsed or compiled,
and the level is ERR_WARNING or ERR_MESSAGE, then parsing or compilation shall continue
after a warning message is reported.

— If the checktf application is called when the user-defined task or function was invoked on the interac-
tive command line, the interactive command shall be aborted after a warning message or error mes-
sage is reported.

The facility and code fields shall be string arguments that can be used in the Verilog software product mes-

sage syntax. These strings shall be less than 10 characters in length.

tf_message()

Synopsis: Report an error or warning message with software product interruption control.

Syntax: tf_message(level, facility, code, message, arg1,...arg5)

Type Description

Returns: PLI_INT32 Always returns 0

Type Name Description

Arguments: PLI_INT32 level A predefined constant indicating the severity level of the

error

quoted string or

PLI_BYTE8 *

facility A quoted character string or pointer to a character string

used in the output message

quoted string or

PLI_BYTE8 *

code A quoted character string or pointer to a character string

used in the output message

quoted string or

PLI_BYTE8 *

message A quoted character string or pointer to a character string

that controls the message to be written

(optional) arg1...arg5 One to five optional arguments of the format control string;

the type of each argument should be consistent with how it

is used in the message string

Related
routines:

Use tf_text() to store error information prior to calling tf_message

Use tf_error() to report error messages

Use tf_warning() to report warning messages

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

616 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The message argument shall be a user-defined control string containing the message to be displayed. The

control string shall use the same formatting controls as the C printf() function (for example, %d). The

message shall use up to a maximum of five variable arguments. There shall be no limit to the length of a vari-

able argument. Formatting characters, such as \n, \t, \b, \f, or \r, do not need to be included in the mes-

sage—the software product shall automatically format each message.

An example of a tf_message() call and the output generated are shown below. Note that the format of the

output shall be defined by the software product.

Calling tf_message() with the arguments:

tf_message(ERR_ERROR, “User”, “TFARG”,
“Argument number %d is illegal in task %s”, argnum, taskname);

Might produce the output:

ERROR! Argument number 2 is illegal in task [User-TFARG]
$usertask

The routine tf_message() provides more control over the format and severity of error or warning messages

than the routines tf_error() and tf_warning() can provide. In addition, the routine tf_message() can be used

in conjunction with tf_text(), which shall allow an error or warning message to be stored while a PLI appli-

cation executes additional code before the message is printed and parsing or compilation of Verilog HDL

source possibly aborted.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 617
This is an unapproved IEEE Standards Draft, subject to change.

25.32 tf_mipname(), tf_imipname()

The TF routine tf_mipname() shall return the Verilog HDL hierarchical path name to the module instance

containing the call to the current instance or a specific instance of a user-defined system task or function.

The string obtained shall be stored in a temporary buffer. If the string is needed across multiple calls to the

PLI application, the string should be preserved.

tf_mipname(), tf_imipname()

Synopsis: Get the hierarchical module instance path name as a string.

Syntax: tf_mipname()
tf_imipname(instance_p)

Type Description

Returns: PLI_BYTE8 * Pointer to a string containing the hierarchical path name

Type Name Description

Arguments: PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_spname() or tf_ispname() to get the scope path name

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

618 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.33 tf_movepvc_flag(), tf_imovepvc_flag()

The TF routines tf_movepvc_flag() and tf_imovepvc_flag() shall move the current pvc flag to the saved pvc

flag and clear the current flag for the current instance or a specific instance of a user-defined system task or

function. The routine shall return the value of the flag that was moved.

The argument narg shall be the index number of an argument in a specific instance of a user-defined system

task or function. Task/function argument index numbering shall proceed from left to right, with the left-most

argument being number 1. If narg is -1, then all argument pvc flags shall be moved and the logical OR of all

saved flags returned.

PVC flags shall be used to indicate whether a particular user-defined system task or function argument has

changed value. Each argument shall have two pvc flags: a current pvc flag, which shall be set by a software

product when the change occurs, and a saved pvc flag, which shall be controlled by the user.

NOTE—PVC flags shall not be set by the software product until tf_asynchon() or tf_iasynchon() has been called.

tf_movepvc_flag(), tf_imovepvc_flag()

Synopsis: Move system task/function argument value change flags.

Syntax: tf_movepvc_flag(narg)
tf_imovepvc_flag(narg, instance_p)

Type Description

Returns: PLI_INT32 The value of the pvc flag

Type Name Description

Arguments: PLI_INT32 narg Index number of the user-defined system task or function

argument, or -1

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_asynchon() or tf_iasynchon() to enable pvc flags

Use tf_getpchange() or tf_igetpchange() to get the index number of the argument that changed

Use tf_copypvc_flag() or tf_icopypvc_flag() to copy a pvc flag to the saved pvc flag

Use tf_testpvc_flag() or tf_itestpvc_flag() to get the value of a saved pvc flag

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 619
This is an unapproved IEEE Standards Draft, subject to change.

25.34 tf_multiply_long()

The TF routine tf_multiply_long() shall multiply two 64-bit values. After calling tf_multiply_long(), the

variables used to pass the first operand shall contain the results of the multiplication. Figure 165 shows the

high and low 32 bits of two 64-bit integers and how tf_multiply_long() shall multiply them.

Figure 165—Multiplying with tf_multiply_long()

tf_multiply_long()

Synopsis: Multiply two 64 bit integers.

Syntax: tf_multiply_long(aof_low1, aof_high1, low2, high2)

Type Description

Returns: void

Type Name Description

Arguments: PLI_INT32 * aof_low1 Pointer to least significant 32 bits of first operand

PLI_INT32 * aof_high1 Pointer to most significant 32 bits of first operand

PLI_INT32 low2 Least significant 32 bits of second operand

PLI_INT32 high2 Most significant 32 bits of second operand

Related
routines:

Use tf_add_long() to add two 64-bit integers

Use tf_subtract_long() to subtract two 64-bit integers

Use tf_divide_long() to divide two 64-bit integers

Use tf_compare_long() to compare two 64-bit integers

high2 low2

high1 low1

high 32 bits low 32 bits

integer2

integer1

integer1 = integer1 * integer2

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

620 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.35 tf_nodeinfo(), tf_inodeinfo()

The TF routines tf_nodeinfo() and tf_inodeinfo() shall obtain information about the specified argument in

the current instance or a specific instance of a user-defined system task or function.

The information shall be stored in the C structure s_tfnodeinfo as defined in the file veriuser.h.

The routine shall only be called for arguments that are of the types described in Table 192. Memory space

shall first be allocated to hold the information before calling tf_nodeinfo() or tf_inodeinfo(). For example:

{
s_tfnodeinfo info; /* declare a variable of the structure type */
tf_nodeinfo(n, &info); /* pass tf_nodeinfo a pointer to the variable */
...
}

The routines shall return the second argument, which is the pointer to the information structure. If narg is

out of range, or if some other error is found, then 0 shall be returned.

The argument narg shall be the index number of an argument in a user-defined system task or function. Task/

function argument index numbering shall proceed from left to right, with the left-most argument being num-

ber 1.

The tf_nodeinfo() and tf_inodeinfo() routines shall support at least the following Verilog data types as a

system task or system function argument:

— scalar and vector regs
— scalar and vector nets
— integer, time and real variables
— word select of a one-dimensional reg, integer or time array
— null argument

The s_tfnodeinfo structure is defined in veriuser.h and is listed in Figure 166.

tf_nodeinfo(), tf_inodeinfo()

Synopsis: Get system task/function argument node information.

Syntax: tf_nodeinfo(narg, nodeinfo_p)
tf_inodeinfo(narg, nodeinfo_p, instance_p)

Type Description

Returns: struct t_tfnodeinfo * The value of the second argument if successful; 0 if an error occurred

Type Name Description

Arguments: PLI_INT32 narg Index number of the user-defined system task or

function argument

struct t_tfnodeinfo * nodeinfo_p Pointer to a variable declared as the

t_tfnodeinfo structure type

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined

system task or function

Related
routines:

Use tf_exprinfo() or tf_iexprinfo() for general information on arguments

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 621
This is an unapproved IEEE Standards Draft, subject to change.

Figure 166—The s_tfnodeinfo structure definition

The following paragraphs define the fields of the s_tfnodeinfo structure.

The node_type field of the s_tfnodeinfo structure shall indicate the Verilog HDL data type of the argu-

ment, and is one of the predefined constants as given in Table 192 and defined in veriuser.h.

The node_value field of the s_tfnodeinfo structure shall be a union of pointers to value structures defin-

ing the current value on the node referenced by the argument. The union member accessed shall depend on

the node_type. The union members are given in Table 193.

Table 192—Predefined constants for node_type

Predefined constant Description

tf_null_node Not a writable argument

tf_reg_node Argument references a reg variable

tf_integer_node Argument references an integer variable

tf_real_node Argument references a real variable

tf_time_node Argument references a time variable

tf_netvector_node Argument references a vector net

tf_netscalar_node Argument references a scalar net

tf_memory_node Argument references a memory

typedef struct t_tfnodeinfo
{
 PLI_INT16 node_type;
 PLI_INT16 padding;
 union
 {
 struct t_vecval *vecval_p;
 struct t_strengthval *strengthval_p;
 PLI_BYTE8 *memoryval_p;
 double *real_val_p;
 } node_value;
 PLI_BYTE8 *node_symbol;
 PLI_INT32 node_ngroups;
 PLI_INT32 node_vec_size;
 PLI_INT32 node_sign;
 PLI_INT32 node_ms_index;
 PLI_INT32 node_ls_index;
 PLI_INT32 node_mem_size;
 PLI_INT32 node_lhs_element;
 PLI_INT32 node_rhs_element;
 PLI_INT32 *node_handle;
} s_tfnodeinfo, *p_tfnodeinfo;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

622 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

If the node_type is tf_reg_node, tf_integer_node, tf_time_node, or tf_netvector_node, then node_value
shall be a pointer to an array of s_vecval structures that gives the resultant value of the node. The

s_vecval structure for representing vector values is defined in veriuser.h and is listed in Figure 167.

Figure 167—The s_vecval structure definition

If the number of bits in the vector (defined by the node_vec_size field of the s_tfnodeinfo structure) is

less than or equal to 32, then there shall only be one s_vecval group in the node_value.vecval_p
array. For 33 bits to 64 bits, two groups shall be in the array, and so on. The number of groups shall also be

given by the value of node_ngroups. The fields for avalbits and bvalbits of the s_vecval structure shall

hold the bit patterns making up the value of the argument. The lsb in the value shall be represented by the

lsb’s in the avalbits and bvalbits components, and so on. The bit coding shall be as given in Table 194.

If the node_type field of the s_tfnodeinfo structure is tf_netscalar_node, then the

node_value.strengthval_p field of the s_tfnodeinfo structure shall point to an s_strengthval
structure of the form given in Figure 168.

Figure 168—The s_strengthval structure definition

Table 193—How the node_value union is used

When the node_type is The union member used is

tf_reg_node, tf_integer_node, tf_time_node,
or tf_netvector_node

vecval_p

tf_real_node real_val_p

tf_netscalar_node strengthval_p

tf_memory_node memoryval_p

Table 194—avalbits/bvalbits encoding

aval / bval Logic value

00 0

10 1

01 High impedance

11 Unknown

typedef struct t_vecval
{
 PLI_INT32 avalbits;
 PLI_INT32 bvalbits;
} s_vecval, *p_vecval;

typedef struct t_strengthval
{
 PLI_INT32 strength0;
 PLI_INT32 strength1;
} s_strengthval, *p_strengthval;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 623
This is an unapproved IEEE Standards Draft, subject to change.

In the s_strengthval structure, strength0 shall give the 0-strength bit pattern for the value, and

strength1 shall give the 1-strength bit pattern. Refer to 7.10 for details about these bit patterns.

If the node_type field of the s_tfnodeinfo structure is tf_memory_node, then

node_value.memoryval_p shall point to a memval structure giving the total contents of the memory. The

structure is organized as shown in Figure 169.

Figure 169—The memval structure definition

Note that a pointer to the memval structure data structure cannot be represented in C, so the

node_value.memoryval_p field of the s_tfnodeinfo structure is declared as a pointer to a PLI_BYTE8
type. The memory element with the lowest number address in the Verilog array declaration shall be located

in the first group of bytes, which is the byte group represented by memval[0].

The node_symbol field of the s_tfnodeinfo structure shall be a string pointer to the identifier of the

argument.

If the node_type field of the s_tfnodeinfo structure is tf_reg_node, tf_integer_node, tf_time_node, or

tf_netvector_node, then the node_ngroups field of the s_tfnodeinfo structure shall indicate the number

of groups for the argument nodevalue and shall determine the array size of the node_value.vecval_p value

structure. If the node_type is tf_real_node, then node_ngroups shall be 0.

If the node_type field of the s_tfnodeinfo structure is tf_reg_node, tf_integer_node, tf_time_node, or

tf_netvector_node, then the node_vec_size field of the s_tfnodeinfo structure shall indicate the total

number of bits in the array of the node_value.vecval_p structure. If node_type is tf_real_node, then

node_vec_size shall be 0.

The node_sign field of the s_tfnodeinfo structure shall indicate the sign type of the node as follows: 0

for unsigned, nonzero for signed.

If the node_type is tf_memory_node, then node_mem_size shall indicate the number of elements in the

node_value.memoryval_p structure.

If the node_type field of the s_tfnodeinfo structure is tf_reg_node or tf_netvector_node, then the

node_value.node_ms_element and node_value.node_ls_element fields shall contain the msb and lsb of the

given vector.

If the node_type field of the s_tfnodeinfo structure is tf_reg_node or tf_netvector_node, and the

argument is a part-select, then the node_value.node_rhs_index and node_value.node_lhs_index fields shall

contain the msb and lsb of the given part-select.

The field node_handle is not used.

struct
{
 PLI_BYTE8 avalbits[node_ngroups];
 PLI_BYTE8 bvalbits[node_ngroups];
} memval[node_mem_size];

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

624 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.36 tf_nump(), tf_inump()

The TF routines tf_nump() and tf_inump() shall return the number of task/function arguments specified in

the current instance or a specific instance of a user-defined task or function statement in the Verilog source

description. The number returned shall be greater than or equal to zero.

Note: null arguments are counted. Therefore, $foo() returns a count of 1 and $foo(,) returns a count of 2. The

routine tf_typep() returns a type of tf_nullparam for a null argument.

tf_nump(), tf_inump()

Synopsis: Get number of task or function arguments.

Syntax: tf_nump()
tf_inump(instance_p)

Type Description

Returns: PLI_INT32 The number of arguments

Type Name Description

Arguments: PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 625
This is an unapproved IEEE Standards Draft, subject to change.

25.37 tf_propagatep(), tf_ipropagatep()

The TF routines tf_propagatep() and tf_ipropagatep() shall write a value to an argument node of the cur-

rent instance or a specific instance of a user-defined system task or function, and then propagate the value to

any loads that read the value of the node.

In order to write values back into a Verilog software product data structure using tf_propagatep() and

tf_ipropagatep(), the value shall first be placed into the value structure pointed to by the component

expr_value_p as allocated by calling tf_exprinfo() or tf_iexprinfo(). The structure for tf_exprinfo()
and tf_iexprinfo() shall be used for all argument types except memories.

tf_propagatep(), tf_ipropagatep()

Synopsis: Propagate a system task/function argument value.

Syntax: tf_propagatep(narg)
tf_ipropagatep(narg, instance_p)

Type Description

Returns: PLI_INT32 0 if successful; 1 if an error occurred

Type Name Description

Arguments: PLI_INT32 narg Index number of the user-defined system task or function

argument

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_exprinfo() or tf_iexprinfo() to get an argument expression value

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

626 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.38 tf_putlongp(), tf_iputlongp()

The TF routines tf_putlongp() and tf_iputlongp() shall write a 64-bit integer value to the argument speci-

fied by narg of the current instance or a specific instance of a user-defined system task or function. If narg is

0, tf_putlongp() and tf_iputlongp() shall write the value as the return of a user-defined system function. If

narg is out of range or the argument cannot be written to, then the routines shall do nothing. Should the calltf

routine for a user defined system function fail to put a value during its execution, the default value of 0 shall

be applied.

The argument narg shall be the index number of an argument in a user-defined system task or function. Task/

function argument index numbering shall proceed from left to right, with the left-most argument being num-

ber 1.

The data type of the values to be written should be consistent with the type of put routine and the type of the

argument to which the value shall be written. Refer to 24.3 for more details on proper data type selection

with put routines.

NOTE—calling put routines to TF argument 0 (return of a function) shall only return a value in a calltf application, when

the call to the function is active. The action of the put routine shall be ignored when the function is not active.

tf_putlongp(), tf_iputlongp()

Synopsis: Write a 64-bit integer value to a system task/function argument or function return.

Syntax: tf_putlongp(narg, lowvalue, highvalue)
tf_iputlongp(narg, lowvalue, highvalue, instance_p)

Type Description

Returns: PLI_INT32 0 if successful; 1 if an error occurred

Type Name Description

Arguments: PLI_INT32 narg Index number of the user-defined system task or function

argument or 0 to return a function value

PLI_INT32 lowvalue Least significant (right-most) 32 bits of value

PLI_INT32 highvalue Most significant (left-most) 32 bits of value

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_putp() or tf_iputp() to put an argument value as a 32-bit integer

Use tf_putrealp() or tf_iputrealp() to put an argument value as a double

Use tf_strdelputp() to put a value as a formatted string with delay

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 627
This is an unapproved IEEE Standards Draft, subject to change.

25.39 tf_putp(), tf_iputp()

The TF routine tf_putp() and tf_iputp() shall write an integer value to the argument specified by narg of the

current instance or a specific instance of a user-defined system task or function. If narg is 0, tf_putp() or

tf_iputp() shall write the value as the return of a user-defined system function. If narg is out of range or the

argument cannot be written to, then the routines shall do nothing. Should the calltf routine for a user defined

system function fail to put a value during its execution, the default value of 0 shall be applied.

The argument narg shall be the index number of an argument in a user-defined system task or function. Task/

function argument index numbering shall proceed from left to right, with the left-most argument being num-

ber 1.

The data type of the value to be written should be consistent with the type of put routine and the type of the

argument to which the value shall be written. Refer to 24.3 for more details on proper data type selection

with put routines.

NOTE—Calling put routines to TF argument 0 (return of a function) shall only return a value in a calltf application,

when the call to the function is active. The action of the put routine shall be ignored when the function is not active.

tf_putp(), tf_iputp()

Synopsis: Put an integer value to a system task/function argument or function return.

Syntax: tf_putp(narg, value)
tf_iputp(narg, value, instance_p)

Type Description

Returns: PLI_INT32 0 if successful; 1 if an error occurred

Type Name Description

Arguments: PLI_INT32 narg Index number of the user-defined system task or function

argument or 0 to return a function value

PLI_INT32 value An integer value

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_putlongp() or tf_iputlongp() to put an argument value as a 64-bit integer

Use tf_putrealp() or tf_iputrealp() to put an argument value as a double

Use tf_strdelputp() to put a value as a formatted string with delay

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

628 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.40 tf_putrealp(), tf_iputrealp()

The TF routines tf_putrealp() and tf_iputrealp() shall write a double-precision real value to the argument

specified by narg of the current instance or a specific instance of a user-defined system task or function. If

narg is 0, tf_putrealp() and tf_iputrealp() shall write the value as the return of a user-defined system func-

tion. If narg is out of range or the argument cannot be written to, then the routines shall do nothing. Should

the calltf routine for a user defined system function fail to put a value during its execution, the default value

of 0.0 shall be applied.

The argument narg shall be the index number of an argument in a user-defined system task or function. Task/

function argument index numbering shall proceed from left to right, with the left-most argument being num-

ber 1.

The data type of the value to be written should be consistent with the type of put routine and the type of the

argument to which the value shall be written. Refer to 24.3 for more details on proper data type selection

with put routines.

NOTE—calling put routines to TF argument 0 (return of a function) shall only return a value in a calltf application, when

the call to the function is active. The action of the put routine shall be ignored when the function is not active.

tf_putrealp(), tf_iputrealp()

Synopsis: Write a real value to a system task/function argument or function return.

Syntax: tf_putrealp(narg, value)
tf_iputrealp(narg, value, instance_p)

Type Description

Returns: PLI_INT32 0 if successful; 1 if an error occurred

Type Name Description

Arguments: PLI_INT32 narg Index number of the user-defined system task or function

argument or 0 to return a function value

double value A double-precision value

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_putp() or tf_iputp() to put an argument value as a 32-bit integer

Use tf_putlongp() or tf_iputlongp() to put an argument value as a 64-bit integer

Use tf_strdelputp() to put a value as a formatted string with delay

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 629
This is an unapproved IEEE Standards Draft, subject to change.

25.41 tf_read_restart()

The TF routine tf_read_restart() shall read back a block of memory that was saved with tf_write_save().
This routine shall only be called from the misctf application when the misctf routine is invoked with

reason_restart.

The argument blockptr shall be a pointer to an allocated block of memory to which the saved data shall be

restored.

The argument blocklen shall be the length in bytes of the allocated block of memory. Exactly as many bytes

have to be restored as were written with tf_write_save().

If any user task instance pointers have been saved (for use with tf_i* calls), tf_getinstance() has to be used

to get new instance pointer values after the restart. If pointers to user data were saved, the application of the

user has to implement a scheme to reconnect them properly.

tf_read_restart()

Synopsis: Get a block of data from a previously written save file.

Syntax: tf_read_restart(blockptr, blocklen)

Type Description

Returns: PLI_INT32 Nonzero if successful; zero if an error occurred

Type Name Description

Arguments: PLI_BYTE8 * blockptr Pointer to block of saved data

PLI_INT32 blocklen Length of block

Related
routines:

Use tf_write_save() to save a block of data

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

630 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.42 tf_real_to_long()

The TF routine tf_real_to_long() shall convert a double-precision floating-point number to a 64-bit integer.

The converted value shall be returned in the variables pointed to by aof_low and aof_high.

tf_real_to_long()

Synopsis: Convert a real number to a 64-bit integer.

Syntax: tf_real_to_long(realvalue, aof_low, aof_high)

Type Description

Returns: void

Type Name Description

Arguments: double realvalue Value to be converted

PLI_INT32 * aof_low Pointer to an integer variable for storing the least signifi-

cant (right-most) 32 bits of the converted value

PLI_INT32 * aof_high Pointer to an integer variable for storing the most signifi-

cant (left-most) 32 bits of the converted value

Related
routines:

Use tf_long_to_real() to convert a 64-bit integer to a real number

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 631
This is an unapproved IEEE Standards Draft, subject to change.

25.43 tf_rosynchronize(), tf_irosynchronize()

The TF routines tf_rosynchronize() and tf_irosynchronize() shall schedule a callback to the misctf applica-

tion associated with the current instance or a specific instance of a user-defined system task or function. The

misctf application shall be called with a reason of reason_rosynch at the end of the current simulation time

step.

The routines tf_synchronize() and tf_rosynchronize() have different functionality. The routine

tf_synchronize() shall call the associated misctf application at the end of the current simulation time step

with reason_synch, and the misctf application shall be allowed to schedule additional simulation events

using routines such as tf_strdelputp().

The routine tf_rosynchronize() shall call the associated misctf application at the end of the current simula-

tion time step with reason_rosynch, and the PLI shall not be allowed to schedule any new events. This guar-

antees that all simulation events for the current time are completed. Calls to routines such as tf_strdelputp()
and tf_setdelay() are illegal during processing of the misctf application with reason reason_rosynch.

The routine tf_getnextlongtime() shall only return the next simulation time for which an event is scheduled

when used in conjunction with the routines tf_rosynchronize() and tf_irosynchronize().

tf_rosynchronize(), tf_irosynchronize()

Synopsis: Synchronize to end of simulation time step.

Syntax: tf_rosynchronize()
tf_irosynchronize(instance_p)

Type Description

Returns: PLI_INT32 0 if successful; 1 if an error occurred

Type Name Description

Arguments: PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

Use tf_synchronize() to synchronize to end of simulation time step

Use tf_getnextlongtime() to get next time at which a simulation event is scheduled

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

632 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.44 tf_scale_longdelay()

The TF routine tf_scale_longdelay() shall convert a 64-bit integer delay into the timescale of the module

containing the instance of the user-defined system task or function pointed to by instance_p. The arguments

aof_delay_lo and aof_delay_hi shall contain the address of the converted delay returned by the routine.

tf_scale_longdelay()

Synopsis: Convert a 64-bit integer delay to the timescale of the module instance.

Syntax: tf_scale_longdelay(instance_p, delay_lo, delay_hi,
 aof_delay_lo, aof_delay_hi)

Type Description

Returns: void

Type Name Description

Arguments: PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

PLI_INT32 delay_lo Least significant (right-most) 32 bits of the delay to be con-

verted

PLI_INT32 delay_hi Most significant (left-most) 32 bits of the delay to be con-

verted

PLI_INT32 * aof_delay_lo Pointer to a variable to store the least significant (right-

most) 32 bits of the conversion result

PLI_INT32 * aof_delay_hi Pointer to a variable to store the most significant (left-most)

32 bits of the conversion result

Related
routines:

Use tf_scale_realdelay() to scale real number delays

Use tf_unscale_longdelay() to convert a delay to the time unit of a module

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 633
This is an unapproved IEEE Standards Draft, subject to change.

25.45 tf_scale_realdelay()

The TF routine tf_scale_realdelay() shall convert a double-precision floating-point delay into the timescale

of the module containing the instance of the user-defined system task or function pointed to by instance_p.

The argument aof_realdelay shall contain the address of the converted delay returned by the routine.

tf_scale_realdelay()

Synopsis: Convert a double-precision floating-point delay to the timescale of the module instance.

Syntax: tf_scale_realdelay(instance_p, realdelay, aof_realdelay)

Type Description

Returns: void

Type Name Description

Arguments: PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

double realdelay Value of the delay to be converted

double * aof_realdelay Pointer to a variable to store the conversion result

Related
routines:

Use tf_scale_longdelay() to scale 64-bit integer delays

Use tf_unscale_realdelay() to convert a delay to the time unit of a module

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

634 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.46 tf_setdelay(), tf_isetdelay()

The TF routines tf_setdelay() and tf_isetdelay() shall schedule a callback to the misctf application associ-

ated with the current instance or a specific instance of a user-defined system task or function. The misctf

application shall be called at a future reactivation time. The reactivation time shall be the current simulation

time plus the specified delay. The misctf application shall be called at the reactivation time with a reason of

reason_reactivate. The tf_setdelay() and tf_isetdelay() routines can be called several times with different

delays, and several reactivations shall be scheduled. Multiple calls to tf_setdelay() and tf_isetdelay() for the

same time step are permitted and shall result in multiple calls to the misctf application for that time step.

The delay argument shall be a 32-bit integer and shall be greater than or equal to 0. The delay shall assume

the timescale units specified for the module containing the specific system task call.

tf_setdelay(), tf_isetdelay()

Synopsis: Activate the misctf application at a particular simulation time.

Syntax: tf_setdelay(delay)
tf_isetdelay(delay, instance_p)

Type Description

Returns: PLI_INT32 1 if successful; 0 if an error occurred

Type Name Description

Arguments: PLI_INT32 delay 32-bit integer delay time

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_setlongdelay() or tf_isetlongdelay() for 64-bit integer reactivation delays

Use tf_setrealdelay() or tf_isetrealdelay() for real number reactivation delays

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 635
This is an unapproved IEEE Standards Draft, subject to change.

25.47 tf_setlongdelay(), tf_isetlongdelay()

The TF routines tf_setlongdelay() and tf_isetlongdelay() shall schedule a callback to the misctf application

associated with the current instance or a specific instance of a user-defined system task or function. The mis-

ctf application shall be called at a future reactivation time. The reactivation time shall be the current simula-

tion time plus the specified delay. The misctf routine shall be called at the reactivation time with a reason of

reason_reactivate. The tf_setlongdelay() and tf_isetlongdelay() routines can be called several times with

different delays, and several reactivations shall be scheduled. Multiple calls to tf_setlongdelay() and

tf_isetlongdelay() for the same time step are permitted and shall result in multiple calls to the misctf appli-

cation for that time step.

The delay argument shall be a 64-bit integer and shall be greater than or equal to 0. The delay shall assume

the timescale units specified for the module containing the specific system task call.

tf_setlongdelay(), tf_isetlongdelay()

Synopsis: Activate the misctf application at a particular simulation time.

Syntax: tf_setlongdelay(lowdelay, highdelay)
tf_isetlongdelay(lowdelay, highdelay, instance_p)

Type Description

Returns: PLI_INT32 1 if successful; 0 if an error occurred

Type Name Description

Arguments: PLI_INT32 lowdelay Least significant (right-most) 32 bits of the delay time to

reactivation

PLI_INT32 highdelay Most significant (left-most) 32 bits of the delay time to

reactivation

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_setdelay() or tf_isetdelay() for 32-bit integer reactivation delays

Use tf_setrealdelay() or tf_isetrealdelay() for real number reactivation delays

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

636 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.48 tf_setrealdelay(), tf_isetrealdelay()

The TF routines tf_setrealdelay() and tf_isetrealdelay() shall schedule a callback to the misctf application

associated with the current instance or a specific instance of a user-defined system task or function. The mis-

ctf application shall be called at a future reactivation time. The reactivation time shall be the current simula-

tion time plus the specified delay. The misctf application shall be called at the reactivation time with a reason

of reason_reactivate. The tf_setrealdelay() and tf_isetrealdelay() routines can be called several times with

different delays, and several reactivations shall be scheduled. Multiple calls to tf_setrealdelay() and

tf_isetrealdelay() for the same time step are permitted and shall result in multiple calls to the misctf applica-

tion for that time step.

The delay argument shall be a double-precision value and shall be greater than or equal to 0.0. The delay

shall assume the timescale units specified for the module containing the specific system task call.

tf_setrealdelay(), tf_isetrealdelay()

Synopsis: Activate the misctf application at a particular simulation time.

Syntax: tf_setrealdelay(realdelay)
tf_isetrealdelay(realdelay, instance_p)

Type Description

Returns: PLI_INT32 1 if successful; 0 if an error occurred

Type Name Description

Arguments: double realdelay Double-precision delay time to reactivation

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_setdelay() or tf_isetdelay() for 32-bit integer reactivation delays

Use tf_setlongdelay() or tf_isetlongdelay() for 64-bit integer reactivation delays

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 637
This is an unapproved IEEE Standards Draft, subject to change.

25.49 tf_setworkarea(), tf_isetworkarea()

The TF routines tf_setworkarea() and tf_isetworkarea() shall store a pointer to user data in the work area

of the current instance or a specific instance of a user-defined system task or function. The pointer that is

stored can be retrieved by calling tf_getworkarea() or tf_igetworkarea().

The work area can be used for

— Saving information during one call to a PLI routine, which can be retrieved upon a subsequent invo-
cation of the routine

— Passing information from one type of PLI application to another, such as from a checktf application
to a calltf application

Note that the workarea pointer is a PLI_BYTE8 * type. If the memory allocated for the user data is of some

other type, it should be cast to PLI_BYTE8 *.

tf_setworkarea(), tf_isetworkarea()

Synopsis: Store user data pointer in work area.

Syntax: tf_setworkarea(workarea)
tf_isetworkarea(workarea, instance_p)

Type Description

Returns: PLI_INT32 Always returns 0

Type Name Description

Arguments: PLI_BYTE8 * workarea Pointer to user data

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_getworkarea() or tf_igetworkarea() to retrieve the user data pointer

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

638 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.50 tf_sizep(), tf_isizep()

The TF routines tf_sizep() and tf_isizep() shall return the value size in bits of the specified argument in the

current instance or a specific instance of a user-defined system task or function.

If the specified argument is a literal string, tf_sizep() and tf_isizep() shall return the string length.

If the specified argument is real or if an error is detected, tf_sizep() and tf_isizep() shall return 0.

The argument narg shall be the index number of an ARGUMENT in a user-defined system task or function.

Task/function argument index numbering shall proceed from left to right, with the left-most argument being

number 1.

tf_sizep(), tf_isizep()

Synopsis: Get the bit length of a system task/function argument.

Syntax: tf_sizep(narg)
tf_isizep(narg, instance_p)

Type Description

Returns: PLI_INT32 The number of bits of the system task/function argument

Type Name Description

Arguments: PLI_INT32 narg Index number of the user-defined system task or function

argument

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 639
This is an unapproved IEEE Standards Draft, subject to change.

25.51 tf_spname(), tf_ispname()

The TF routines tf_spname() and tf_ispname() shall return a pointer to the Verilog HDL hierarchical path

name to the scope containing the call of a specific instance of a user-defined system task or function.

A scope shall be

— A top-level module
— A module instance
— A named begin-end block
— A named fork-join block
— A Verilog HDL task
— A Verilog HDL function

The string obtained shall be stored in a temporary buffer. If the string is needed across multiple calls to the

PLI application, the string should be preserved.

tf_spname(), tf_ispname()

Synopsis: Get scope hierarchical path name as a string.

Syntax: tf_spname()
tf_ispname(instance_p)

Type Description

Returns: PLI_BYTE8 * Pointer to a character string with the hierarchical path name

Type Name Description

Arguments: PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

640 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.52 tf_strdelputp(), tf_istrdelputp()

The TF routines tf_strdelputp() and tf_istrdelputp() shall write a string value to the specified argument of

the current instance or a specific instance of a user-defined system task or function. The actual change to the

argument shall be scheduled as an event on the argument in the Verilog model at a future simulation time.

An argument value of 0 (system function return) shall be illegal.

The bitlength argument shall define the value size in bits.

The format shall define the format of the value specified by value_p and shall be one of the characters given

in Table 195.

tf_strdelputp(), tf_istrdelputp()

Synopsis: Write a value to a system task/function argument from string value specification, using a 32-bit integer delay.

Syntax: tf_strdelputp(narg, bitlength, format, value_p,delay, delaytype)
tf_istrdelputp(narg, bitlength, format, value_p,delay, delaytype,
 instance_p)

Type Description

Returns: PLI_INT32 1 if successful; 0 if an error is detected

Type Name Description

Arguments: PLI_INT32 narg Index number of the user-defined system task or function

argument

PLI_INT32 bitlength Number of bits the value represents

PLI_INT32 format A character in single quotes representing the radix (base) of

the value

quoted string or

PLI_BYTE8 *

value_p Quoted character string or pointer to a character string with

the value to be written

PLI_INT32 delay Integer value representing the time delay before the value

should be written to the argument

PLI_INT32 delaytype Integer code representing the delay mode for applying the

value

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_strlongdelputp() or tf_istrlongdelputp() for 64-bit integer delays

Use tf_strrealdelputp() or tf_istrrealdelputp() for real number delays

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

Table 195—Format characters

Format character Description

’b’ or ’B’ Value is in binary

’o’ or ’O’ Value is in octal

’d’ or ’D’ Value is in decimal

’h’ or ’H’ Value is in hexadecimal

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 641
This is an unapproved IEEE Standards Draft, subject to change.

The delay argument shall represent the amount of time before the value shall be applied to the argument, and

it shall be greater than or equal to 0. The delay shall assume the timescale units of the module containing the

instance of the user-defined system task or function.

The delaytype argument shall determine how the value shall be scheduled in relation to other simulation

events on the same reg or variable. The delaytype shall be one of integer values shown in Table 196.

Table 196—delaytype codes

delaytype code Definition Description

0 Inertial delay All scheduled events on the output argument in the Ver-

ilog model are removed before scheduling a new event

1 Modified transport delay All events that are scheduled for times later than the new

event on the output argument in the Verilog model are

removed before scheduling a new event

2 Pure transport delay No scheduled events on the output argument in the Ver-

ilog model are removed before scheduling a new event—

the last event to be scheduled is not necessarily the last

one to occur

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

642 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.53 tf_strgetp(), tf_istrgetp()

The TF routines tf_strgetp() and tf_istrgetp() shall return a pointer to a string that contains the value of the

argument expression of the current instance or a specific instance of a user-defined system task or function.

The string format is specified by format, and shall be one of the following characters shown in Table 197.

The string value returned shall have the same form as output from the formatted built-in system task $dis-
play() in terms of value lengths and value characters used. The length shall be of arbitrary size (not limited

to 32 bits as with the tf_getp() routine), and unknown and high-impedance values shall be obtained.

The referenced argument can be a string, in which case a pointer to the string shall be returned (the format
shall be ignored in this case). The string obtained shall be stored in a temporary buffer. If the string is needed

across multiple calls to the PLI application, the string should be preserved.

A null pointer shall be returned for errors.

tf_strgetp(), tf_istrgetp()

Synopsis: Get formatted system task/function argument values.

Syntax: tf_strgetp(narg, format)
tf_istrgetp(narg, format, instance_p)

Type Description

Returns: PLI_BYTE8 * Pointer to a character string with the argument value

Type Name Description

Arguments: PLI_INT32 narg Index number of the user-defined system task or function

argument

PLI_INT32 format Character in single quotes controlling the return value

format

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_getp() or tf_igetp() to get an argument value as a 32-bit integer

Use tf_getlongp() or tf_igetlongp() to get an argument value as a 64-bit integer

Use tf_getrealp() or tf_igetrealp() to get an argument value as a double

Use tf_getcstringp() or tf_igetcstringp() to get an argument value as a string

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

Table 197—Format characters

Format character Description

’b’ or ’B’ Value is in binary

’o’ or ’O’ Value is in octal

’d’ or ’D’ Value is in decimal

’h’ or ’H’ Value is in hexadecimal

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 643
This is an unapproved IEEE Standards Draft, subject to change.

25.54 tf_strgettime()

The TF routine tf_strgettime() shall return a pointer to a string, which shall be the ASCII representation of

the current simulation time. The string obtained shall be stored in a temporary buffer. If the string is needed

across multiple calls to the PLI application, the string should be preserved.

Time shall be expressed in simulation time units, which is the smallest time precision used by all modules in

a design.

tf_strgettime()

Synopsis: Get the current simulation time as a string.

Syntax: tf_strgettime()

Type Description

Returns: PLI_BYTE8 * Pointer to a character string with the simulation time

Type Name Description

Arguments: No arguments

Related
routines:

Use tf_gettime() to get simulation time as a 32-bit integer value

Use tf_getlongtime() to get simulation time as a 64-bit integer value

Use tf_getrealtime() to get simulation time as a real value

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

644 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.55 tf_strlongdelputp(), tf_istrlongdelputp()

The TF routines tf_strlongdelputp() and tf_istrlongdelputp() shall write a string value to the specified

argument of the current instance or a specific instance of a user-defined system task or function. The actual

change to the argument shall be scheduled as an event on the argument in the Verilog model at a future

simulation time. An argument value of 0 (system function return) shall be illegal.

The bitlength argument shall define the value size in bits.

The format shall define the format of the value specified by value_p and shall be one of the characters shown

in Table 198.

The delay argument shall represent the amount of time before the value shall be applied to the argument, and

it shall be greater than or equal to 0. The delay shall assume the timescale units of the module containing the

tf_strlongdelputp(), tf_istrlongdelputp()

Synopsis: Write a value to a system task/function argument from string value specification, using a 64-bit integer delay.

Syntax: tf_strlongdelputp(narg, bitlength, format, value_p, lowdelay,
 highdelay, delaytype)
tf_istrlongdelputp(narg, bitlength, format, value_p, lowdelay,
 highdelay, delaytype, instance_p)

Type Description

Returns: PLI_INT32 1 if successful; 0 if an error is detected

Type Name Description

Arguments: PLI_INT32 narg Index number of the user-defined system task or function

argument

PLI_INT32 bitlength Number of bits the value represents

PLI_INT32 format A character in single quotes representing the radix (base) of

the value

quoted string or

PLI_BYTE8 *

value_p Quoted character string or pointer to a character string with

the value to be written

PLI_INT32 lowdelay Least significant (right-most) 32 bits of delay before the

value is be written to the argument

PLI_INT32 highdelay Most significant (left-most) 32 bits of delay before the

value is be written to the argument

PLI_INT32 delaytype Integer code representing the delay mode for applying the

value

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_strdelputp() or tf_istrdelputp() for 32-bit integer delays

Use tf_strrealdelputp() or tf_istrrealdelputp() for real number delays

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

Table 198—Format characters

Format character Description

’b’ or ’B’ Value is in binary

’o’ or ’O’ Value is in octal

’d’ or ’D’ Value is in decimal

’h’ or ’H’ Value is in hexadecimal

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 645
This is an unapproved IEEE Standards Draft, subject to change.

instance of the user-defined system task or function.

The delaytype argument shall determine how the value shall be scheduled in relation to other simulation

events on the same reg or variable. The delaytype shall be one of integer values shown in Table 199.

Table 199—delaytype codes

delaytype code Definition Description

0 Inertial delay All scheduled events on the output argument in the Ver-

ilog model are removed before scheduling a new event

1 Modified transport delay All events that are scheduled for times later than the new

event on the output argument in the Verilog model are

removed before scheduling a new event

2 Pure transport delay No scheduled events on the output argument in the Ver-

ilog model are removed before scheduling a new event—

the last event to be scheduled is not necessarily the last

one to occur

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

646 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.56 tf_strrealdelputp(), tf_istrrealdelputp()

The TF routines tf_strrealdelputp() and tf_istrrealdelputp() shall write a string value to the specified argu-

ment of the current instance or a specific instance of a user-defined system task or function. The actual

change to the argument shall be scheduled as an event on the argument in the Verilog model at a future sim-

ulation time. An argument value of 0 (system function return) shall be illegal.

The bitlength argument shall define the value size in bits.

The format shall define the format of the value specified by value_p and shall be one of the characters given

in Table 200.

tf_strrealdelputp(), tf_istrrealdelputp()

Synopsis: Write a value to a system task/function argument from string value specification, using a real number delay.

Syntax: tf_strrealdelputp(narg, bitlength, format, value_p, realdelay,
 delaytype)
tf_istrrealdelputp(narg, bitlength, format, value_p, realdelay,
 delaytype, instance_p)

Type Description

Returns: PLI_INT32 1 if successful; 0 if an error is detected

Type Name Description

Arguments: PLI_INT32 narg Index number of the user-defined system task or function

argument

PLI_INT32 bitlength Number of bits the value represents

PLI_INT32 format A character in single quotes representing the radix (base) of

the value

quoted string or

PLI_BYTE8 *

value_p Quoted character string or pointer to a character string with

the value to be written

double realdelay Double-precision value representing the time delay before

the value shall be written to the argument

PLI_INT32 delaytype Integer code representing the delay mode for applying the

value

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_strdelputp() or tf_istrdelputp() for 32-bit integer delays

Use tf_strlongdelputp() or tf_istrlongdelputp() for 64-bit integer delays

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

Table 200—Format characters

Format character Description

’b’ or ’B’ Value is in binary

’o’ or ’O’ Value is in octal

’d’ or ’D’ Value is in decimal

’h’ or ’H’ Value is in hexadecimal

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 647
This is an unapproved IEEE Standards Draft, subject to change.

The delay argument shall represent the amount of time before the value shall be applied to the argument, and

it shall be greater than or equal to 0. The delay shall assume the timescale units of the module containing the

instance of the user-defined system task or function.

The delaytype argument shall determine how the value shall be scheduled in relation to other simulation

events on the same reg or variable. The delaytype shall be one of integer values shown in Table 201.

Table 201—delaytype codes

delaytype code Definition Description

0 Inertial delay All scheduled events on the output argument in the Ver-

ilog model are removed before scheduling a new event

1 Modified transport delay All events that are scheduled for times later than the new

event on the output argument in the Verilog model are

removed before scheduling a new event

2 Pure transport delay No scheduled events on the output argument in the Ver-

ilog model are removed before scheduling a new event—

the last event to be scheduled is not necessarily the last

one to occur

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

648 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.57 tf_subtract_long()

The TF routine tf_subtract_long() shall subtract two 64-bit values. After calling tf_subtract_long(), the

variables used to pass the first operand shall contain the results of the subtraction. The operands shall be

assumed to be in two’s complement form. Figure 170 shows the high and low 32 bits of two 64-bit integers

and how tf_subtract_long() shall subtract them.

Figure 170—Subtracting with tf_subtract_long()

The example program fragment shown in Figure 171 uses tf_subtract_long() to calculate the relative time

from the current time to the next event time (this example assumes that the code is executed during a misctf

application call with reason of reason_rosynch).

The text message generated by this example is split between the two io_printf() calls. If done in a single

io_printf(), the second call to tf_longtime_tostr() would overwrite the string from the first call, since the

string is placed in a temporary buffer.

tf_subtract_long()

Synopsis: Subtract two 64-bit integers.

Syntax: tf_subtract_long(aof_low1, aof_high1, low2, high2)

Type Description

Returns: PLI_INT32 Always returns 0

Type Name Description

Arguments: PLI_INT32 * aof_low1 Pointer to least significant 32 bits of first operand

PLI_INT32 * aof_high1 Pointer to most significant 32 bits of first operand

PLI_INT32 low2 Least significant 32 bits of second operand

PLI_INT32 high2 Most significant 32 bits of second operand

Related
routines:

Use tf_add_long() to add two 64-bit integers

Use tf_multiply_long() to multiply two 64-bit integers

Use tf_divide_long() to divide two 64-bit integers

Use tf_compare_long() to compare two 64-bit integers

high2 low2

high1 low1

high 32 bits low 32 bits

integer2

integer1

integer1 = integer1 - integer2

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 649
This is an unapproved IEEE Standards Draft, subject to change.

Figure 171—Using tf_subtract_long()

{
PLI_INT32 currlow, currhigh;
PLI_INT32 relalow, relahigh;

currlow = tf_getlongtime(&currhigh);
io_printf("At time %s: ", tf_longtime_tostr(currlow, currhigh));
if(tf_getnextlongtime(&relalow, &relahigh) == 0)
 {

tf_subtract_long(&relalow, &relahigh, currlow, currhigh);
io_printf ("relative time to next event is %s",

 tf_longtime_tostr(relalow, relahigh));
 }

 else
 printf("there are no future events");
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

650 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.58 tf_synchronize(), tf_isynchronize()

The TF routines tf_synchronize() and tf_isynchronize() shall schedule a callback to the misctf application

associated with the current instance or a specific instance of a user-defined system task or function. The mis-

ctf application shall be called with a reason of reason_synch at the end of the current simulation time step.

The routines tf_synchronize() and tf_rosynchronize() have different functionality. The routine

tf_synchronize() shall call the associated misctf application at the end of the current simulation time step

with reason_synch, and the misctf application shall be allowed to schedule additional simulation events

using routines such as tf_strdelputp().

The routine tf_rosynchronize() shall call the associated misctf application at the end of the current simula-

tion time step with reason_rosynch, and the PLI shall not be allowed to schedule any new events. This guar-

antees that all simulation events for the current time are completed. Calls to routines such as tf_strdelputp()
and tf_setdelay() are illegal during processing of the misctf application with reason reason_rosynch.

The routine tf_getnextlongtime() shall only return the next simulation time for which an event is scheduled

when used in conjunction with the routines tf_rosynchronize() and tf_irosynchronize().

tf_synchronize(), tf_isynchronize()

Synopsis: Synchronize to end of simulation time step.

Syntax: tf_synchronize()
tf_isynchronize(instance_p)

Type Description

Returns: PLI_INT32 0 if successful; 1 if an error occurred

Type Name Description

Arguments: PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_rosynchronize() for read-only synchronization

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 651
This is an unapproved IEEE Standards Draft, subject to change.

25.59 tf_testpvc_flag(), tf_itestpvc_flag()

The TF routines tf_testpvc_flag() and tf_itestpvc_flag() shall return value of the saved pvc flag. The argu-

ment narg shall be the index number of an argument in a specific instance of a user-defined system task or

function. Task/function argument index numbering shall proceed from left to right, with the left-most argu-

ment being number 1. If narg is -1, then all argument pvc flags shall be tested and the logical OR of all saved

flags returned.

PVC flags shall be used to indicate whether a particular user-defined system task or function argument has

changed value. Each argument shall have two pvc flags: a current pvc flag, which shall be set by a software

product when the change occurs, and a saved pvc flag, which shall be controlled by the user.

NOTE—PVC flags shall not be set by the software product until tf_asynchon() or tf_iasynchon() has been called.

tf_testpvc_flag(), tf_itestpvc_flag()

Synopsis: Test system task/function argument value change flags.

Syntax: tf_testpvc_flag(narg)
tf_itestpvc_flag(narg, instance_p)

Type Description

Returns: PLI_INT32 The value of the saved pvc flag

Type Name Description

Arguments: PLI_INT32 narg Index number of the user-defined system task or function

argument, or -1

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_asynchon() or tf_iasynchon() to enable pvc flags

Use tf_getpchange() or tf_igetpchange() to get the index number of the argument that changed

Use tf_copypvc_flag() or tf_icopypvc_flag() to copy a pvc flag to the saved pvc flag

Use tf_movepvc_flag() or tf_imovepvc_flag() to move a pvc flag to the saved pvc flag

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

652 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.60 tf_text()

The TF routine tf_text() shall store text messages about an error in a buffer, which will be printed when the

routine tf_message() is called. The routine shall provide a method for a PLI application to store information

about one or more errors before it calls the tf_message() TF routine. This allows an application to process

all of a routine, such as syntax checking, before calling tf_message(), which can be set to abort processing

after printing messages. An application shall be able to call tf_text() any number of times before it calls

tf_message().

When the application calls tf_message(), the information stored by tf_text() shall be displayed before the

information in the call to tf_message(). Each call to tf_message() shall clear the buffer where tf_text()
stores its information.

The message argument is a user-defined control string containing the message to be displayed. The control

string uses the same formatting controls as the C printf() function (for example, %d). The message shall

use up to a maximum of five variable arguments. There shall be no limit to the length of a variable argument.

Formatting characters, such as \n, \t, \b, \f, or \r, do not need to be included in the message—the soft-

ware product shall automatically format each message.

An example of using tf_text() and tf_message() calls and the output generated follow. Note that the format

of the output shall be defined by the software product.

Calling tf_text() and tf_message() with the arguments:

tf_text (“Argument number %d”, argnum);
...
tf_message(ERR_ERROR, “User”, “TFARG”,

“ is illegal in task %s”, taskname);

Might produce the output:

ERROR! Argument number 2 is illegal in task [User-TFARG]
$usertask

tf_text()

Synopsis: Store error message information.

Syntax: tf_text(message, arg1,...arg5)

Type Description

Returns: PLI_INT32 Always returns 0

Type Name Description

Arguments: quoted string or

PLI_BYTE8 *

message A quoted character string or pointer to a character string

with a message to be stored

(optional) arg1...arg5 One to five optional arguments of the format control string;

the type of each argument should be consistent with how it

is used in the message string

Related
routines:

Use tf_message() to display the stored error message

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 653
This is an unapproved IEEE Standards Draft, subject to change.

25.61 tf_typep(), tf_itypep()

The TF routines tf_typep() and tf_itypep() shall return an integer constant indicating the type of an argu-

ment for the current instance or a specific instance of a user-defined system task or function. The integer

constants shall be as shown in Table 202.

— A read only expression shall be any expression that would be illegal as a left-hand-side construct in a

Verilog HDL procedural assignment (e.g., an expression using net data types or event data types)

— A read/write expression shall be any expression that would be legal as a left-hand-side construct in a

Verilog HDL procedural assignments (e.g., an expression using reg, integer, time, or real data types)

The argument narg shall be the index number of an argument in a user-defined system task or function. Task/

function argument index numbering shall proceed from left to right, with the left-most argument being num-

ber 1.

tf_typep(). tf_itypep()

Synopsis: Get a system task/function argument type.

Syntax: tf_typep(narg)
tf_itypep(narg, instance_p)

Type Description

Returns: PLI_INT32 A predefined integer constant representing the Verilog HDL data type for the argument

Type Name Description

Arguments: PLI_INT32 narg Index number of the user-defined system task or function

argument

PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

Related
routines:

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

Table 202—Predefined tf_typep() constants

Predefined constant Description

tf_nullparam The argument is a null expression (where no text has been given as the argu-

ment), or narg is out of range

tf_string The argument is a literal string

tf_readonly The argument is a expression with a value that can be read but not written

tf_readwrite The argument is a expression with a value that can be read and written

tf_readonlyreal The argument is a real number expression with a value that can be read but not written

tf_readwritereal The argument is a real number expression with a value that can be read and written

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

654 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.62 tf_unscale_longdelay()

The TF routine tf_unscale_longdelay() shall convert a 64-bit integer delay expressed in internal simulation

time into the time units of the module containing the user-defined system task or function referenced by the

instance_p pointer. The argument aof_delay_lo and aof_delay_hi shall contain the address of the converted

delay returned by the routine.

tf_unscale_longdelay()

Synopsis: Convert a delay from internal simulation time units to the timescale of a particular module.

Syntax: tf_unscale_longdelay(instance_p, delay_lo, delay_hi,
 aof_delay_lo, aof_delay_hi)

Type Description

Returns: void

Type Name Description

Arguments: PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

PLI_INT32 delay_lo Least significant (right-most) 32 bits of the delay to be con-

verted

PLI_INT32 delay_hi Most significant (left-most) 32 bits of the delay to be con-

verted

PLI_INT32 * aof_delay_lo Pointer to a variable to store the least significant (right-

most) 32 bits of the conversion result

PLI_INT32 * aof_delay_hi Pointer to a variable to store the most significant (left-most)

32 bits of the conversion result

Related
routines:

Use tf_unscale_realdelay() to unscale real number delays

Use tf_scale_longdelay() to convert a delay to the timescale of the module instance

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 655
This is an unapproved IEEE Standards Draft, subject to change.

25.63 tf_unscale_realdelay()

The TF routine tf_unscale_realdelay() shall convert a double-precision delay expressed in internal simula-

tion time into the time units of the module containing the user-defined system task or function referenced by

the instance_p pointer. The argument aof_realdelay shall contain the address of the converted delay returned

by the routine.

tf_unscale_realdelay()

Synopsis: Convert a delay expressed in internal simulation time units to the timescale of a particular module.

Syntax: tf_unscale_realdelay(instance_p, realdelay, aof_realdelay)

Type Description

Returns: void

Type Name Description

Arguments: PLI_BYTE8 * instance_p Pointer to a specific instance of a user-defined system task

or function

double delay Value of the delay to be converted

double * aof_realdelay Pointer to a variable to store the conversion result

Related
routines:

Use tf_unscale_longdelay() to unscale 64-bit integer delays

Use tf_scale_realdelay() to convert a delay to the timescale of the module instance

Use tf_getinstance() to get a pointer to an instance of a user-defined system task or function

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

656 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

25.64 tf_warning()

The TF routine tf_warning() shall provide a warning reporting mechanism compatible with warning mes-

sages generated by the software product.

— The format control string shall use the same formatting controls as the C printf() function (for exam-
ple, %d).

— The maximum number of arguments that shall be used in the format control string is 5.

— The location information (file name and line number) of the current instance of the user-defined sys-
tem task or function shall be appended to the message using a format compatible with error mes-
sages generated by the software product.

— The message shall be written to both the output channel of the software product which invoked the
PLI application and the output log file of the product.

The tf_warning() routine shall not abort parsing or compilation of Verilog HDL source code.

tf_warning()

Synopsis: Report a warning message.

Syntax: tf_warning(format, arg1,...arg5)

Type Description

Returns: PLI_INT32 Always returns 0

Type Name Description

Arguments: quoted string or

PLI_BYTE8 *

format A quoted character string or pointer to a character string

that controls the message to be written

(optional) arg1...arg5 One to five optional arguments of the format control string;

the type of each argument should be consistent with how it

is used in the format string

Related
routines:

Use tf_message() to write warning messages with additional format control

Use tf_error() to write an error message

Use io_printf() or io_mcdprintf() to write a formatted message

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 657
This is an unapproved IEEE Standards Draft, subject to change.

25.65 tf_write_save()

The TF routine tf_write_save() shall write user-defined data to the end of a save file being written by the

$save built-in system task. This routine shall be called from the misctf application when misctf is invoked

with reason_save.

The argument blockptr shall be a pointer to an allocated block of memory containing the data to be saved.

The argument blocklen shall be the length in bytes of the allocated block of memory. Note that exactly as

many bytes shall be restored using tf_read_restart() as were written with tf_write_save().

tf_write_save()

Synopsis: Append a block of data to a save file.

Syntax: tf_write_save(blockptr, blocklen)

Type Description

Returns: PLI_INT32 Nonzero value if successful, zero if an error is encountered

Type Name Description

Arguments: PLI_BYTE8 * blockptr Pointer to the first byte of the block of data to be saved

PLI_INT32 blocklen Number of bytes are to be saved

Related
routines:

Use tf_read_restart() to retrieve the data saved

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

658 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

26. Using VPI routines

Clause 26 and Clause 27 specify the Verilog Procedural Interface (VPI) for the Verilog HDL. This clause

describes how the VPI routines are used, and Clause 27 defines each of the routines in alphabetical order.

26.1 VPI system tasks and functions

User defined system tasks and functions are created using the routine vpi_register_systf() (see 27.34). The

registration of system tasks must occur prior to elaboration or the resolution of references.

The intended use model would be to place a reference to a routine within the vlog_startup_routines[] array.

This routine would register all user defined system tasks and functions when it is called.

VPI system tasks have compiletf, sizetf, and calltf routines which have the same use model as the corre-

sponding checktf, sizetf and calltf routines in the TF interface mechanism for user defined system tasks and

functions (refer to Clause 21). The functionality provided in the TF interface mechanism for the misctf rou-

tine is supported via a set of callbacks, which can be registered using vpi_register_cb().

26.2 The VPI interface

The VPI interface provides routines that allow Verilog product users to access information contained in a

Verilog design, and that allow facilities to interact dynamically with a software product. Applications of the

VPI interface can include delay calculators and annotators, connecting a Verilog simulator with other simu-

lation and CAE systems, and customized debugging tasks.

The functions of the VPI interface can be grouped into two main areas:

— Dynamic software product interaction using VPI callbacks
— Access to Verilog HDL objects and simulation specific objects

26.2.1 VPI callbacks

Dynamic software product interaction shall be accomplished with a registered callback mechanism. VPI

callbacks shall allow a user to request that a Verilog HDL software product, such as a logic simulator, call a

user-defined application when a specific activity occurs. For example, the user can request that the user

application my_monitor() be called when a particular net changes value, or that my_cleanup() be

called when the software product execution has completed.

The VPI callback facility shall provide the user with the means to interact dynamically with a software prod-

uct, detecting the occurrence of value changes, advancement of time, end of simulation, etc. This feature

allows applications such as integration with other simulation systems, specialized timing checks, complex

debugging features, etc.

The reasons for which callbacks shall be provided can be separated into four categories:

— Simulation event (e.g., a value change on a net or a behavioral statement execution)
— Simulation time (e.g., the end of a time queue or after certain amount of time)
— Simulator action/feature (e.g., the end of compile, end of simulation, restart, or enter interactive

mode)
— User-defined system task or function execution

VPI callbacks shall be registered by the user with the functions vpi_register_cb() and vpi_register_systf().
These routines indicate the specific reason for the callback, the application to be called, and what system and

user data shall be passed to the callback application when the callback occurs. A facility is also provided to

call the callback functions when a Verilog HDL product is first invoked. A primary use of this facility shall

be for registration of user-defined system tasks and functions.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 659
This is an unapproved IEEE Standards Draft, subject to change.

26.2.2 VPI access to Verilog HDL objects and simulation objects

Accessible Verilog HDL objects and simulation objects and their relationships and properties are described

using data model diagrams. These diagrams are presented in 26.6. The data model diagrams indicate the rou-

tines and constants that are required to access and manipulate objects within an application environment. An

associated set of routines to access these objects is defined in Clause 27.

The VPI interface also includes a set of utility routines for functions such as handle comparison, file han-

dling, and redirected printing, which are described in Table 211.

VPI routines provide access to objects in an instantiated Verilog design. An instantiated design is one where

each instance of an object is uniquely accessible. For instance, if a module m contains wire w and is instanti-

ated twice as m1 and m2, then m1.w and m2.w are two distinct objects, each with its own set of related

objects and properties.

The VPI interface is designed as a simulation interface, with access to both Verilog HDL objects and specific

simulation objects. This simulation interface is different from a hierarchical language interface, which would

provide access to HDL information but would not provide information about simulation objects.

26.2.3 Error handling

To determine if an error occurred, the routine vpi_chk_error() shall be provided. The vpi_chk_error() rou-

tine shall return a nonzero value if an error occurred in the previously called VPI routine. Callbacks can be

set up for when an error occurs as well. The vpi_chk_error() routine can provide detailed information about

the error.

26.2.4 Function availability

Certain features of the VPI interface must occur early in the execution of a tool. In order to allow this pro-

cess to occur in an orderly manner, some functionality must be restricted in these early stages. Specifically,

when the routines within the vlog_startup_routines[] array are executed, there is very little functionality

available. Only two routines can be called at this time:

— vpi_register_systf()
— vpi_register_cb()

In addition, the vpi_register_cb() routine can only be called for the following reasons:

— cbEndOfCompile
— cbStartOfSimulation
— cbEndOfSimulation
— cbUnresolvedSystf
— cbError
— cbPLIError

Refer to 27.34 for a further explanation of the use of the vlog_startup_routines[] array.

The next earliest phase is when the sizetf routines are called for the user defined system functions. At this

phase, no additional access is permitted. After the sizetf routines are called, the routines registered for reason

cbEndOfCompile are called. At this point, and continuing until the tool has finished execution, all function-

ality is available.

26.2.5 Traversing expressions

The VPI routines provide access to any expression which can be written in the HDL. Dealing with these

expressions can be complex, since very complex expressions can be written in the HDL. Expressions with

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

660 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

multiple operands will result in a handle of type vpiOperation. To determine how many operands, access

the property vpiOpType. This operation will be evaluated after its subexpressions. Therefore, it has the least

precedence in the expression.

An example of a routine which traverses an entire complex expression is listed below:

void traverseExpr(vpiHandle expr)
{

vpiHandle subExprI, subExprH;

switch (vpi_get(vpiExpr,expr))
{

case vpiOperation:
subExprI = vpi_iterate(vpiOperand, expr);
if (subExprI)

while (subExprH = vpi_scan(subExprI))
traverseExpr(subExprH);

/* else it's of op type vpiNullOp */
break;

default:
/* Do whatever to the leaf object. */
break;

}
}

26.3 VPI object classifications

VPI objects are classified using data model diagrams. These diagrams provide a graphical representation of

those objects within a Verilog design to which the VPI routines shall provide access. The diagrams shall

show the relationships between objects and the properties of each object. Objects with sufficient commonal-

ity are placed in groups. Group relationships and properties apply to all the objects in the group.

As an example, this simplified diagram shows that there is a one-to-many relationship from objects of type

module to objects of type net, and a one-to-one relationship from objects of type net to objects of type

module. Objects of type net have properties vpiName, vpiVector, and vpiSize, with data types string, bool-

ean, and integer respectively.

The VPI data model diagrams are presented in 26.6.

For object relationships (unless a special tag is shown in the diagram), the type used for access is determined

by adding “vpi” to the beginning of the word within the enclosure with each word's first letter being a capi-

tal. Using the above example, if an application has a handle to a net, and wants to go to the module instance

where the net is defined, the call would be:

modH = vpi_handle(vpiModule,netH);

module net
-> name

str: vpiName
str: vpiFullName

-> vector
bool: vpiVector

-> size
int: vpiSize

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 661
This is an unapproved IEEE Standards Draft, subject to change.

where netH is a handle to the net. As another example, to access a “named event” object, use the type

vpiNamedEvent.

26.3.1 Accessing object relationships and properties

The VPI interface defines the C data type of vpiHandle. All objects are manipulated via a vpiHandle vari-

able. Object handles can be accessed from a relationship with another object, or from a hierarchical name, as

the following example demonstrates:

vpiHandle net;
net = vpi_handle_by_name(“top.m1.w1”, NULL);

This example call retrieves a handle to wire top.m1.w1 and assigns it to the vpiHandle variable net. The

NULL second argument directs the routine to search for the name from the top level of the design.

The VPI interface provides generic functions for tasks, such as traversing relationships and determining

property values. One-to-one relationships are traversed with routine vpi_handle(). In the following example,

the module that contains net is derived from a handle to that net:

vpiHandle net, mod;
net = vpi_handle_by_name(“top.m1.w1”, NULL);
mod = vpi_handle(vpiModule, net);

The call to vpi_handle() in the above example shall return a handle to module top.m1.

Sometimes it is necessary to access a class of objects which do not have a name, or whose name is ambigu-

ous with another class of objects which can be accessed from the reference handle. Tags are used in this

situation.

In this example, the tags vpiLeftRange and vpiRightRange are used to access the expressions which make

up the range of the part-select. These tags are used instead of vpiExpr to get to the expressions. Without the

tags, the VPI interface would not know which expression should be accessed. For example:

vpi_handle(vpiExpr, part_select_handle)

would be illegal when the reference handle (part_select_handle) is a handle to a part-select, because the part-

select can refer to two expressions, a left-range and a right-range.

Properties of objects shall be derived with routines in the vpi_get family. The routine vpi_get() returns inte-

ger and boolean properties. Integer and boolean properties shall be defined to be of type PLI_INT32. For

boolean properties, a value of 1 shall represent TRUE and a value of 0 shall represent FALSE. The routine

vpi_get_str() accesses string properties. String properties shall be defined to be of type PLI_BYTE8 *. For

example: to retrieve a pointer to the full hierarchical name of the object referenced by handle mod, the fol-

lowing call would be made:

PLI_BYTE8 *name = vpi_get_str(vpiFullName, mod);

In the above example, the pointer name shall now point to the string “top.m1”.

part-select

expr

expr

vpiLeftRange

vpiRightRange

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

662 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

One-to-many relationships are traversed with an iteration mechanism. The routine vpi_iterate() creates an

object of type vpiIterator, which is then passed to the routine vpi_scan() to traverse the desired objects. In

the following example, each net in module top.m1 is displayed:

vpiHandle itr;
itr = vpi_iterate(vpiNet,mod);
while (net = vpi_scan(itr))

vpi_printf(“\t%s\n”, vpi_get_str(vpiFullName, net));

As the above examples illustrate, the routine naming convention is a ‘vpi’ prefix with ‘_’ word delimiters

(with the exception of callback-related defined values, which use the ‘cb’ prefix). Macro-defined types and

properties have the ‘vpi’ prefix, and they use capitalization for word delimiters.

The routines for traversing Verilog HDL structures and accessing objects are described in Clause 27.

26.3.2 Object type properties

All objects have a vpiType property, which is not shown in the data model diagrams.

-> type
int: vpiType

Using vpi_get(vpiType, <object_handle>) returns an integer constant which represents the type of the

object.

Using vpi_get_str(vpiType, <object_handle>) returns a pointer to a string containing the name of the type

constant. The name of the type constant is derived from the name of the object as it is shown in the data

model diagram (refer to 26.3 for a description of how type constant names are derived from object names).

Some objects have additional type properties which are shown in the data model diagrams; vpiDelayType,

vpiNetType, vpiOpType, vpiPrimType, vpiResolvedNetType and vpiTchkType. Using

vpi_get(<type_property>, <object_handle>) returns an integer constant which represents the additional

type of the object. Refer to vpi_user.h in Annex G for the types which can be returned for these additional

type properties. The constant names of the types returned for these additional type properties can be

accessed using vpi_get_str().

26.3.3 Object file and line properties

Most objects have two location properties, which are not shown in the data model diagrams:

-> location
int: vpiLineNo
str: vpiFile

The properties vpiLineNo and vpiFile can be affected by the ‘line and ‘file compiler directives. See 19.7 for

more details on these compiler directives. These properties are applicable to every object that corresponds to

some object within the HDL. The exceptions are objects of type:

— vpiCallback
— vpiDelayTerm
— vpiDelayDevice
— vpiInterModPath
— vpiIterator
— vpiTimeQueue

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 663
This is an unapproved IEEE Standards Draft, subject to change.

26.3.4 Delays and values

Most properties are of type integer, boolean, or string. Delay and logic value properties, however, are more

complex and require specialized routines and associated structures. The routines vpi_get_delays() and

vpi_put_delays() use structure pointers, where the structure contains the pertinent information about delays.

Similarly, simulation values are also handled with the routines vpi_get_value() and vpi_put_value(), along

with an associated set of structures.

The routines, C structures, and some examples for handling delays and logic values are presented in Clause
27. See 27.14 for vpi_get_value(), 27.32 for vpi_put_value(), 27.9 for vpi_get_delays(), and 27.30 for

vpi_put_delays().

Nets, primitives, module paths, timing checks, and continuous assignments can have delays specified within

the HDL. Additional delays may exist, such as module input port delays or inter-module path delays, that do

not appear within the HDL. To access the delay expressions that are specified within the HDL, use the

method vpiDelay. These expressions shall be either an expression that evaluates to a constant if there is only

one delay specified, or an operation if there are more than one delay specified. If multiple delays are speci-

fied, then the operation's vpiOpType shall be vpiListOp. To access the actual delays being used by the tool,

use the routine vpi_get_delays() on any of these objects.

26.4 List of VPI routines by functional category

The VPI routines can be divided into groups based on primary functionality.

— VPI routines for simulation-related callbacks
— VPI routines for system task/function callbacks
— VPI routines for traversing Verilog HDL hierarchy
— VPI routines for accessing properties of objects
— VPI routines for accessing objects from properties
— VPI routines for delay processing
— VPI routines for logic and strength value processing
— VPI routines for simulation time processing
— VPI routines for miscellaneous utilities

Table 203 through Table 211 list the VPI routines by major category. Clause 27 defines each of the VPI

routines, listed in alphabetical order.

Table 203—VPI routines for simulation related callbacks

To Use

Register a simulation-related callback vpi_register_cb()

Remove a simulation-related callback vpi_remove_cb()

Get information about a simulation-related callback vpi_get_cb_info()

Table 204—VPI routines for system task/function callbacks

To Use

Register a system task/function callback vpi_register_systf()

Get information about a system task/function callback vpi_get_systf_info()

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

664 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Table 205—VPI routines for traversing Verilog HDL hierarchy

To Use

Obtain a handle for an object with a one-to-one relationship vpi_handle()

Obtain handles for objects in a one-to-many relationship vpi_iterate()
vpi_scan()

Obtain a handle for an object in a many-to-one relationship vpi_handle_multi()

Table 206—VPI routines for accessing properties of objects

To Use

Get the value of objects with types of int or bool vpi_get()

Get the value of objects with types of string vpi_get_str()

Table 207—VPI routines for accessing objects from properties

To Use

Obtain a handle for a named object vpi_handle_by_name()

Obtain a handle for an indexed object vpi_handle_by_index()

Obtain a handle to a word or bit in an array vpi_handle_by_multi_index()

Table 208—VPI routines for delay processing

To Use

Retrieve delays or timing limits of an object vpi_get_delays()

Write delays or timing limits to an object vpi_put_delays()

Table 209—VPI routines for logic and strength value processing

To Use

Retrieve logic value or strength value of an object vpi_get_value()

Write logic value or strength value to an object vpi_put_value()

Table 210—VPI routines for simulation time processing

To Use

Find the current simulation time or the scheduled time of future events vpi_get_time()

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 665
This is an unapproved IEEE Standards Draft, subject to change.

26.5 Key to data model diagrams

This subsection contains the keys to the symbols used in the data model diagrams. Keys are provided for

objects and classes, traversing relationships, and accessing properties.

Table 211—VPI routines for miscellaneous utilities

To Use

Write to the output channel of the software product which invoked the

PLI application and the current log file

vpi_printf()

Write to the output channel of the software product which invoked the

PLI application and the current log file using varargs

vpi_vprintf()

Flush data from the current simulator output buffers vpi_flush()

Open a file for writing vpi_mcd_open()

Close one or more files vpi_mcd_close()

Write to one or more files vpi_mcd_printf()

Write to one or more open files using varargs vpi_mcd_vprintf()

Flush data from a given MCD output buffer vpi_mcd_flush()

Retrieve the name of an open file vpi_mcd_name()

Retrieve data about product invocation options vpi_get_vlog_info()

See if two handles refer to the same object vpi_compare_objects()

Obtain error status and error information about the previous call to a

VPI routine

vpi_chk_error()

Free memory allocated by VPI routines vpi_free_object()

Add user-allocated storage to application saved data vpi_put_data()

Retrieve user-allocated storage from application saved data vpi_get_data()

Store user data in VPI work area vpi_put_userdata()

Retrieve user data from VPI work area vpi_get_userdata()

Control simulation execution (stop, finish, etc.) vpi_sim_control()

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

666 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

26.5.1 Diagram key for objects and classes

26.5.2 Diagram key for accessing properties

class defn

obj defn

class

object

obj defn

object

class

obj1

obj2

Object Definition:

Bold letters in a solid enclosure indicate an object definition. The

properties of the object are defined in this location.

Unnamed Class:

A dotted enclosure with no name is an unnamed class. It is sometimes

convenient to group objects although they shall not be referenced as a

group elsewhere, so a name is not indicated.

Object Reference:

Normal letters in a solid enclosure indicate an object reference.

Class Definition:

Bold italic letters in a dotted enclosure indicate a class definition,

where the class groups other objects and classes. Properties of the

class are defined in this location. The class definition can contain an

object definition.

Class Reference:

Italic letters in a dotted enclosure indicate a class reference.

obj

obj

object

String properties are accessed with routine vpi_get_str(). String prop-

erties are of type PLI_BYTE8 *.

Example:

PLI_BYTE8 *name = vpi_get_str(vpiName, obj_h);

Integer and boolean properties are accessed with the routine vpi_get().
These properties are of type PLI_INT32.

Example: Given handle obj_h to an object of type vpiObj, test if the

object is a vector, and get the size of the object.

PLI_INT32 vect_flag = vpi_get(vpivector, obj_h);
PLI_INT32 size = vpi_get(vpiSize, obj_h);

Complex properties for time and logic value are accessed with the

indicated routines. See the descriptions of the routines for usage.

-> vector
bool: vpiVector

-> size
int: vpiSize

-> complex
func1()
func2()

-> name
str: vpiName
str: vpiFullName

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 667
This is an unapproved IEEE Standards Draft, subject to change.

26.5.3 Diagram key for traversing relationships

For relationships which do not have a tag, the type used for access is determined by adding “vpi” to the

beginning of the word within the enclosure with each word's first letter being a capital. Refer to 26.3 for

more details on VPI access constant names.

ref

obj

ref

obj
Tag

ref

obj

ref

obj
Tag

obj

obj

A single arrow indicates a one-to-one relationship accessed

with the routine vpi_handle().

Example: Given vpiHandle variable ref_h of type ref,

access obj_h of type Obj:

 obj_h = vpi_handle(Obj, ref_h);

A tagged one-to-one relationship is traversed similarly, using

Tag instead of Obj:

Example:

 obj_h = vpi_handle(Tag, ref_h);

A one-to-one relationship which originates from a circle is tra-

versed using NULL for the ref_h:

Example:

 obj_h = vpi_handle(Obj, NULL);

A double arrow indicates a one-to-many relationship accessed

with the routine vpi_scan().

Example: Given vpiHandle variable ref_h of type ref, scan

objects of type Obj:

 itr = vpi_iterate(Obj, ref_h);
 while (obj_h = vpi_scan(itr))
 /* process ‘obj_h’ */

A tagged one-to-many relationship is traversed similarly, using

Tag instead of Obj:

Example:

 itr = vpi_iterate(Tag, ref_h);
 while (obj_h = vpi_scan(itr))
 /* process ‘obj_h’ */

A one-to-many relationship which originates from a circle is

traversed using NULL for the ref_h:

Example:

 itr = vpi_iterate(Obj, NULL);
 while (obj_h = vpi_scan(itr))
 /* process ‘obj_h’ */

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

668 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

26.6 Object data model diagrams

Subclauses 26.6.1 through 26.6.43 contain the data model diagrams that define the accessible objects and

groups of objects, along with their relationships and properties.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 669
This is an unapproved IEEE Standards Draft, subject to change.

26.6.1 Module

NOTES:

1) Top-level modules shall be accessed using vpi_iterate() with a NULL
reference object.
2) Passing a NULL handle to vpi_get() with types vpiTimePrecision or vpiTimeUnit shall return the smallest time precision of
all modules in the instantiated design.
3) The properties vpiDefLineNo and vpiDefFile can be affected by the `line and `file compiler directives. See 19.7 for more
details on these compiler directives.
4) If a module is an element within a module array, the vpiIndex transition is used to access the index within the array. If a mod-
ule is not part of a module array, this transition shall return NULL.

net

reg

variables

mod path

tchk

memory

scope

process

module

 cont assign

port

module

io decl

vpiInternalScope

def param

param assign

primitive

parameter

spec param

-> array member
bool: vpiArray

-> cell
bool: vpiCellInstance

-> decay time
int: vpiDefDecayTime

-> default net type
int: vpiDefNetType

-> definition location
int: vpiDefLineNo
str: vpiDefFile

-> definition name
str: vpiDefName

-> delay mode
int: vpiDefDelayMode

-> name
str: vpiName
str: vpiFullName

-> protected
bool: vpiProtected

-> timeprecision
int: vpiTimePrecision

-> timeunit
int: vpiTimeUnit

-> top module
bool: vpiTopModule

-> unconnected drive
int: vpiUnconnDrive

-> Configuration
str: vpiLibrary
str: vpiCell
str: vpiConfig

named event

module array

primitive array

module array

expr vpiIndex

named event array

net array

reg array

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

670 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

26.6.2 Instance arrays

-> size
bool: vpiSize

-> name
str: vpiName
str: vpiFullName

vpiLeftRange

expr

vpiRightRange
expr

module

primitive

NOTE—Traversing from the instance array to expr shall return a simple expression object of type vpiOperation with a vpiOp-
Type of vpiListOp. This expression can be used to access the actual list of connections to the module or primitive instance
array in the Verilog source code.

instance array

module array

primitive array

vpiParamAssign

expr

vpiDelay

primitive array

switch array

gate array

udp array

expr

expr

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 671
This is an unapproved IEEE Standards Draft, subject to change.

26.6.3 Scope

26.6.4 IO declaration

scope

module

named event

variables

memory

taskfunc

scope

parameter

vpiInternalScope

reg
named begin

named fork
stmt

-> name
str: vpiName
str: vpiFullName

module

reg array

named event array

expr

io decl expr

vpiRightRange

vpiLeftRangeudp defn

module
reg

net

variables
vpiExpr

-> direction
int: vpiDirection

-> name
str: vpiName

-> scalar
bool: vpiScalar

-> sign
bool: vpiSigned

-> size
int: vpiSize

-> vector
bool: vpiVector

task func

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

672 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

26.6.5 Ports

vpiHighConn

vpiBit

vpiParent
vpiLowConn

module

port

port bit

ports

NOTES:

1) vpiHighConn shall indicate the hierarchically higher (closer to the top module) port connection.
2) vpiLowConn shall indicate the lower (further from the top module) port connection.
3) Properties scalar and vector shall indicate if the port is 1 bit or more than 1 bit. They shall not indicate anything about what
is connected to the port.
4) Properties index and name shall not apply for port bits.
5) If a port is explicitly named, then the explicit name shall be returned. If not, and a name exists, then that name shall be
returned. Otherwise, NULL shall be returned.
6) vpiPortIndex can be used to determine the port order. The first port has a port index of zero.
7) vpiHighConn and vpiLowConn shall return NULL if the port is not connected.
8) vpiSize for a null port shall return 0.

expr

expr

-> connected by name
bool: vpiConnByName

-> delay (mipd)
vpi_get_delays()
vpi_put_delays()

-> direction
int: vpiDirection

-> explicitly named
bool: vpiExplicitName

-> index
int: vpiPortIndex

-> name
str: vpiName

-> scalar
bool: vpiScalar

-> size
int: vpiSize

-> vector
bool: vpiVector

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 673
This is an unapproved IEEE Standards Draft, subject to change.

26.6.6 Nets and net arrays

vpiParent

nets

net

net bit

module

vpiPortInst

vpiHighConn

ports

vpiLowConn

vpiDelay

ports

-> array member
bool: vpiArray

-> delay
vpi_get_delays()

-> expanded
bool: vpiExpanded

-> implicitly declared
bool: vpiImplicitDecl

-> name
str: vpiName
str: vpiFullName

-> size
int: vpiSize

-> strength
int: vpiStrength0
int: vpiStrength1
int: vpiChargeStrength

-> value
vpi_get_value()
vpi_put_value()

-> vector
bool: vpiVector

-> vectored declaration
bool: vpiExplicitVectored

-> constant selection
bool: vpiConstantSelect

prim term

vpiDriver

vpiLoad

vpiLeftRange

vpiRightRange

cont assign

tchck term

path term

NOTES:

1) For vectors, net bits shall be available regardless of vector expansion.

vpiLocalDriver

vpiLocalLoad

(Notes continued on next page)

net drivers

net loads

expr

expr

vpiBit

net array

vpiSimNet nets

expr

range

-> net decl assign
bool: vpiNetDeclAssign

-> net type
int: vpiNetType
int: vpiResolvedNetType

-> scalar
bool: vpiScalar

-> scalared declaration
bool: vpiExplicitScalared

-> sign
bool: vpiSigned

vpiIndex

expr

vpiIndex

vpiIndex

net
-> name

str: vpiName
str: vpiFullName

-> size
int: vpiSize

-> scalar
bool: vpiScalar

-> vector
bool: vpiVector

expr

expr

module
vpiParent

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

674 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

2) Continuous assignments and primitive terminals shall be accessed regardless of hierarchical boundaries.

3) Continuous assignments and primitive terminals shall only be accessed from scalar nets or bit-selects.

4) For vpiPorts, if the reference handle is a bit then port bits shall be returned. If it is the entire vector, then a handle to the entire
port shall be returned.

5) For vpiPortInst, if the reference handle is a bit or scalar, then port bits or scalar ports shall be returned, unless the highconn for
the port is a complex expression where the bit index cannot be determined. If this is the case, then the entire port shall be
returned. If the reference handle is a vector, then the entire port shall be returned.

6) For vpiPortInst, it is possible for the reference handle to be part of the highconn expression, but not connected to any of the
bits of the port. This may occur if there is a size mismatch. In this situation, the port shall not qualify as a member for that itera-
tion.

7) For implicit nets, vpiLineNo shall return 0, and vpiFile shall return the file name where the implicit net is first referenced.

8) vpi_handle(vpiIndex, net_bit_handle) shall return the bit index for the net bit. vpi_iterate(vpiIndex, net_bit_handle) shall
return the set of indices for a multidimensional net array bit-select, starting with the index for the net bit and working outward.

9) Only active forces and assign statements shall be returned for vpiLoad.

10) Only active forces shall be returned for vpiDriver.

11) vpiDriver shall also return ports that are driven by objects other than nets and net bits.

12) vpiLocalLoad and vpiLocalDriver return only the loads or drivers that are local, i.e.: contained by the module instance
which contains the net, including any ports connected to the net (output and inout ports are loads, input and inout ports are driv-
ers).

13) For vpiLoad, vpiLocalLoad, vpiDriver and vpiLocalDriver iterators, if the object is vpiNet for a vector net, then all loads
or drivers are returned exactly once as the loading or driving object. That is, if a part-select loads or drives only some bits, the
load or driver returned is the part-select. If a driver is repeated, it is only returned once. To trace exact bit by bit connectivity pass
a vpiNetBit object to vpi_iterate.

14) An iteration on loads or drivers for a variable bit-select shall return the set of loads or drivers for whatever bit that the bit-
select is referring to at the beginning of the iteration.

15) vpiSimNet shall return a unique net if an implementation collapses nets across hierarchy (refer to 12.3.10 for the definition of
simulated net and collapsed net).

16) The property vpiExpanded on an object of type vpiNetBit shall return the property's value for the parent.

17) The loads and drivers returned from vpi_iterate(vpiLoad, obj_handle) and vpi_iterate(vpiDriver, obj_handle) may not be
the same in different implementations, due to allowable net collapsing (see 12.3.10). The loads and drivers returned from
vpi_iterate(vpiLocalLoad, obj_handle) and vpi_iterate(vpiLocalDriver, obj_handle) shall be the same for all implementa-
tions.

18) The boolean property vpiConstantSelect returns TRUE if the expression that constitutes the index or indices evaluates to a
constant, and FALSE otherwise.

19) vpi_get(vpiSize, net_handle) returns the number of bits in the net. vpi_get(vpiSize, net_array_handle) returns the total
number of nets in the array.

20) vpi_iterate(vpiIndex, net_handle) shall return the set of indices for a net within an array, starting with the index for the net
and working outward. If the net is not part of an array, a NULL shall be returned.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 675
This is an unapproved IEEE Standards Draft, subject to change.

26.6.7 Regs and reg arrays

vpiBit

vpiParent

regs

reg

reg bit

vpiPortInst

vpiHighConnvpiLowConn

NOTES:

1) Continuous assignments and primitive terminals shall be accessed regardless of hierarchical boundaries.

2) Continuous assignments and primitive terminals shall only be accessed from scalar regs and bit-selects.

vpiIndex

-> array member
bool: vpiArray

-> name
str: vpiName
str: vpiFullName

-> scalar
bool: vpiScalar

-> sign
bool: vpiSigned

-> constant selection
bool: vpiConstantSelect

cont assign

prim term

reg loads

path term

tchk term

reg drivers

expr

expr

vpiDriver

vpiLoad

vpiLeftRange

vpiRightRange

expr

scope

ports

module

ports

(Notes continued on next page)

-> size
int: vpiSize

-> value
vpi_get_value()
vpi_put_value()

-> vector
bool: vpiVector

expr

expr
vpiIndex

reg array

range vpiIndex

expr

reg
-> name

str: vpiName
str: vpiFullName

-> size
int: vpiSize

-> scalar
bool: vpiScalar

-> vector
bool: vpiVector

module
vpiParent

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

676 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

3) For vpiPorts, if the reference handle is a bit then port bits shall be returned. If it is the entire vector, then a handle to the entire
port shall be returned.

4) For vpiPortInst, if the reference handle is a bit or scalar, then port bits or scalar ports shall be returned, unless the highconn for
the port is a complex expression where the bit index cannot be determined. If this is the case, then the entire port shall be
returned. If the reference handle is a vector, then the entire port shall be returned.

5) For vpiPortInst, it is possible for the reference handle to be part of the highconn expression, but not connected to any of the
bits of the port. This may occur if there is a size mismatch. In this case, the port shall not qualify as a member for that iteration.

6) vpi_handle(vpiIndex, reg_bit_handle) shall return the bit index for the reg bit. vpi_iterate(vpiIndex, reg_bit_handle) shall
return the set of indices for a multidimensional reg array bit-select, starting with the index for the reg bit and working outward.

7) Only active forces and assign statements shall be returned for vpiLoad and vpiDriver.

8) For vpiLoad and vpiDriver iterators, if the object is vpiReg for a vectored reg, then all loads or drivers are returned exactly
once as the loading or driving object. That is, if a part-select loads or drives only some bits, the load or driver returned is the part-
select. If a driver is repeated, it is only returned once. To trace exact bit by bit connectivity, pass a vpiRegBit object to the iterator.

9) The loads and drivers returned from vpi_iterate(vpiLoad, obj_handle) and vpi_iterate(vpiDriver, obj_handle) may not be
the same in different implementations due to allowable net collapsing (see 12.3.10).

10) An iteration on loads or drivers for a variable bit-select shall return the set of loads or drivers for whatever bit that the bit-
select is referring to at the beginning of the iteration.

11) If the reg has a default initialization assignment, the expression can be accessed using vpi_handle(vpiExpr, reg_handle) or
vpi_handle(vpiExpr, reg_bit_handle).

12) vpi_get(vpiSize, reg_handle) returns the number of bits in the reg. vpi_get(vpiSize, reg_array_handle) returns the total
number of regs in the array.

13) vpi_iterate(vpiIndex, reg_handle) shall return the set of indices for a reg within an array, starting with the index for the reg
and working outward. If the reg is not part of an array, a NULL shall be returned.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 677
This is an unapproved IEEE Standards Draft, subject to change.

26.6.8 Variables

vpiParent
variables

integer var

var select

real var

time var

scope

vpiPortInst
ports

vpiHighConnvpiLowConn

expr

expr

vpiLeftRange

vpiRightRange

ports

NOTES:

1) A var select is a word selected from a variable array.

2) The VPI does not provide access to bits of variables. If a handle to a bit-select of a variable is obtained, the object shall be a
vpiBitSelect in the simple expression class. The variable containing the bit can be accessed using vpiParent. Refer to 26.6.25.

3) The boolean property vpiArray shall be TRUE if the variable handle references an array of variables, and FALSE otherwise.
If the variable is an array, iterate on vpiVarSelect to obtain handles to each variable in the array.

4) vpi_handle(vpiIndex, var_select_handle) shall return the index of a var select in a 1-dimensional array. vpi_iterate(vpiIn-
dex, var_select_handle) shall return the set of indices for a var select in a multidimensional array, starting with the index for the
var select and working outward.

5) vpiLeftRange and vpiRightRange shall apply to variables when vpiArray is TRUE, and represent the array range declara-
tion. These relationships are only valid when vpiArray is TRUE.

6) vpiSize for a variable array shall return the number of variables in the array. For non-array variables, it shall return the size of
the variable in bits.

7) vpiSize for a var select shall return the number of bits in the var select.

8) Variables whose boolean property vpiArray is TRUE do not have a value property.

-> array
bool: vpiArray

-> name
str: vpiName
str: vpiFullName

-> signed
bool: vpiSigned

-> constant selection
bool: vpiConstantSelect

> name
str: vpiName
str: vpiFullName

-> size
int: vpiSize

-> value
vpi_get_value()
vpi_put_value()

range

module

vpiIndex

vpiIndex
expr

expr

-> size
int: vpiSize

-> value
vpi_get_value()
vpi_put_value()

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

678 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

26.6.9 Memory

scope

memory
vpiParent

memory word

vpiLeftRange

vpiRightRange

vpiLeftRange
expr

expr

expr

expr

NOTES:

1) vpiSize for a memory shall return the number of words in the memory.

2) vpiSize for a memory word shall return the number of bits in the word.

3) A memory is a one-dimensional array of reg types. Since 1364-2001 supports multi-dimensional arrays of regs, access to
arrays of regs has been generalized. Although the access provided in 26.6.9 is still allowed, the prefered method is to iterate
using vpiRegArray. See 26.6.7.

-> constant selection
bool: vpiConstantSelect

-> name
str: vpiName
str: vpiFullName

-> size
int: vpiSize

-> value
vpi_get_value()
vpi_put_value()

-> name
str: vpiName
str: vpiFullName

-> size
int: vpiSize

module

expr
vpiIndex

vpiRightRange

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 679
This is an unapproved IEEE Standards Draft, subject to change.

26.6.10 Object range

26.6.11 Named event

range

vpiLeftRange

vpiRightRange

expr

expr
-> size

int: vpiSize

named event
-> array member

bool: vpiArray

-> name
str: vpiName
str: vpiFullName

-> value
vpi_put_value()

scope

module

named event array

range vpiIndex

expr

-> name
str: vpiName
str: vpiFullName

module

NOTE—vpi_iterate(vpiIndex, named_event_handle) shall return the set of indices for a named event within an array, starting
with the index for the named event and working outward. If the named event is not part of an array, a NULL shall be returned.

named event
vpiParent

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

680 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

26.6.12 Parameter, specparam

parameter

vpiRhs
expr

vpiLhs
parameter

spec param

vpiRhs
expr

vpiLhs
parameter

expr

NOTES:

1) Obtaining the value from the object parameter shall return the final value of the parameter after all module instantiation
overrides and defparams have been resolved.

2) vpiLhs from a param assign object shall return a handle to the overridden parameter.

-> constant type
int: vpiConstType

-> local
bool: vpiLocalParam

-> name
str: vpiName
str: vpiFullName

-> sign
bool: vpiSigned

-> size
int: vpiSize

-> value
vpi_get_value()

-> constant type
int: vpiConstType

-> name
str: vpiName
str: vpiFullName

-> size
int: vpiSize

-> value
vpi_get_value()

-> connection by name
bool: vpiConnByName

vpiLeftRange

vpiRightRange

expr

expr

expr

def param

module

module

module param assign

scope

module

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 681
This is an unapproved IEEE Standards Draft, subject to change.

26.6.13 Primitive, prim term

prim term

module

primitive

gate

switch

udpudp defn

vpiDelay

expr

-> array member
bool: vpiArray

-> definition name
str: vpiDefName

-> delay
vpi_get_delays()
vpi_put_delays()

-> name
str: vpiName
str: vpiFullName

-> primitive type
int: vpiPrimType

-> number of inputs
int: vpiSize

->strength
int: vpiStrength0
int: vpiStrength1

-> value
vpi_get_value()
vpi_put_value()

-> direction
int: vpiDirection

-> index
int: vpiTermIndex

-> value
vpi_get_value()

NOTES:

1) vpiSize shall return the number of inputs.

2) For primitives, vpi_put_value() shall only be used with sequential UDP primitives.

3) vpiTermIndex can be used to determine the terminal order. The first terminal has a term index of zero.

4) If a primitive is an element within a primitive array, the vpiIndex transition is used to access the index within the array. If a
primitive is not part of a primitive array, this transition shall return NULL.

primitive array

vpiIndex

expr

expr

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

682 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

26.6.14 UDP

udp defn

udp

table entry

initial

NOTES:

1) Only string (decompilation) and vector (ASCII values) shall be obtained for table entry objects using vpi_get_value(). Refer
to the definition of vpi_get_value() for additional details.

2) vpiPrimType returns vpiSeqPrim for sequential UDP's and vpiCombPrim for combinatorial UDP's.

io decl
-> definition name

str: vpiDefName

-> number of inputs
int: vpiSize

-> protected
bool: vpiProtected

-> type
int: vpiPrimType

-> number of symbol entries
int: vpiSize

-> value
vpi_get_value()

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 683
This is an unapproved IEEE Standards Draft, subject to change.

26.6.15 Module path, path term

26.6.16 Intermodule path

path term
vpiModPathIn
vpiModPathOut

module
expr

expr

vpiModDataPathIn

mod path

expr
vpiDelay

-> delay
vpi_get_delays()
vpi_put_delays()

-> path type
int: vpiPathType

-> polarity
int: vpiPolarity
int: vpiDataPolarity

-> hasIfNone
bool: vpiModPathHasIfNone

-> direction
int: vpiDirection

-> edge
int: vpiEdge

vpiCondition

NOTE—To get to an intermodule path, vpi_handle_multi(vpiInterModPath, port1, port2) can be used.

inter mod path ports
-> delay

vpi_get_delays()
vpi_put_delays()

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

684 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

26.6.17 Timing check

26.6.18 Task, function declaration

NOTES:

1) The vpiTchkRefTerm is the first terminal for all tchks except $setup, where vpiTchkDataTerm is the first terminal and
vpiTchkRefTerm is the second terminal.

2) When iterating for the expressions in a tcheck the handle returned for what is known as the data, ref, and notifier terminal will
have the type vpiTchkTerm. All other arguments will have types matching the expression.

module

tchk tchk term
vpiTchkRefTerm

vpiTchkNotifier

regs

expr

vpiCondition

expr

vpiTchkDataTerm

expr

-> limit
vpi_get_delays()
vpi_put_delays()

-> tchk type
int: vpiTchkType

-> edge
int: vpiEdge

expr
vpiDelay

task func

task

function
-> sign

bool: vpiSigned

-> size
int: vpiSize

-> type
int: vpiFuncType

NOTE—A Verilog HDL function shall contain an object with the same name, size, and type as the function.

vpiLeftRange

vpiRightRange

expr

expr

task call

func call

io decl

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 685
This is an unapproved IEEE Standards Draft, subject to change.

26.6.19 Task and function call

tf call

sys task call

sys func call

task call

func call

expr

task

function

vpiArgument

user systf

NOTES:

1) The system task or function that invoked an application shall be accessed with vpi_handle(vpiSysTfCall, NULL)

2) vpi_get_value() shall return the current value of the system function.

3) If the vpiUserDefn property of a system task or function call is true, then the properties of the corresponding systf object shall
be obtained via vpi_get_systf_info().

4) All user-defined system tasks or functions shall be retrieved using vpi_iterate(), with vpiUserSystf as the type argument, and
a NULL reference argument.

5) Arguments to PLI tasks or functions are not evaluated until an application requests their value. Effectively, the value of any
argument is not known until the application asks for it. When an argument is an HDL or system function call, the function cannot
be evaluated until the application asks for its value. If the application never asks for the value of the function, it is never evalu-
ated. If the application has a handle to an HDL or system function it may ask for its value at any time in the simulation. When
this happens the function is called and evaluated at this time.

6) A null argument is an expression with a vpiType of vpiOperation and a vpiOpType of vpiNullOp.

7) The property vpiDecompile will return a string with a functionally equivalent system task or function call to what was in the
original HDL. The arguments will be decompiled using the same manner as any expression is decompiled. See 26.6.26 for a
description of expression decompilation.

vpiSysTfCall

-> tf name
str: vpiName

-> systf info
p_vpi_systf_data:
 vpi_get_systf_info()

-> type
int: vpiFuncType

-> value
vpi_put_value()
vpi_get_value()

-> user defined
bool: vpiUserDefn

-> decompile
str: vpiDecompile

scope

primitive

named event

-> type
int: vpiFuncType

-> value
vpi_get_value()

scope

memory

named event array

net array

reg array

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

686 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

26.6.20 Frames

frame

task call

func call

regs

function

vpiAutomatic

NOTES:

1) It shall be illegal to place value change callbacks on automatic variables.

2) It shall be illegal to put a value with a delay on automatic variables.

3) There is at most only one active frame at any time. To get a handle to the currently active frame, use vpi_handle(vpiFrame,
NULL). The frame to stmt transition shall return the currently active statement within the frame.

4) Frame handles must be freed using vpi_free_object() once the application no longer needs the handle. If the handle is not
freed it shall continue to exist, even after the frame has completed execution.

vpiParent

-> validity
bool: vpiValid

-> active
bool: vpiActive

variables

stmt

named event

parameter

frame

task

-> validity
bool: vpiValid

-> automatic
bool: vpiAutomatic

vpiScope

named event array

reg array

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 687
This is an unapproved IEEE Standards Draft, subject to change.

26.6.21 Delay terminals

26.6.22 Net drivers and loads

26.6.23 Reg drivers and loads

NOTES:

1) The value of the input delay term shall change before the delay associated with the delay device.

2) The value of the output delay term shall not change until after the delay has occurred.

delay term
-> delay type

int: vpiDelayType

-> value
vpi_get_value()

vpiLoad

delay device
-> delay type

int: vpiDelayType

delay term
vpiInTerm

vpiOutTerm

vpiDriver

module
net drivers

net loads

prim term

cont assign

ports

force assign stmt

delay term

prim term

cont assign bit

force

delay term

cont assign

net loads

cont assign bit

net drivers
nets

vpiLoadvpiDriver

assign stmt

force

assign stmt

cont assign bit

force

prim term

cont assign

reg loadsreg drivers
regs

vpiLoadvpiDriver

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

688 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

26.6.24 Continuous assignment

-> delay
vpi_get_delays()

-> net decl assign
bool: vpiNetDeclAssign

-> strength
int: vpiStrength0
int: vpiStrength1

-> value
vpi_get_value()

cont assign

vpiRhs
expr

vpiLhs
expr

module

expr
vpiDelay

cont assign bit

vpiBit

vpiParent

-> offset from LSB
int: vpiOffset

NOTES:

1) The size of a cont assign bit is always scalar.

2) Callbacks for value changes can be placed onto cont assign or a cont assign bit.

3) vpiOffset shall return zero for the least significant bit.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 689
This is an unapproved IEEE Standards Draft, subject to change.

26.6.25 Simple expressions

simple expr

variables

expr

nets

regs

memory word

var select

vpiUse prim term

stmt

ports

path term

delay term

NOTES:

1) For vectors, the vpiUse relationship shall access any use of the vector or part-selects or bit-selects thereof.

2) For bit-selects, the vpiUse relationship shall access any specific use of that bit, any use of the parent vector, and any part-
select that contains that bit.

cont assign

vpiIndex

parameter

specparam

bit-select

time var

integer var

parameter

specparam

var select

memory word

vpiParent
-> name

str: vpiName
str: vpiFullName

-> constant select
bool:
vpiConstantSelect

tchk term

cont assign bit

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

690 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

26.6.26 Expressions

expr

operation

constant

simple expr

part-select

vpiParent

vpiOperand

func call

sys func call

expr

expr

vpiLeftRange

vpiRightRange

expr

NOTES:

1) For an operator whose type is vpiMultiConcat, the first operand shall be the multiplier expression. The remaining operands
shall be the expressions within the concatenation.

2) The property vpiDecompile will return a string with a functionally equivalent expression to the original expression within
the HDL. Parenthesis shall be added only to preserve precedence. Each operand and operator shall be separated by a single
space character. No additional white space shall be added due to parenthesis.

-> constant selection
bool: vpiConstantSelect

-> decompile
str: vpiDecompile

-> size
int: vpiSize

-> value
vpi_get_value()

-> operation type
int: vpiOpType

-> constant type
int: vpiConstType

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 691
This is an unapproved IEEE Standards Draft, subject to change.

26.6.27 Process, block, statement, event statement

module

initial

process

always

block

stmt

atomic stmt

block stmt

atomic stmt

assignment

deassign

case

for

delay control

event control

event stmt

assign stmt

if

if else

while

repeat

wait

tf call

disable

force

release

null stmt

forever

begin

fork

named begin

named fork

scope

event stmt ‘->’ named event

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

692 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

26.6.28 Assignment

26.6.29 Delay control

26.6.30 Event control

26.6.31 Repeat control

assignment
vpiRhs

expr

vpiLhs
expr

delay control

event control

repeat control
-> blocking

bool: vpiBlocking

delay control ‘#’ stmt

expr
vpiDelay

NOTE—For delay control associated with assignment, the statement shall always be NULL.

-> delay
vpi_get_delays()

vpiCondition

expr

stmt

event control ‘@’

named event

NOTE—For event control associated with assignment, the statement shall always be NULL.

NOTE—For delay control and event control associated with assignment, the statement shall always be NULL.

repeat control expr

event control

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 693
This is an unapproved IEEE Standards Draft, subject to change.

26.6.32 While, repeat, wait

26.6.33 For

26.6.34 Forever

vpiCondition
expr

stmt

while

repeat

wait

stmt

for
vpiForInitStmt

stmt

vpiCondition
expr

vpiForIncStmt
stmt

forever stmt

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

694 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

26.6.35 If, if-else

26.6.36 Case

vpiElseStmt
stmt

if

if else

vpiCondition
expr

stmt

case
vpiCondition

expr

case item expr

stmt

NOTES:

1) The case item shall group all case conditions that branch to the same statement.

2) vpi_iterate() shall return NULL for the default case item since there is no expression with the default case.

-> case type
int: vpiCaseType

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 695
This is an unapproved IEEE Standards Draft, subject to change.

26.6.37 Assign statement, deassign, force, release

26.6.38 Disable

vpiRhs
expr

vpiLhs
expr

force

assign stmt

deassign

vpiLhs
expr

release

function

task

named fork

disable
vpiExpr

named begin

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

696 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

26.6.39 Callback

26.6.40 Time queue

26.6.41 Active time format

callback

prim term

time queue

NOTES:

1) To get information about the callback object, the routine vpi_get_cb_info() can be used.

2) To get callback objects not related to the above objects, the second argument to vpi_iterate() shall be NULL.

stmt

expr
-> cb info

p_cb_data: vpi_get_cb_info()

NOTES:

1) The time queue objects shall be returned in increasing order of simulation time.

2) vpi_iterate() shall return NULL if there is nothing left in the simulation queue.

3) If any events after read only sync remain in the current queue, then it shall not be returned as part of the iteration.

time queue
-> time

vpi_get_time()

NOTE—If $timeformat() has not been called, vpi_handle(vpiActiveTimeFormat,NULL) shall return
a NULL.

vpiActiveTimeFormat
tf call

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 697
This is an unapproved IEEE Standards Draft, subject to change.

26.6.42 Attributes

attribute
vpiParent

-> name
str: vpiName

-> On definition
bool: vpiDefAttribute

-> value:
vpi_get_value()

path term

memory

primitive

mod path

prim term

port

module

process

operation

variables

net

reg

tchk

param assign

spec param

taskfunc

stmt

table entry

named event

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

698 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

26.6.43 Iterator

NOTES:

1) vpi_handle(vpiUse, iterator_handle) shall return the reference handle used to create the iterator.

2) It is possible to have a NULL reference handle, in which case vpi_handle(vpiUse, iterator_handle) shall return NULL.

variables

inter mod path

memory

instance array

primitive

mod path

prim term

udp defn

iterator
vpiUse

frame

-> type
int: vpiIteratorType

ports

nets

regs

expr

stmt

tf call

net array

reg array

time queue

path term

case item

delay term

tchk

param assign

process

scope

named event array

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 699
This is an unapproved IEEE Standards Draft, subject to change.

27. VPI routine definitions

This clause describes the Verilog Procedural Interface (VPI) routines, explaining their function, syntax, and

usage. The routines are listed in alphabetical order. See Clause 23 for the conventions used in the definitions

of the PLI routines.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

700 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

27.1 vpi_chk_error()

The VPI routine vpi_chk_error() shall return an integer constant representing an error severity level if the

previous call to a VPI routine resulted in an error. The error constants are shown in Table 212. If the previ-

ous call to a VPI routine did not result in an error, then vpi_chk_error() shall return 0 (false). The error sta-

tus shall be reset by any VPI routine call except vpi_chk_error(). Calling vpi_chk_error() shall have no

effect on the error status.

If an error occurred, the s_vpi_error_info structure shall contain information about the error. If the

error information is not needed, a NULL can be passed to the routine. The s_vpi_error_info structure

used by vpi_chk_error() is defined in vpi_user.h and is listed in Figure 172.

Figure 172—The s_vpi_error_info structure definition

vpi_chk_error()

Synopsis: Retrieve information about VPI routine errors.

Syntax: vpi_chk_error(error_info_p)

Type Description

Returns: PLI_INT32 returns the error severity level if the previous VPI routine call resulted in an error and 0
(false) if no error occurred

Type Name Description

Arguments: p_vpi_error_info error_info_p Pointer to a structure containing error information

Table 212—Return error constants for vpi_chk_error()

Error Constant Severity Level

vpiNotice lowest severity

vpiWarning

vpiError

vpiSystem

vpiInternal highest severity

typedef struct t_vpi_error_info
{
 PLI_INT32 state; /* vpi[Compile,PLI,Run] */
 PLI_INT32 level; /* vpi[Notice,Warning,Error,System,Internal] */
 PLI_BYTE8 *message;
 PLI_BYTE8 *product;
 PLI_BYTE8 *code;
 PLI_BYTE8 *file;
 PLI_INT32 line;
} s_vpi_error_info, *p_vpi_error_info;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 701
This is an unapproved IEEE Standards Draft, subject to change.

27.2 vpi_compare_objects()

The VPI routine vpi_compare_objects() shall return 1 (true) if the two handles refer to the same object. Oth-

erwise, 0 (false) shall be returned. Handle equivalence cannot be determined with a C ‘==’ comparison.

vpi_compare_objects()

Synopsis: Compare two handles to determine if they reference the same object.

Syntax: vpi_compare_objects(obj1, obj2)

Type Description

Returns: PLI_INT32 1 (true) if the two handles refer to the same object. Otherwise, 0 (false)

Type Name Description

Arguments: vpiHandle obj1 Handle to an object

vpiHandle obj2 Handle to an object

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

702 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

27.3 vpi_control()

The VPI routine vpi_control() shall pass information from a user PLI application to a Verilog software

tool, such as a simulator. The following control constants are defined as part of the VPI standard:

vpiStop causes the $stop built-in Verilog system task to be executed upon return of

the user function. This operation shall be passed one additional integer

argument, which is the same as the diagnostic message level argument

passed to $stop (see 17.4.2).

vpiFinish causes the $finish built-in Verilog system task to be executed upon return

of the user function. This operation shall be passed one additional integer

argument, which is the same as the diagnostic message level argument

passed to $finish (see 17.4.1).

vpiReset causes the $reset built-in Verilog system task to be executed upon return

of the user function. This operation shall be passed three additional integer

arguments: stop_value, reset_value and diagnostic_level, which are the

same values passed to the $reset system task (see C.7).

vpiSetInteractiveScope causes a tool’s interactive scope to be immediately changed to a new

scope. This operation shall be passed one additional argument, which is a

vpiHandle object within the vpiScope class.

vpi_control()

Synopsis: Pass information from user code to simulator.

Syntax: vpi_control(operation, varargs)

Type Description

Returns: PLI_INT32 1 (true) if successful; 0 (false) on a failure

Type Name Description

Arguments: PLI_INT32 operation select type of operation

varargs variable number of operation specific arguments

Related
routines:

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 703
This is an unapproved IEEE Standards Draft, subject to change.

27.4 vpi_flush()

The routine vpi_flush() shall flush the output buffers for the simulator’s output channel and current log file.

vpi_flush()

Synopsis: Flushes the data from the simulator output channel and log file output buffers.

Syntax: vpi_flush()

Type Description

Returns: PLI_INT32 0 if successful, non-zero if unsuccessful

Type Name Description

Arguments: None

Related
routines:

Use vpi_printf() to write a finite number of arguments to the simulator output channel and log file

Use vpi_vprintf() to write a variable number of arguments to the simulator output channel and log file

Use vpi_mcd_printf() to write one or more opened files

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

704 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

27.5 vpi_free_object()

The VPI routine vpi_free_object() shall free memory allocated for objects. It shall generally be used to free

memory created for iterator objects. The iterator object shall automatically be freed when vpi_scan() returns

NULL either because it has completed an object traversal or encountered an error condition. If neither of

these conditions occur (which can happen if the code breaks out of an iteration loop before it has scanned

every object), vpi_free_object() should be called to free any memory allocated for the iterator. This routine

can also optionally be used for implementations that have to allocate memory for objects. The routine shall

return 1 (true) on success and 0 (false) on failure.

vpi_free_object()

Synopsis: Free memory allocated by VPI routines.

Syntax: vpi_free_object(obj)

Type Description

Returns: PLI_INT32 1 (true) on success and 0 (false) on failure

Type Name Description

Arguments: vpiHandle obj Handle of an object

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 705
This is an unapproved IEEE Standards Draft, subject to change.

27.6 vpi_get()

The VPI routine vpi_get() shall return the value of integer and boolean object properties. These properties

shall be of type PLI_INT32. Boolean properties shall have a value of 1 for TRUE and 0 for FALSE. For

integer object properties such as vpiSize, any integer shall be returned. For integer object properties that

return a defined value, refer to Annex G for the value that shall be returned. Note for object property vpi-
TimeUnit or vpiTimePrecision, if the object is NULL, then the simulation time unit shall be returned.

Should an error occur, vpi_get() shall return vpiUndefined.

vpi_get()

Synopsis: Get the value of an integer or boolean property of an object.

Syntax: vpi_get(prop, obj)

Type Description

Returns: PLI_INT32 Value of an integer or boolean property

Type Name Description

Arguments: PLI_INT32 prop An integer constant representing the property of an object

for which to obtain a value

vpiHandle obj Handle to an object

Related
routines:

Use vpi_get_str() to get string properties

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

706 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

27.7 vpi_get_cb_info()

The VPI routine vpi_get_cb_info() shall return information about a simulation-related callback in an

s_cb_data structure. The memory for this structure shall be allocated by the user.

The s_cb_data structure used by vpi_get_cb_info() is defined in vpi_user.h and is listed in Figure
173.

Figure 173—The s_cb_data structure definition

vpi_get_cb_info()

Synopsis: Retrieve information about a simulation-related callback.

Syntax: vpi_get_cb_info(obj, cb_data_p)

Type Description

Returns: void

Type Name Description

Arguments: vpiHandle obj Handle to a simulation-related callback

p_cb_data cb_data_p Pointer to a structure containing callback information

Related
routines:

Use vpi_get_systf_info() to retrieve information about a system task/function callback

typedef struct t_cb_data
{
 PLI_INT32 reason; /* callback reason */
 PLI_INT32 (*cb_rtn)(struct t_cb_data *); /* call routine */
 vpiHandle obj; /* trigger object */
 p_vpi_time time; /* callback time */
 p_vpi_value value; /* trigger object value */
 PLI_INT32 index; /* index of the memory word or var select
 that changed */
 PLI_BYTE8 *user_data;
} s_cb_data, *p_cb_data;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 707
This is an unapproved IEEE Standards Draft, subject to change.

27.8 vpi_get_data()

The routine shall place numOfBytes of data into the memory location pointed to by dataLoc from a simula-

tion’s save/restart location. This memory location has to be properly allocated by the application. The first

call for a given id will retrieve the data starting at what was placed into the save/restart location with the first

call to vpi_put_data() for a given id. The return value shall be the number of bytes retrieved. On a failure

the return value shall be 0. Each subsequent call shall start retrieving data where the last call left off. It shall

be a warning for an application to retrieve more data than what was placed into the simulation save/restart

location for a given id. In this case the dataLoc shall be filled with the data that is left for the given id and the

remaining bytes shall be filled with '\0'. The return value shall be the actual number of bytes retrieved. It

shall be acceptable for an application to retrieve less data then what was stored for a given id with

vpi_put_data(). This routine can only be called from a user application routine that has been called for rea-

son cbStartOfRestart or cbEndOfRestart. The recommended way to get the “id” for vpi_get_data() is to

pass it as the value for user_data when registering for cbStartOfRestart or cbEndOfRestart from the

cbStartOfSave or cbEndOfSave user application routine. An application can get the path to the simulations

save/restart location by calling vpi_get_str(vpiSaveRestartLocation, NULL) from a user application rou-

tine that has been called for reason cbStartOfRestart or cbEndOfRestart.

vpi_get_data()

Synopsis: Get data from an implementation's save/restart location.

Syntax: vpi_get_data(id, dataLoc, numOfBytes)

Type Description

Returns: PLI_INT32 The number of bytes retrieved

Type Name Description

Arguments: PLI_INT32 id A save/restart ID returned from

vpi_get(vpiSaveRestartID, NULL)

PLI_BYTE8 * dataLoc Address of application allocated storage

PLI_INT32 numOfBytes Number of bytes to be retrieved from save/restart location

Related
routines:

Use vpi_put_data() to write saved data

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

708 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The following example illustrates using vpi_get_data():

/* Uses the global pointer firstWrk */
PLI_INT32 consumer_restart(p_cb_data data)
{
struct myStruct *wrk; /* myStruct is defined in vpi_put_data() example */

 PLI_INT32 status;
 PLI_INT32 cnt, size;
 PLI_INT32 id = (PLI_INT32)data->user_data;

 /* Get the number of structures. */
 status = vpi_get_data(id,(PLI_BYTE8 *)&cnt),sizeof(PLI_INT32));
 assert(status > 0); /* Check returned status. */
 size = cnt * sizeof(struct myStruct);

 /* allocate memory for the structures */
 cnt *= sizeof(struct myStruct);
 firstWrk = malloc(cnt);

 /* retrieve the data structures */
 if (cnt != vpi_get_data(id, (PLI_BYTE8 *)firstWrk,cnt))
 return(1); /* error. */

 firstWrk = wrk;
 /* Fix the next pointers in the link list. */
 for (wrk = firstWrk; cnt > 0; cnt--)
 {
 wrk->next = wrk + 1;
 wrk = wrk->next;
 }
 wrk->next = NULL;
 return(SUCCESS);
}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 709
This is an unapproved IEEE Standards Draft, subject to change.

27.9 vpi_get_delays()

The VPI routine vpi_get_delays() shall retrieve the delays or pulse limits of an object and place them in an

s_vpi_delay structure that has been allocated by the user. The format of the delay information shall be

controlled by the time_type flag in the s_vpi_delay structure. This routine shall ignore the value of the

type flag in the s_vpi_time structure.

The s_vpi_delay and s_vpi_time structures used by both vpi_get_delays() and vpi_put_delays()
are defined in vpi_user.h and are listed in Figure 174 and Figure 175.

Figure 174—The s_vpi_delay structure definition

Figure 175—The s_vpi_time structure definition

vpi_get_delays()

Synopsis: Retrieve the delays or pulse limits of an object.

Syntax: vpi_get_delays(obj, delay_p)

Type Description

Returns: void

Type Name Description

Arguments: vpiHandle obj Handle to an object

p_vpi_delay delay_p Pointer to a structure containing delay information

Related
routines:

Use vpi_put_delays() to set the delays or timing limits of an object

typedef struct t_vpi_delay
{
 struct t_vpi_time *da; /* pointer to user allocated array of
 delay values */
 PLI_INT32 no_of_delays; /* number of delays */
 PLI_INT32 time_type; /* [vpiScaledRealTime, vpiSimTime,
 or vpiSuppressTime] */
 PLI_INT32 mtm_flag; /* true for mtm values */
 PLI_INT32 append_flag; /* true for append */
 PLI_INT32 pulsere_flag; /* true for pulsere values */
} s_vpi_delay, *p_vpi_delay;

typedef struct t_vpi_time
{
 PLI_INT32 type; /* [vpiScaledRealTime, vpiSimTime, vpiSuppressTime] */
 PLI_UINT32 high, low; /* for vpiSimTime */
 double real; /* for vpiScaledRealTime */
} s_vpi_time, *p_vpi_time;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

710 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The da field of the s_vpi_delay structure shall be a user-allocated array of s_vpi_time structures.

This array shall store delay values returned by vpi_get_delays(). The number of elements in this array shall

be determined by

— The number of delays to be retrieved
— The mtm_flag setting
— The pulsere_flag setting

The number of delays to be retrieved shall be set in the no_of_delays field of the s_vpi_delay structure.

Legal values for the number of delays shall be determined by the type of object.

— For primitive objects, the no_of_delays value shall be 2 or 3.
— For path delay objects, the no_of_delays value shall be 1, 2, 3, 6, or 12.
— For timing check objects, the no_of_delays value shall match the number of limits existing in the

timing check.
— For intermodule path objects, the no_of_delays value shall be 2 or 3.

The user allocated s_vpi_delay array shall contain delays in the same order in which they occur in the

Verilog HDL description. The number of elements for each delay shall be determined by the flags mtm_flag
and pulsere_flag, as shown in Table 213.

Table 213—Size of the s_vpi_delay->da array

Flag values Number of s_vpi_time array elements
required for s_vpi_delay->da

Order in which delay elements
shall be filled

mtm_flag = FALSE
pulsere_flag = FALSE no_of_delays

1st delay: da[0] -> 1st delay
2nd delay: da[1] -> 2nd delay
...

mtm_flag = TRUE
pulsere_flag = FALSE 3 * no_of_delays

1st delay: da[0] -> min delay
 da[1] -> typ delay
 da[2] -> max delay
2nd delay: ...

mtm_flag = FALSE
pulsere_flag = TRUE 3 * no_of_delays

1st delay: da[0] -> delay
 da[1] -> reject limit
 da[2] -> error limit
2nd delay element: ...

mtm_flag = TRUE
pulsere_flag = TRUE 9 * no_of_delays

1st delay: da[0] -> min delay
 da[1] -> typ delay
 da[2] -> max delay
 da[3] -> min reject
 da[4] -> typ reject
 da[5] -> max reject
 da[6] -> min error
 da[7] -> typ error
 da[8] -> max error
2nd delay: ...

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 711
This is an unapproved IEEE Standards Draft, subject to change.

The delay structure has to be allocated before passing a pointer to vpi_get_delays(). In the following exam-

ple, a static structure, prim_da, is allocated for use by each call to the vpi_get_delays() function.

display_prim_delays(prim)
vpiHandle prim;

{
static s_vpi_time prim_da[3];
static s_vpi_delay delay_s = {NULL, 3, vpiScaledRealTime};
static p_vpi_delay delay_p = &delay_s;

delay_s.da = prim_da;
vpi_get_delays(prim, delay_p);
vpi_printf(“Delays for primitive %s: %6.2f %6.2f %6.2f\n”,

vpi_get_str(vpiFullName, prim)
delay_p->da[0].real, delay_p->da[1].real, delay_p->da[2].real);

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

712 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

27.10 vpi_get_str()

The VPI routine vpi_get_str() shall return string property values. The string shall be placed in a temporary

buffer that shall be used by every call to this routine. If the string is to be used after a subsequent call, the

string should be copied to another location. Note that a different string buffer shall be used for string values

returned through the s_vpi_value structure.

The following example illustrates the usage of vpi_get_str().

PLI_BYTE8 *str;
vpiHandle mod = vpi_handle_by_name(“top.mod1”,NULL);
vpi_printf (“Module top.mod1 is an instance of %s\n”,

vpi_get_str(vpiDefName, mod));

vpi_get_str()

Synopsis: Get the value of a string property of an object.

Syntax: vpi_get_str(prop, obj)

Type Description

Returns: PLI_BYTE8 * Pointer to a character string containing the property value

Type Name Description

Arguments: PLI_INT32 prop An integer constant representing the property of an object

for which to obtain a value

vpiHandle obj Handle to an object

Related
routines:

Use vpi_get() to get integer and boolean properties

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 713
This is an unapproved IEEE Standards Draft, subject to change.

27.11 vpi_get_systf_info()

The VPI routine vpi_get_systf_info() shall return information about a user-defined system task or function

callback in an s_vpi_systf_data structure. The memory for this structure shall be allocated by the

user.

The s_vpi_systf_data structure used by vpi_get_systf_info() is defined in vpi_user.h and is

listed in Figure 176.

Figure 176—The s_vpi_systf_data structure definition

vpi_get_systf_info()

Synopsis: Retrieve information about a user-defined system task/function-related callback.

Syntax: vpi_get_systf_info(obj, systf_data_p)

Type Description

Returns: void

Type Name Description

Arguments: vpiHandle obj Handle to a system task/function-related callback

p_vpi_systf_data systf_data_p Pointer to a structure containing callback information

Related
routines:

Use vpi_get_cb_info() to retrieve information about a simulation-related callback

typedef struct t_vpi_systf_data
{
 PLI_INT32 type; /* vpiSysTask, vpiSysFunc */
 PLI_INT32 sysfunctype; /* vpiSysTask, vpi[Int,Real,Time,Sized,
 SizedSigned]Func */
 PLI_BYTE8 *tfname; /* first character must be `$' */
 PLI_INT32 (*calltf)(PLI_BYTE8 *);
 PLI_INT32 (*compiletf)(PLI_BYTE8 *);
 PLI_INT32 (*sizetf)(PLI_BYTE8 *); /* for sized function
 callbacks only */
 PLI_BYTE8 *user_data;
} s_vpi_systf_data, *p_vpi_systf_data;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

714 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

27.12 vpi_get_time()

The VPI routine vpi_get_time() shall retrieve the current simulation time, using the time scale of the object.

If obj is NULL, the simulation time is retrieved using the simulation time unit. The time_p->type field shall

be set to indicate if scaled real or simulation time is desired. The memory for the time_p structure shall be

allocated by the user.

The s_vpi_time structure used by vpi_get_time() is defined in vpi_user.h and is listed in Figure 177
[this is the same time structure as used by vpi_put_value()].

Figure 177—The s_vpi_time structure definition

vpi_get_time()

Synopsis: Retrieve the current simulation time.

Syntax: vpi_get_time(obj, time_p)

Type Description

Returns: void

Type Name Description

Arguments: vpiHandle obj Handle to an object

p_vpi_time time_p Pointer to a structure containing time information

Related
routines:

typedef struct t_vpi_time
{
 PLI_INT32 type; /* [vpiScaledRealTime, vpiSimTime, vpiSuppressTime] */
 PLI_UINT32 high, low; /* for vpiSimTime */
 double real; /* for vpiScaledRealTime */
} s_vpi_time, *p_vpi_time;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 715
This is an unapproved IEEE Standards Draft, subject to change.

27.13 vpi_get_userdata()

This routine shall return the value of the user-data associated with a previous call to vpi_put_userdata() for

a user-defined system task or function call handle. If no user-data had been previously associated with the

object, or if the routine fails, the return value shall be NULL.

vpi_get_userdata()

Synopsis: Get user-data value from an implementation's system task/function instance storage location.

Syntax: vpi_get_userdata(obj)

Type Description

Returns: void * user-data value associated with a system task instance or system function instance

Type Name Description

Arguments: vpiHandle obj handle to a system task instance or system function

instance

Related
routines:

Use vpi_put_userdata() to write data into the user data storage area

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

716 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

27.14 vpi_get_value()

The VPI routine vpi_get_value() shall retrieve the simulation value of VPI objects. The value shall be

placed in an s_vpi_value structure, which has been allocated by the user. The format of the value shall

be set by the format field of the structure.

When the format field is vpiObjTypeVal, the routine shall fill in the value and change the format field based

on the object type, as follows:

— For an integer, vpiIntVal
— For a real, vpiRealVal
— For a scalar, either vpiScalar or vpiStrength
— For a time variable, vpiTimeVal with vpiSimTime
— For a vector, vpiVectorVal

The buffer this routine uses for string values shall be different from the buffer that vpi_get_str() shall use.

The string buffer used by vpi_get_value() is overwritten with each call. If the value is needed, it should be

saved by the application.

The s_vpi_value, s_vpi_vecval and s_vpi_strengthval structures used by vpi_get_value()
are defined in vpi_user.h and are listed in Figure 178, Figure 179, and Figure 180.

vpi_get_value()

Synopsis: Retrieve the simulation value of an object.

Syntax: vpi_get_value(obj, value_p)

Type Description

Returns: void

Type Name Description

Arguments: vpiHandle obj Handle to an expression

p_vpi_value value_p Pointer to a structure containing value information

Related
routines:

Use vpi_put_value() to set the value of an object

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 717
This is an unapproved IEEE Standards Draft, subject to change.

Figure 178—The s_vpi_value structure definition

Figure 179—The s_vpi_vecval structure definition

Figure 180—The s_vpi_strengthval structure definition

For vectors, the p_vpi_vecval field shall point to an array of s_vpi_vecval structures. The size of this

array shall be determined by the size of the vector, where array_size = ((vector_size-1)/32 + 1). The lsb of

the vector shall be represented by the lsb of the 0-indexed element of s_vpi_vecval array. The 33rd bit

of the vector shall be represented by the lsb of the 1-indexed element of the array, and so on. The memory

for the union members str, time, vector, strength, and misc of the value union in the s_vpi_value struc-

ture shall be provided by the routine vpi_get_value(). This memory shall only be valid until the next call to

vpi_get_value(). [Note that the user must provide the memory for these members when calling

vpi_put_value()]. When a value change callback occurs for a value type of vpiVectorVal, the system shall

create the associated memory (an array of s_vpi_vecval structures) and free the memory upon the return

of the callback.

typedef struct t_vpi_value
{
 PLI_INT32 format; /* vpi[[Bin,Oct,Dec,Hex]Str,Scalar,Int,Real,String,
 Vector,Strength,Suppress,Time,ObjType]Val */
 union
 {
 PLI_BYTE8 *str; /* string value */
 PLI_INT32 scalar; /* vpi[0,1,X,Z] */
 PLI_INT32 integer; /* integer value */
 double real; /* real value */
 struct t_vpi_time *time; /* time value */
 struct t_vpi_vecval *vector; /* vector value */
 struct t_vpi_strengthval *strength; /* strength value */
 PLI_BYTE8 *misc; /* ...other */
 } value;
} s_vpi_value, *p_vpi_value;

typedef struct t_vpi_vecval
{
 /* following fields are repeated enough times to contain vector */
 PLI_INT32 aval, bval; /* bit encoding: ab: 00=0, 10=1, 11=X, 01=Z */
} s_vpi_vecval, *p_vpi_vecval;

typedef struct t_vpi_strengthval
{
 PLI_INT32 logic; /* vpi[0,1,X,Z] */
 PLI_INT32 s0, s1; /* refer to strength coding in the LRM */
} s_vpi_strengthval, *p_vpi_strengthval;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

718 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

If the format field in the s_vpi_value structure is set to vpiStrengthVal, the value.strength pointer must point

to an array of s_vpi_strengthval structures. This array must have at least as many elements as there

are bits in the vector. If the object is a reg or variable, the strength will always be returned as strong.

If the logic value retrieved by vpi_get_value() needs to be preserved for later use, the user must allocate

storage and copy the value. The following example can be used to copy a value which was retrieved into an

s_vpi_value structure into another structure with user-allocated storage.

Table 214—Return value field of the s_vpi_value structure union

Format Union member Return description

vpiBinStrVal str String of binary character(s) [1, 0, x, z]

vpiOctStrVal str String of octal character(s) [0–7, x, X, z, Z]

x when all the bits are x
X when some of the bits are x
z when all the bits are z
Z when some of the bits are z

vpiDecStrVal str String of decimal character(s) [0–9]

vpiHexStrVal str String of hex character(s) [0–f, x, X, z, Z]

x when all the bits are x
X when some of the bits are x
z when all the bits are z
Z when some of the bits are z

vpiScalarVal scalar vpi1, vpi0, vpiX, vpiZ, vpiH, vpiL

vpiIntVal integer Integer value of the handle. Any bits x or z in the value

of the object are mapped to a 0

vpiRealVal real Value of the handle as a double

vpiStringVal str A string where each 8-bit group of the value of the

object is assumed to represent an ASCII character

vpiTimeVal time Integer value of the handle using two integers

vpiVectorVal vector aval/bval representation of the value of the object

vpiStrengthVal strength Value plus strength information

vpiObjTypeVal — Return a value in the closest format of the object

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 719
This is an unapproved IEEE Standards Draft, subject to change.

/*
 * Copy s_vpi_value structure - must first allocate pointed to fields.
 * nvalp must be previously allocated.
 * Need to first determine size for vector value.
 */
void copy_vpi_value(s_vpi_value *nvalp, s_vpi_value *ovalp,
 PLI_INT32 blen, PLI_INT32 nd_alloc)
{
 int i;
 PLI_INT32 numvals;
 nvalp->format = ovalp->format;
 switch (nvalp->format) {
 /* all string values */
 case vpiBinStrVal: case vpiOctStrVal: case vpiDecStrVal:
 case vpiHexStrVal: case vpiStringVal:
 if (nd_alloc) nvalp->value.str = malloc(strlen(ovalp->value.str)+1);
 strcpy(nvalp->value.str, ovalp->value.str);
 break;
 case vpiScalarVal:
 nvalp->value.scalar = ovalp->value.scalar;
 break;
 case vpiIntVal:
 nvalp->value.integer = ovalp->value.integer;
 break;
 case vpiRealVal:
 nvalp->value.real = ovalp->value.real;
 break;
 case vpiVectorVal:
 numvals = (blen + 31) >> 5;
 if (nd_alloc)
 {
 nvalp->value.vector = (p_vpi_vecval)
 malloc(numvals*sizeof(s_vpi_vecval));
 }
 /* t_vpi_vecval is really array of the 2 integer a/b sections */
 /* memcpy or bcopy better here */
 for (i = 0; i <numvals; i++)
 nvalp->value.vector[i] = ovalp->value.vector[i];
 break;
 case vpiStrengthVal:
 if (nd_alloc)
 {
 nvalp->value.strength = (p_vpi_strengthval)
 malloc(sizeof(s_vpi_strengthval));
 }
 /* assumes C compiler supports struct assign */
 *(nvalp->value.strength) = *(ovalp->value.strength);
 break;
 case vpiTimeVal:
 nvalp->value.time = (p_vpi_time) malloc(sizeof(s_vpi_time));
 /* assumes C compiler supports struct assign */
 *(nvalp->value.time) = *(ovalp->value.time);
 break;
 /* not sure what to do here? */
 case vpiObjTypeVal: case vpiSuppressVal:
 vpi_printf(
 "**ERR: can not copy vpiObjTypeVal or vpiSuppressVal formats",
 " - not for filled records.\n");
 break;
 }
}

To get the ASCII values of UDP table entries (see Table 40), the p_vpi_vecval field shall point to an array of

s_vpi_vecval structures. The size of this array shall be determined by the size of the table entry (no. of

symbols per table entry), where array_size = ((table_entry_size-1)/4 + 1). Each symbol shall require two

bytes; the ordering of the symbols within s_vpi_vecval shall be the most significant byte of abit first,

then the least significant byte of abit, then the most significant byte of bbit and then the least significant byte

of bbit. Each symbol can be either one or two characters; when it is a single character, the second byte of the

pair shall be an ASCII “\0”.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

720 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Real valued objects shall be converted to an integer using the rounding defined in 3.9.2 before being returned

in a format other than vpiRealVal and vpiStringVal. If the format specified is vpiStringVal then the value

shall be returned as a string representation of a floating point number. The format of this string shall be in

decimal notation with at most 16 digits of precision.

If a constant object's vpiConstType is vpiStringVal, the value shall be retrieved using either a format of

vpiStringVal or vpiVectorVal.

The misc field in the s_vpi_value structure shall provide for alternative value types, which can be imple-

mentation specific. If this field is utilized, one or more corresponding format types shall also be provided.

In the following example, the binary value of each net that is contained in a particular module and whose

name begins with a particular string is displayed. [This function makes use of the strcmp() facility nor-

mally declared in a string.h C library.]

void display_certain_net_values(mod, target)
vpiHandle mod;
PLI_BYTE8 *target;
{

static s_vpi_value value_s = {vpiBinStrVal};
static p_vpi_value value_p = &value_s;
vpiHandle net, itr;

itr = vpi_iterate(vpiNet, mod);
while (net = vpi_scan(itr))
{

PLI_BYTE8 *net_name = vpi_get_str(vpiName, net);
if (strcmp(target, net_name) == 0)
{

vpi_get_value(net, value_p);
vpi_printf(“Value of net %s: %s\n”,

vpi_get_str(vpiFullName, net),value_p->value.str);
}

}
}

The following example illustrates the use of vpi_get_value() to access UDP table entries. Two sample out-

puts from this example are provided after the example.

/*
 * hUDP must be a handle to a UDP definition
 */
static void dumpUDPTableEntries(vpiHandle hUDP)
{
 vpiHandle hEntry, hEntryIter;
 s_vpi_value value;
 PLI_INT32 numb;
 PLI_INT32 udpType;
 PLI_INT32 item;
 PLI_INT32 entryVal;
 PLI_INT32 *abItem;
 PLI_INT32 cnt, cnt2;
 numb = vpi_get(vpiSize, hUDP);
 udpType = vpi_get(vpiPrimType, hUDP);
 if (udpType == vpiSeqPrim)
 numb++; /* There is one more table entry for state */
 numb++; /* There is a table entry for the output */
 hEntryIter = vpi_iterate(vpiTableEntry, hUDP);
 if (!hEntryIter)
 return;
 value.format = vpiVectorVal;
 while(hEntry = vpi_scan(hEntryIter))
 {
 vpi_printf(“\n”);

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 721
This is an unapproved IEEE Standards Draft, subject to change.

 /* Show the entry as a string */
 value.format = vpiStringVal;
 vpi_get_value(hEntry, &value);
 vpi_printf(“%s\n”, value.value.str);
 /* Decode the vector value format */
 value.format = vpiVectorVal;
 vpi_get_value(hEntry, &value);
 abItem = (PLI_INT32 *)value.value.vector;
 for(cnt=((numb-1)/2+1);cnt>0;cnt--)
 {
 entryVal = *abItem;
 abItem++;
 /* Rip out 4 characters */
 for (cnt2=0;cnt2<4;cnt2++)
 {
 item = entryVal&0xff;
 if (item)
 vpi_printf(“%c”, item);
 else
 vpi_printf(“_”);
 entryVal = entryVal>>8;
 }
 }
 }
 vpi_printf(“\n”);
}

For a UDP table of:

 1 0 :?:1;
 0 (01) :?:-;
 (10) 0 :0:1;

The output from the preceding example would be:

10:1
_0_1___1
01:0
_1_0___0
00:1
_0_0___1

For a UDP table entry of:

 1 0 :?:1;
 0 (01) :?:-;
 (10) 0 :0:1;

The output from the preceding example would be:

10:?:1
_0_1_1_?
0(01):?:-
10_0_-_?
(10)0:0:1
_001_1_0

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

722 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

27.15 vpi_get_vlog_info()

The VPI routine vpi_get_vlog_info() shall obtain the following information about Verilog product

execution:

— The number of invocation options (argc)
— Invocation option values (argv)
— Product and version strings

The information shall be contained in an s_vpi_vlog_info structure. The routine shall return 1 (true) on

success and 0 (false) on failure.

The s_vpi_vlog_info structure used by vpi_get_vlog_info() is defined in vpi_user.h and is listed

in Figure 181.

Figure 181—The s_vpi_vlog_info structure definition

The format of the argv array is that each pointer in the array shall point to a NULL terminated character array

which contains the string located on the tool's invocation command line. There shall be ‘argc’ entries in the

argv array. The value in entry zero shall be the tool's name.

The argument following a -f argument shall contain a pointer to a NULL terminated array of pointers to

characters. This new array shall contain the parsed contents of the file. The value in entry zero shall contain

the name of the file. The remaining entries shall contain pointers to NULL terminated character arrays con-

taining the different options in the file. The last entry in this array shall be a NULL. If one of the options is

a -f then the next pointer shall behave the same as described above.

vpi_get_vlog_info()

Synopsis: Retrieve information about Verilog simulation execution.

Syntax: vpi_get_vlog_info(vlog_info_p)

Type Description

Returns: PLI_INT32 1 (true) on success and 0 (false) on failure

Type Name Description

Arguments: p_vpi_vlog_info vlog_info_p Pointer to a structure containing simulation information

typedef struct t_vpi_vlog_info
{
 PLI_INT32 argc;
 PLI_BYTE8 **argv;
 PLI_BYTE8 *product;
 PLI_BYTE8 *version;
} s_vpi_vlog_info, *p_vpi_vlog_info;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 723
This is an unapproved IEEE Standards Draft, subject to change.

27.16 vpi_handle()

The VPI routine vpi_handle() shall return the object of type type associated with object ref. The one-to-one

relationships that are traversed with this routine are indicated as single arrows in the data model diagrams.

The following example application displays each primitive that an input net drives.

void display_driven_primitives(net)
vpiHandle net;
{

vpiHandle load, prim, itr;
vpi_printf(“Net %s drives terminals of the primitives: \n”,

vpi_get_str(vpiFullName, net));
itr = vpi_iterate(vpiLoad, net);
if (!itr)

return;
while (load = vpi_scan(itr))
{

switch(vpi_get(vpiType, load))
{

case vpiGate:
case vpiSwitch:
case vpiUdp:

prim = vpi_handle(vpiPrimitive, load);
vpi_printf(“\t%s\n”, vpi_get_str(vpiFullName, prim));

}
}

}

vpi_handle()

Synopsis: Obtain a handle to an object with a one-to-one relationship.

Syntax: vpi_handle(type, ref)

Type Description

Returns: vpiHandle Handle to an object

Type Name Description

Arguments: PLI_INT32 type An integer constant representing the type of object for

which to obtain a handle

vpiHandle ref Handle to a reference object

Related
routines:

Use vpi_iterate() and vpi_scan() to obtain handles to objects with a one-to-many relationship

Use vpi_handle_multi() to obtain a handle to an object with a many-to-one relationship

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

724 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

27.17 vpi_handle_by_index()

The VPI routine vpi_handle_by_index() shall return a handle to an object based on the index number of the

object within a parent object. This function can be used to access all objects that can access an expression

using vpiIndex. Argument obj shall represent the parent of the indexed object. For example, to access a net-

bit, obj would be the associated net, while for a memory word, obj would be the associated memory.

vpi_handle_by_index()

Synopsis: Get a handle to an object using its index number within a parent object.

Syntax: vpi_handle_by_index(obj, index)

Type Description

Returns: vpiHandle Handle to an object

Type Name Description

Arguments: vpiHandle obj Handle to an object

PLI_INT32 index Index number of the object for which to obtain a handle

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 725
This is an unapproved IEEE Standards Draft, subject to change.

27.18 vpi_handle_by_multi_index()

The VPI routine vpi_handle_by_multi_index() shall return a handle to an object based on the list of

indexes and parent object passed in. The argument num_index will contain the number of indexes in the pro-

vided array index_array. The order of the indexes provided, shall be for the left most select first, progressing

to the right most select last. This function can be used to access all objects whose property vpiMultiArray is

TRUE. This routine shall only provide access to a bit or word of the parent object.

vpi_handle_by_multi_index()

Synopsis: Obtain a handle to a sub object using an array of indexes and a parent object.

Syntax: vpi_handle_by_multi_index(obj, num_index, index_array)

Type Description

Returns: vpiHandle Handle to an object of type vpiRegBit, vpiNetBit, vpiRegWord, or vpiNetWord

Type Name Description

Arguments: vpiHandle obj handle to an object

PLI_INT32 num_index number of indexes in the index array

PLI_INT32 * index_array array of indexes. Left most index first

Related
routines:

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

726 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

27.19 vpi_handle_by_name()

The VPI routine vpi_handle_by_name() shall return a handle to an object with a specific name. This func-

tion can be applied to all objects with a fullname property. The name can be hierarchical or simple. If scope
is NULL, then name shall be searched for from the top level of hierarchy. If a scope object is provided, then

search within that scope only.

vpi_handle_by_name()

Synopsis: Get a handle to an object with a specific name.

Syntax: vpi_handle_by_name(name, scope)

Type Description

Returns: vpiHandle Handle to an object

Type Name Description

Arguments: PLI_BYTE8 * name A character string or pointer to a string containing the

name of an object

vpiHandle scope Handle to a Verilog HDL scope

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 727
This is an unapproved IEEE Standards Draft, subject to change.

27.20 vpi_handle_multi()

The VPI routine vpi_handle_multi() can be used to return a handle to an object of type vpiInterModPath
associated with a list of output port and input port reference objects. The ports shall be of the same size and

can be at different levels of the hierarchy.

vpi_handle_multi()

Synopsis: Obtain a handle for an object in a many-to-one relationship.

Syntax: vpi_handle_multi(type, ref1, ref2, ...)

Type Description

Returns: vpiHandle Handle to an object

Type Name Description

Arguments: PLI_INT32 type An integer constant representing the type of object for

which to obtain a handle

vpiHandle ref1, ref2, ... Handles to two or more reference objects

Related
routines:

Use vpi_iterate() and vpi_scan() to obtain handles to objects with a one-to-many relationship

Use vpi_handle() to obtain handles to objects with a one-to-one relationship

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

728 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

27.21 vpi_iterate()

The VPI routine vpi_iterate() shall be used to traverse one-to-many relationships, which are indicated as

double arrows in the data model diagrams. The vpi_iterate() routine shall return a handle to an iterator,

whose type shall be vpiIterator, which can used by vpi_scan() to traverse all objects of type type associated

with object ref. To get the reference object from the iterator object use vpi_handle(vpiUse,
iterator_handle). If there are no objects of type type associated with the reference handle ref, then the

vpi_iterate() routine shall return NULL.

The following example application uses vpi_iterate() and vpi_scan() to display each net (including the size

for vectors) declared in the module. The example assumes it shall be passed a valid module handle.

void display_nets(mod)
vpiHandle mod;
{

vpiHandle net;
vpiHandle itr;

vpi_printf(“Nets declared in module %s\n”,
vpi_get_str(vpiFullName, mod));

itr = vpi_iterate(vpiNet, mod);
while (net = vpi_scan(itr))
{

vpi_printf(“\t%s”, vpi_get_str(vpiName, net));
if (vpi_get(vpiVector, net))
{

vpi_printf(“ of size %d\n”, vpi_get(vpiSize, net));
}
else vpi_printf(“\n”);

}
}

vpi_iterate()

Synopsis: Obtain an iterator handle to objects with a one-to-many relationship.

Syntax: vpi_iterate(type, ref)

Type Description

Returns: vpiHandle Handle to an iterator for an object

Type Name Description

Arguments: PLI_INT32 type An integer constant representing the type of object for

which to obtain iterator handles

vpiHandle ref Handle to a reference object

Related
routines:

Use vpi_scan() to traverse the HDL hierarchy using the iterator handle returned from vpi_iterate()

Use vpi_handle() to obtain handles to object with a one-to-one relationship

Use vpi_handle_multi() to obtain a handle to an object with a many-to-one relationship

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 729
This is an unapproved IEEE Standards Draft, subject to change.

27.22 vpi_mcd_close()

The VPI routine vpi_mcd_close() shall close the file(s) specified by a multi-channel descriptor, mcd. Several

channels can be closed simultaneously, since channels are represented by discrete bits in the integer mcd. On

success this routine shall return a 0; on error it shall return the mcd value of the unclosed channels. This rou-

tine can also be used to close file descriptors which were opened using the system function $fopen(). See

17.2.1for the functional description of $fopen().

The following descriptors are predefined, and cannot be closed using vpi_mcd_close():

descriptor 1 is for the output channel of the software product which invoked the PLI application and the

current log file

vpi_mcd_close()

Synopsis: Close one or more files opened by vpi_mcd_open().

Syntax: vpi_mcd_close(mcd)

Type Description

Returns: PLI_UINT32 0 if successful, the mcd of unclosed channels if unsuccessful

Type Name Description

Arguments: PLI_UINT32 mcd A multi-channel descriptor representing the files to close

Related
routines:

Use vpi_mcd_open() to open a file

Use vpi_mcd_printf() to write to an opened file

Use vpi_mcd_vprintf() to write a variable number of arguments to an opened file

Use vpi_mcd_flush() to flush a file output buffer

Use vpi_mcd_name() to get the name of a file represented by a channel descriptor

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

730 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

27.23 vpi_mcd_flush()

The routine vpi_mcd_flush() shall flush the output buffers for the file(s) specified by the multi-channel

descriptor, mcd.

vpi_mcd_flush()

Synopsis: Flushes the data from the given MCD output buffers.

Syntax: vpi_mcd_flush(mcd)

Type Description

Returns: PLI_INT32 0 if successful, non-zero if unsuccessful

Type Name Description

Arguments: PLI_UINT32 mcd A multi-channel descriptor representing the files to which

to write

Related
routines:

Use vpi_mcd_printf() to write a finite number of arguments to an opened file

Use vpi_mcd_vprintf() to write a variable number of arguments to an opened file

Use vpi_mcd_open() to open a file

Use vpi_mcd_close() to close a file

Use vpi_mcd_name() to get the name of a file represented by a channel descriptor

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 731
This is an unapproved IEEE Standards Draft, subject to change.

27.24 vpi_mcd_name()

The VPI routine vpi_mcd_name() shall return the name of a file represented by a single-channel descriptor,

cd. On error, the routine shall return NULL. This routine shall overwrite the returned value on subsequent

calls. If the application needs to retain the string, it should copy it. This routine can be used to get the name

of any file, opened using the system function $fopen or the VPI routine vpi_mcd_open(). The channel

descriptor cd could be an fd file descriptor returned from $fopen (indicated by the most significant bit being

set) or an mcd multi-channel descriptor returned by either the system function $fopen or the VPI routine

vpi_mcd_open(). See 17.2.1 for the functional description of $fopen.

vpi_mcd_name()

Synopsis: Get the name of a file represented by a channel descriptor.

Syntax: vpi_mcd_name(cd)

Type Description

Returns: PLI_BYTE8 * Pointer to a character string containing the name of a file

Type Name Description

Arguments: PLI_UINT32 cd A channel descriptor representing a file

Related
routines:

Use vpi_mcd_open() to open a file

Use vpi_mcd_close() to close files

Use vpi_mcd_printf() to write to an opened file

Use vpi_mcd_flush() to flush a file output buffer

Use vpi_mcd_vprintf() to write a variable number of arguments to an opened file

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

732 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

27.25 vpi_mcd_open()

The VPI routine vpi_mcd_open() shall open a file for writing and shall return a corresponding multi-chan-

nel description number (mcd). The channel descriptor 1 (least significant bit) is reserved for representing the

output channel of the software product which invoked the PLI application and the log file (if one is currently

open). The channel descriptor 32 (most significant bit) is reserved to represent a file descriptor (fd) returned

from the Verilog HDL $fopen system function.

The mcd descriptor returned by vpi_mcd_open() routine is compatible with the mcd descriptors returned

from the $fopen system function. The mcd descriptors returned from vpi_mcd_open() and from $fopen may

be shared between the HDL system tasks which use mcd descriptors and the VPI routines which use mcd

descriptors. Note that the $fopen system function can also return fd file descriptors (indicated by the most

significant bit being set). An fd is not compatible with the mcd descriptor returned by vpi_mcd_open(). See

17.2.1 for the functional description of $fopen.

The vpi_mcd_open() routine shall return a 0 on error. If the file has already been opened either by a previ-

ous call to vpi_mcd_open() or using $fopen in the Verilog source code, then vpi_mcd_open(), shall return

the descriptor number.

vpi_mcd_open()

Synopsis: Open a file for writing.

Syntax: vpi_mcd_open(file)

Type Description

Returns: PLI_UINT32 A multi-channel descriptor representing the file that was opened

Type Name Description

Arguments: PLI_BYTE8 * file A character string or pointer to a string containing the file

name to be opened

Related
routines:

Use vpi_mcd_close() to close a file

Use vpi_mcd_printf() to write to an opened file

Use vpi_mcd_vprintf() to write a variable number of arguments to an opened file

Use vpi_mcd_flush() to flush a file output buffer

Use vpi_mcd_name() to get the name of a file represented by a channel descriptor

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 733
This is an unapproved IEEE Standards Draft, subject to change.

27.26 vpi_mcd_printf()

The VPI routine vpi_mcd_printf() shall write to one or more channels (up to 31) determined by the mcd.

An mcd of 1 (bit 0 set) corresponds to the channel 1, an mcd of 2 (bit 1 set) corresponds to channel 2, an mcd

of 4 (bit 2 set) corresponds to channel 3, and so on. Channel 1 is reserved for the output channel of the soft-

ware product which invoked the PLI application and the current log file. The most significant bit of the

descriptor is reserved by the tool to indicate that the descriptor is actually a file descriptor instead of an mcd.

vpi_mcd_printf() shall also write to a file represented by an mcd which was returned from the Verilog HDL

$fopen system function. vpi_mcd_printf() shall not write to a file represented by an fd file descriptor

returned from $fopen (indicated by the most significant bit being set). See 17.2.1 for the functional descrip-

tion of $fopen.

Several channels can be written to simultaneously, since channels are represented by discrete bits in the inte-

ger mcd.

The text written shall be controlled by one or more format strings. The format strings shall use the same for-

mat as the C fprintf() routine. The routine shall return the number of characters printed, or EOF if an error

occurred.

vpi_mcd_printf()

Synopsis: Write to one or more files opened with vpi_mcd_open() or $fopen.

Syntax: vpi_mcd_printf(mcd, format, ...)

Type Description

Returns: PLI_INT32 The number of characters written

Type Name Description

Arguments: PLI_UINT32 mcd A multi-channel descriptor representing the files to which

to write

PLI_BYTE8 * format A format string using the C fprintf() format

Related
routines:

Use vpi_mcd_vprintf() to write a variable number of arguments to an opened file

Use vpi_mcd_open() to open a file

Use vpi_mcd_close() to close a file

Use vpi_mcd_flush() to flush a file output buffer

Use vpi_mcd_name() to get the name of a file represented by a channel descriptor

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

734 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

27.27 vpi_mcd_vprintf()

This routine performs the same function as vpi_mcd_printf(), except that varargs has already been started.

vpi_mcd_vprintf()

Synopsis: Write to one or more files opened with vpi_mcd_open() or $fopen using varargs which are already started.

Syntax: vpi_mcd_vprintf(mcd, format, ap)

Type Description

Returns: PLI_INT32 The number of characters written

Type Name Description

Arguments: PLI_UINT32 mcd A multi-channel descriptor representing the files to which

to write

PLI_BYTE8 * format A format string using the C printf() format

va_list ap An already started varargs list

Related
routines:

Use vpi_mcd_printf() to write a finite number of arguments to an opened file

Use vpi_mcd_open() to open a file

Use vpi_mcd_close() to close a file

Use vpi_mcd_flush() to flush a file output buffer

Use vpi_mcd_name() to get the name of a file represented by a channel descriptor

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 735
This is an unapproved IEEE Standards Draft, subject to change.

27.28 vpi_printf()

The VPI routine vpi_printf() shall write to both the output channel of the software product which invoked

the PLI application and the current product log file. The format string shall use the same format as the C

printf() routine. The routine shall return the number of characters printed, or EOF if an error occurred.

vpi_printf()

Synopsis: Write to the output channel of the software product which invoked the PLI application and the current product

log file.

Syntax: vpi_printf(format, ...)

Type Description

Returns: PLI_INT32 The number of characters written

Type Name Description

Arguments: PLI_BYTE8 * format A format string using the C printf() format

Related
routines:

Use vpi_vprintf() to write a variable number of arguments

Use vpi_mcd_printf() to write to an opened file

Use vpi_mcd_flush() to flush a file output buffer

Use vpi_mcd_vprintf() to write a variable number of arguments to an opened file

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

736 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

27.29 vpi_put_data()

This routine shall place numOfBytes, which must be greater than zero, of data located at dataLoc into an

implementation's save/restart location. The return value shall be the number of bytes written. A zero shall be

returned if an error is detected. There shall be no restrictions:

— on how many times the routine can be called for a given id.
— on the order applications put data using the different ids.

The data from multiple calls to vpi_put_data() with the same id shall be stored by the simulator in such a

way that the opposing routine vpi_get_data() can pull data out of the save/restart location using different

size chunks. This routine can only be called from a user application routine that has been called for the rea-

son cbStartOfSave or cbEndOfSave. A user can get the path to the implementation's save/restart location

by calling vpi_get_str(vpiSaveRestartLocation, NULL) from a user application routine that has been

called for reason cbStartOfSave or cbEndOfSave.

vpi_put_data()

Synopsis: Put data into an implementation's save/restart location.

Syntax: vpi_put_data(id, dataLoc, numOfBytes)

Type Description

Returns: PLI_INT32 The number of bytes written

Type Name Description

Arguments: PLI_INT32 id A save/restart ID returned from

vpi_get(vpiSaveRestartID, NULL)

PLI_BYTE8 * dataLoc Address of application allocated storage

PLI_INT32 numOfBytes Number of bytes to be added to save/restart location

Related
routines:

Use vpi_get_data() to retrieve saved data

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 737
This is an unapproved IEEE Standards Draft, subject to change.

The following example illustrates using vpi_put_data():

 /* example of how to place data into a save/restart location */
 struct myStruct{

 struct myStruct *next;
 PLI_INT32 d1;
 PLI_INT32 d2;

 }
 struct myStruct *firstWrk; /* This data structure created elsewhere. */

 PLI_INT32 consumer_save(p_cb_data data)
 {

 struct myStruct *wrk;
 s_cb_data cbData;
 vpiHandle cbHdl;
 PLI_INT32 id = 0;
 PLI_INT32 cnt = 0;

 /* Get the number of structures */
 wrk = firstWrk;
 while (wrk)

 {
 cnt++;
 wrk = wrk->next;

 }

 /* now save the data */
 wrk = firstWrk;

 /* save the number of data structures */
 id = vpi_get(vpiSaveRestartID, NULL);

 /*
 * save the different data structures. Please note that
 * a pointer is being saved. While this is allowed an
 * application must change it to something useful on a restart.
 */
 while (wrk)

 {
 wrk = wrk->next;

 }

 /* register a call for restart */

 /*
 * We need the “id” so that the saved data can be retrieved.
 * Using the user_data field of the callback structure is the
 * easiest way to pass this information to retrieval operation.
 */
 cbData.user_data = (PLI_BYTE8 *)id;
 cbData.reason = cbStartOfRestart;
 cbData.cb_rtn = consumer_restart; /*

 * Please see vpi_get_data()
 * for a description of this
 * routine.
 */

 cbData.value = NULL;
 cbData.time = NULL;
 cbHdl = vpi_register_cb(&cbData);
 vpi_free_object(cbHdl);
 return(0);

 }

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

738 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

27.30 vpi_put_delays()

The VPI routine vpi_put_delays() shall set the delays or timing limits of an object as indicated in the

delay_p structure. The same ordering of delays shall be used as described in the vpi_get_delays() function.

If only the delay changes, and not the pulse limits, the pulse limits shall retain the values they had before the

delays where altered.

The s_vpi_delay and s_vpi_time structures used by both vpi_get_delays() and vpi_put_delays()
are defined in vpi_user.h and are listed in Figure 182 and Figure 183.

Figure 182—The s_vpi_delay structure definition

Figure 183—The s_vpi_time structure definition

The da field of the s_vpi_delay structure shall be a user-allocated array of s_vpi_time structures.

This array stores the delay values to be written by vpi_put_delays(). The number of elements in this array is

determined by:

vpi_put_delays()

Synopsis: Set the delays or timing limits of an object.

Syntax: vpi_put_delays(obj, delay_p)

Type Description

Returns: void

Type Name Description

Arguments: vpiHandle obj Handle to an object

p_vpi_delay delay_p Pointer to a structure containing delay information

Related
routines:

Use vpi_get_delays() to retrieve delays or timing limits of an object

typedef struct t_vpi_delay
{
 struct t_vpi_time *da; /* pointer to user allocated array of delay values*/
 PLI_INT32 no_of_delays; /* number of delays */
 PLI_INT32 time_type; /* [vpiScaledRealTime,vpiSimTime,vpiSuppressTime]*/
 PLI_INT32 mtm_flag; /* true for mtm values */
 PLI_INT32 append_flag; /* true for append */
 PLI_INT32 pulsere_flag; /* true for pulsere values */
} s_vpi_delay, *p_vpi_delay;

typedef struct t_vpi_time
{
 PLI_INT32 type; /* [vpiScaledRealTime, vpiSimTime, vpiSuppressTime] */
 PLI_UINT32 high, low; /* for vpiSimTime */
 double real; /* for vpiScaledRealTime */
} s_vpi_time, *p_vpi_time;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 739
This is an unapproved IEEE Standards Draft, subject to change.

— The number of delays to be written
— The mtm_flag setting
— The pulsere_flag setting

The number of delays to be set shall be set in the no_of_delays field of the s_vpi_delay structure. Legal

values for the number of delays shall be determined by the type of object.

— For primitive objects, the no_of_delays value shall be 2 or 3.
— For path delay objects, the no_of_delays value shall be 1, 2, 3, 6, or 12.
— For timing check objects, the no_of_delays value shall match the number of limits existing in the

timing check.
— For intermodule path objects, the no_of_delays value shall be 2 or 3.

The user allocated s_vpi_delay array shall contain delays in the same order in which they occur in the

Verilog HDL description. The number of elements for each delay shall be determined by the flags mtm_flag
and pulsere_flag, as shown in Table 215.

Table 215—Size of the s_vpi_delay->da array

Flag values Number of s_vpi_time array elements
required for s_vpi_delay->da

Order in which delay elements
shall be filled

mtm_flag = FALSE
pulsere_flag = FALSE no_of_delays

1st delay: da[0] -> 1st delay
2nd delay: da[1] -> 2nd delay
...

mtm_flag = TRUE
pulsere_flag = FALSE 3 * no_of_delays

1st delay: da[0] -> min delay
 da[1] -> typ delay
 da[2] -> max delay
2nd delay: ...

mtm_flag = FALSE
pulsere_flag = TRUE 3 * no_of_delays

1st delay: da[0] -> delay
da[1] -> reject limit

 da[2] -> error limit
2nd delay element: ...

mtm_flag = TRUE
pulsere_flag = TRUE 9 * no_of_delays

1st delay: da[0] -> min delay
 da[1] -> typ delay
 da[2] -> max delay
 da[3] -> min reject
 da[4] -> typ reject
 da[5] -> max reject
 da[6] -> min error
 da[7] -> typ error
 da[8] -> max error
2nd delay: ...

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

740 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The following example application accepts a module path handle, rise and fall delays, and replaces the

delays of the indicated path.

void set_path_rise_fall_delays(path, rise, fall)
vpiHandle path;
double rise, fall;
{

static s_vpi_time path_da[2];
static s_vpi_delay delay_s = {NULL, 2, vpiScaledRealTime};
static p_vpi_delay delay_p = &delay_s;

delay_s.da = path_da;
path_da[0].real = rise;
path_da[1].real = fall;
vpi_put_delays(path, delay_p);

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 741
This is an unapproved IEEE Standards Draft, subject to change.

27.31 vpi_put_userdata()

This routine will associate the value of the input userdata with the specified user-defined system task or

function call handle. The stored value can later be retrieved with the routine vpi_get_userdata(). The rou-

tine will return a value of 1 on success or a 0 if it fails.

vpi_put_userdata()

Synopsis: Put user-data value into an implementation's system task/function instance storage location.

Syntax: vpi_put_userdata(obj, userdata)

Type Description

Returns: PLI_INT32 returns 1 on success and 0 if an error occurs

Type Name Description

Arguments: vpiHandle obj handle to a system task instance or system function

instance

void * userdata user-data value to be associated with the system task

instance or system function instance

Related
routines:

Use vpi_get_userdata() to retrieve the user-data value

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

742 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

27.32 vpi_put_value()

The VPI routine vpi_put_value() shall set simulation logic values on an object. The value to be set shall be

stored in an s_vpi_value structure that has been allocated. The legal values which may be specified for

each value format are listed in Table 214. The delay time before the value is set shall be stored in an

s_vpi_time structure that has been allocated. The routine can be applied to nets, regs, variables, variable

selects, memory words, named events, system function calls, sequential UDPs, and scheduled events. The

flags argument shall be used to direct the routine to use one of the following delay modes:

vpiInertialDelay All scheduled events on the object shall be removed before this event is

scheduled.

vpiTransportDelay All events on the object scheduled for times later than this event shall be

removed (modified transport delay).

vpiPureTransportDelay No events on the object shall be removed (transport delay).

vpiNoDelay The object shall be set to the passed value with no delay. Argument time_p
shall be ignored and can be set to NULL.

vpiForceFlag The object shall be forced to the passed value with no delay (same as the

Verilog HDL procedural force). Argument time_p shall be ignored and

can be set to NULL.

vpiReleaseFlag The object shall be released from a forced value (same as the Verilog HDL

procedural release). Argument time_p shall be ignored and can be set to

NULL. The value_p shall be updated with the value of the object after its

release.

vpiCancelEvent A previously scheduled event shall be cancelled. The object passed to

vpi_put_value() shall be a handle to an object of type vpiSchedEvent.

If the flags argument also has the bit mask vpiReturnEvent, vpi_put_value() shall return a handle of type

vpiSchedEvent to the newly scheduled event, provided there is some form of a delay and an event is sched-

uled. If the bit mask is not used, or if no delay is used, or if an event is not scheduled, the return value shall

be NULL.

vpi_put_value()

Synopsis: Set a value on an object.

Syntax: vpi_put_value(obj, value_p, time_p, flags)

Type Description

Returns: vpiHandle Handle to the scheduled event caused by vpi_put_value()

Type Name Description

Arguments: vpiHandle obj Handle to an object

p_vpi_value value_p Pointer to a structure with value information

p_vpi_time time_p Pointer to a structure with delay information

PLI_INT32 flags Integer constants that set the delay mode

Related
routines:

Use vpi_get_value() to retrieve the value of an expression

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 743
This is an unapproved IEEE Standards Draft, subject to change.

The handle to the event can be cancelled by calling vpi_put_value() with the flag set to vpiCancelEvent.
The value_p and time_p arguments to vpi_put_value() are not needed for cancelling an event, and can be set

to NULL. It shall not be an error to cancel an event that has already occurred. The scheduled event can be

tested by calling vpi_get() with the flag vpiScheduled. If an event is cancelled, it shall simply be removed

from the event queue. Any effects that were caused by scheduling the event shall remain in effect (e.g.,

events that where cancelled due to inertial delay).

Calling vpi_free_object() on the handle shall free the handle but shall not affect the event.

When vpi_put_value() is called for an object of type vpiNet or vpiNetBit, and with modes of vpiIner-
tialDelay, vpiTransportDelay, vpiPureTransportDelay, or vpiNoDelay, the value supplied overrides the

resolved value of the net. This value shall remain in effect until one of the drivers of the net changes value.

When this occurs, the net shall be re-evaluated using the normal resolution algorithms.

It shall be illegal to specify the format of the value as vpiStringVal when putting a value to a real variable or

a system function call of type vpiRealFunc. It shall be illegal to specify the format of the value as vpiSt-
rengthVal when putting a value to a vector object.

When vpi_put_value() with a vpiForce flag is used, it shall perform a procedural force of a value onto the

same types of objects as supported by a procedural force. A vpiRelease flag shall release the forced value.

This shall be the same functionality as the procedural force and release keywords in the Verilog HDL (refer

to 9.3.2).

Sequential UDPs shall be set to the indicated value with no delay regardless of any delay on the primitive

instance. Putting values to UDP instances must be done using the vpiNoDelay flag. Attempting to use the

other delay modes shall result in an error.

Calling vpi_put_value() on an object of type vpiNamedEvent shall cause the named event to toggle.

Objects of type vpiNamedEvent shall not require an actual value and the value_p argument may be NULL.

The vpi_put_value() routine shall also return the value of a system function by passing a handle to the user-

defined system function as the object handle. This should only occur during execution of the calltf routine

for the system function. Attempts to use vpi_put_value() with a handle to the system function when the

calltf routine is not active shall be ignored. Should the calltf routine for a user defined system function fail to

put a value during its execution, the default value of 0 will be applied. Putting return values to system func-

tions must be done using the vpiNoDelay flag.

The vpi_put_value() routine shall only return a system function value in a calltf application, when the call

to the system function is active. The action of vpi_put_value() to a system function shall be ignored when

the system function is not active. Putting values to system function must be done using the vpiNoDelay flag.

The s_vpi_value and s_vpi_time structures used by vpi_put_value() are defined in vpi_user.h and

are listed in Figure 184 and Figure 185.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

744 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Figure 184—The s_vpi_value structure definition

Figure 185—The s_vpi_time structure definition

Figure 186—The s_vpi_vecval structure definition

Figure 187—The s_vpi_strengthval structure definition

For vpiScaledRealTime, the indicated time shall be in the timescale associated with the object.

typedef struct t_vpi_value
{
 PLI_INT32 format; /* vpi[[Bin,Oct,Dec,Hex]Str,Scalar,Int,Real,String,
 Vector,Strength,Suppress,Time,ObjType]Val */
 union
 {
 PLI_BYTE8 *str; /* string value */
 PLI_INT32 scalar; /* vpi[0,1,X,Z] */
 PLI_INT32 integer; /* integer value */
 double real; /* real value */
 struct t_vpi_time *time; /* time value */
 struct t_vpi_vecval *vector; /* vector value */
 struct t_vpi_strengthval *strength; /* strength value */
 PLI_BYTE8 *misc; /* ...other */
 } value;
} s_vpi_value, *p_vpi_value;

typedef struct t_vpi_time
{
 PLI_INT32 type; /* [vpiScaledRealTime, vpiSimTime, vpiSuppressTime] */
 PLI_UINT32 high, low; /* for vpiSimTime */
 double real; /* for vpiScaledRealTime */
} s_vpi_time, *p_vpi_time;

typedef struct t_vpi_vecval
{
 /* following fields are repeated enough times to contain vector */
 PLI_INT32 aval, bval; /* bit encoding: ab: 00=0, 10=1, 11=X, 01=Z */
} s_vpi_vecval, *p_vpi_vecval;

typedef struct t_vpi_strengthval
{
 PLI_INT32 logic; /* vpi[0,1,X,Z] */
 PLI_INT32 s0, s1; /* refer to strength coding below */
} s_vpi_strengthval, *p_vpi_strengthval;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 745
This is an unapproved IEEE Standards Draft, subject to change.

27.33 vpi_register_cb()

The VPI routine vpi_register_cb() is used for registration of simulation-related callbacks to a user-provided

application for a variety of reasons during a simulation. The reasons for which a callback can occur are

divided into three categories:

— Simulation event
— Simulation time
— Simulation action or feature

How callbacks are registered for each of these categories is explained in the following paragraphs.

The cb_data_p argument shall point to a s_cb_data structure, which is defined in vpi_user.h and

given in Figure 188.

Figure 188—The s_cb_data structure definition

For all callbacks, the reason field of the s_cb_data structure shall be set to a predefined constant, such as

cbValueChange, cbAtStartOfSimTime, cbEndOfCompile, etc. The reason constant shall determine when

the user application shall be called back. Refer to the vpi_user.h file listing in Annex G for a list of all

callback reason constants.

The cb_rtn field of the s_cb_data structure shall be set to the application routine, which shall be invoked

when the simulator executes the callback. The use of the remaining fields are detailed in the following

subsections.

vpi_register_cb()

Synopsis: Register simulation-related callbacks.

Syntax: vpi_register_cb(cb_data_p)

Type Description

Returns: vpiHandle Handle to the callback object

Type Name Description

Arguments: p_cb_data cb_data_p Pointer to a structure with data about when callbacks

should occur and the data to be passed

Related
routines:

Use vpi_register_systf() to register callbacks for user-defined system tasks and functions

Use vpi_remove_cb() to remove callbacks registered with vpi_register_cb()

typedef struct t_cb_data
{
 PLI_INT32 reason; /* callback reason */
 PLI_INT32 (*cb_rtn)(struct t_cb_data *); /* call routine */
 vpiHandle obj; /* trigger object */
 p_vpi_time time; /* callback time */
 p_vpi_value value; /* trigger object value */
 PLI_INT32 index; /* index of the memory word or var select
 that changed */
 PLI_BYTE8 *user_data;
} s_cb_data, *p_cb_data;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

746 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

27.33.1 Simulation-event-related callbacks

The vpi_register_cb() callback mechanism can be registered for callbacks to occur for simulation events,

such as value changes on an expression or terminal, or the execution of a behavioral statement. When the

cb_data_p->reason field is set to one of the following, the callback shall occur as described below:

cbValueChange After value change on an expression or terminal, or execution of an event

statement

cbStmt Before execution of a behavioral statement

cbForce/cbRelease After a force or release has occurred

cbAssign/cbDeassign After a procedural assign or deassign statement has been executed

cbDisable After a named block or task containing a system task or function has been

disabled

The following fields shall need to be initialized before passing the s_cb_data structure to

vpi_register_cb():

cb_data_p->obj This field shall be assigned a handle to an expression, terminal, or

statement for which the callback shall occur. For force and release

callbacks, if this is set to NULL, every force and release shall generate a

callback.

cb_data_p->time->type This field shall be set to either vpiScaledRealTime or vpiSimTime,

depending on what time information the user application requires during

the callback. If simulation time information is not needed during the

callback, this field can be set to vpiSuppressTime.

cb_data_p->value->format This field shall be set to one of the value formats indicated in Table 216. If

value information is not needed during the callback, this field can be set to

vpiSuppressVal. For cbStmt callbacks, value information is not passed to

the callback routine, so this field shall be ignored.

Table 216—Value format field of cb_data_p->value->format

Format Registers a callback to return

vpiBinStrVal String of binary character(s) [1, 0, x, z]

vpiOctStrVal String of octal character(s) [0–7, x, X, z, Z]

vpiDecStrVal String of decimal character(s) [0–9]

vpiHexStrVal String of hex character(s) [0–f, x, X, z, Z]

vpiScalarVal vpi1, vpi0, vpiX, vpiZ, vpiH, vpiL

vpiIntVal Integer value of the handle

vpiRealVal Value of the handle as a double

vpiStringVal An ASCII string

vpiTimeVal Integer value of the handle using two integers

vpiVectorVal aval/bval representation of the value of the object

vpiStrengthVal Value plus strength information of a scalar object only

vpiObjectVal Return a value in the closest format of the object

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 747
This is an unapproved IEEE Standards Draft, subject to change.

When a simulation event callback occurs, the user application shall be passed a single argument, which is a

pointer to an s_cb_data structure (this is not a pointer to the same structure that was passed to

vpi_register_cb()). The time and value information shall be set as directed by the time type and value for-

mat fields in the call to vpi_register_cb(). The user_data field shall be equivalent to the user_data field

passed to vpi_register_cb(). The user application can use the information in the passed structure and infor-

mation retrieved from other VPI interface routines to perform the desired callback processing.

cbValueChange callbacks can be placed onto event statements. When the event statement is executed, the

callback routine will be called. Since event statements do not have a value, when the callback routine is

called, the value field of the s_cb_data structure will be NULL.

For a cbValueChange callback, if the obj is a memory or a variable array, the value in the s_cb_data
structure shall be the value of the memory word or variable select that changed value. The index field shall

contain the index of the memory word or variable select that changed value. If a cbValueChange callback is

registered and the format is set to vpiStrengthVal then the callback shall occur whenever the object changes

strength, including changes that do not result in a value change.

For cbForce, cbRelease, cbAssign and cbDeassign callbacks, the object returned in the obj field shall be a

handle to the force, release, assign or deassign statement. The value field shall contain the resultant value of

the LHS expression. In the case of a release, the value field shall contain the value after the release has

occurred.

For a cbDisable callback, obj shall be a handle to a system task call, system function call, named begin,

named fork, task, or function.

It is illegal to attempt to place a callback for reason cbForce, cbRelease, or cbDisable on a variable bit-

select.

The following example shows an implementation of a simple monitor functionality for scalar nets, using a

simulation-event-related callback.

setup_monitor(net)
vpiHandle net;
{

static s_vpi_time time_s = {vpiSimTime};
static s_vpi_value value_s = {vpiBinStrVal};
static s_cb_data cb_data_s =

{cbValueChange, my_monitor, NULL, &time_s, &value_s};
PLI_BYTE8 *net_name = vpi_get_str(vpiFullName, net);
cb_data_s.obj = net;
cb_data_s.user_data = malloc(strlen(net_name)+1);
strcpy(cb_data_s.user_data, net_name);
vpi_register_cb(&cb_data_s);

}

my_monitor(cb_data_p)
p_cb_data cb_data_p; {

vpi_printf(“%d %d: %s = %s\n”,
cb_data_p->time->high, cb_data_p->time->low,
cb_data_p->user_data,
cb_data_p->value->value.str);

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

748 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

27.33.1.1 Callbacks on Individual Statements

When cbStmt is used in the reason field of the s_cb_data structure, the other fields in the structure will

be defined as follows:

cb_data_p->cb_rtn The function to call before the given statement executes.

cb_data_p->obj A handle to the statement on which to place the callback (the allowable

objects are listed in Table 217).

cb_data_p->time A pointer to an s_vpi_time structure, wherein only the type is used, to

indicate the type of time which will be returned when the callback is

made. This type can be vpiScaledRealTime, vpiSimTime, or

vpiSuppressTime if no time information is needed by the callback

routine.

cb_data_p->value Not used.

cb_data_p->index Not used.

cb_data_p->user_data Data to be passed to the callback function.

Just before the indicated statement executes, the indicated function will be called with a pointer to a new

s_cb_data structure, which will contain the following informations:

cb_data_p->reason cbStmt.

cb_data_p->cb_rtn The same value as that passed to vpi_register_cb().

cb_data_p->obj A handle to the statement which is about to execute.

cb_data_p->time A pointer to an s_vpi_time structure, which will contain the current

simulation time, of the type (vpiScaledRealTime or vpiSimTime)

indicated in the call to vpi_register_cb(). If the value in the call to

vpi_register_cb() was vpiSuppressTime, then the time pointer in the

s_cb_data structure will be set to NULL.

cb_data_p->value always NULL.

cb_data_p->index always set to 0.

cb_data_p->user_data The value passed in as user_data in the call to vpi_register_cb().

Multiple calls to vpi_register_cb() with the same data shall result in multiple callbacks.

Placing callbacks on statements which reside in protected portions of the code shall not be allowed, and shall

cause vpi_register_cb() to return a NULL, with an appropriate error message printed.

27.33.1.2 Behavior by Statement Type

Every possible object within the stmt class qualifies for having a cbStmt callback placed on it. Each possible

object is listed in Table 217, for further clarification.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 749
This is an unapproved IEEE Standards Draft, subject to change.

27.33.1.3 Registering Callbacks on a Module-wide Basis

vpi_register_cb() allows a handle to a module instance in the obj field of the s_cb_data structure. When

this is done, the effect will be to place a callback on every statement which can have a callback placed on it.

When using vpi_register_cb() on a module object, the call will return a handle to a single callback object

which can be passed to vpi_remove_cb() to remove the callback on every statement in the module instance.

Statements which reside in protected portions of the code shall not have callbacks placed on them.

27.33.2 Simulation-time-related callbacks

The vpi_register_cb() can register callbacks to occur for simulation time reasons, include callbacks at the

beginning or end of the execution of a particular time queue. The following time-related callback reasons are

defined:

Table 217—cbStmt callbacks

vpiBegin
vpiNamedBegin
vpiFork
vpiNamedFork

One callback will occur prior to any of the statements within the block execut-

ing. The handle returned in the obj field will be the handle to the block object.

vpiIf
vpiIfElse

The callback will occur before the condition expression in the if statement is

evaluated.

vpiWhile A callback will occur prior to the evaluation of the condition expression on

every iteration of the loop.

vpiRepeat A callback will occur when the repeat statement is first encountered, and on

every subsequent iteration of the repeat loop.

vpiFor A callback will occur prior to any of the control expressions being evaluated.

Then on every iteration of the loop, a callback will occur prior to the evaluation

of the incremental statement.

vpiForever A callback will occur when the forever statement is first encountered, and on

every subsequent iteration of the forever loop.

vpiWait
vpiCase
vpiAssignment
vpiAssignStmt
vpiDeassign
vpiDisable
vpiForce
vpiRelease
vpiEventStmt

The callback will occur before the statement executes.

vpiDelayControl The callback will occur when the delay control is encountered, before the delay

occurs.

vpiEventControl The callback will occur when the event control is encountered, before the event

has occurred.

vpiTaskCall
vpiSysTaskCall

The callback will occur before the given task is executed.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

750 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

cbAtStartOfSimTime Callback shall occur before execution of events in a specified time queue.

A callback can be set for any time, even if no event is present.

cbReadWriteSynch Callback shall occur after execution of events for a specified time.

cbReadOnlySynch Same as cbReadWriteSynch, except that writing values or scheduling

events before the next scheduled event is not allowed.

cbNextSimTime Callback shall occur before execution of events in the next event queue.

cbAfterDelay Callback shall occur after a specified amount of time, before execution of

events in a specified time queue. A callback can be set for anytime, even if

no event is present.

For reason cbNextSimTime, the time field in the time structure is ignored. The following fields shall need to

be set before passing the s_cb_data structure to vpi_register_cb():

cb_data_p->time->type This field shall be set to either vpiScaledRealTime or vpiSimTime,

depending on what time information the user application requires during

the callback. vpiSuppressTime (or NULL for the cb_data_p->time
field) will result in an error.

cb_data_p->[time->low,time->high,time->real]
These fields shall contain the requested time of the callback or the delay

before the callback.

The following situations will generate an error and no callback will be created:

— Attempting to place a cbAtStartOfSimTime callback with a delay of zero when simulation has
progressed into a time slice, and the application is not currently within a cbAtStartOfSimTime call-
back.

— Attempting to place a cbReadWriteSynch callback with a delay of zero at read-only synch time.

Placing a callback for cbAtStartOfSimTime and a delay of zero during a callback for reason cbAtStartOf-
SimTime will result in another cbAtStartOfSimTime callback occurring during the same time slice.

The value fields are ignored for all reasons with simulation-time-related callbacks.

When the cb_data_p->time->type is set to vpiScaledRealTime, the cb_data_p->obj field shall be used as

the object for determining the time scaling.

When a simulation-time-related callback occurs, the user callback application shall be passed a single argu-

ment, which is a pointer to an s_cb_data structure [this is not a pointer to the same structure that was

passed to vpi_register_cb()]. The time structure shall contain the current simulation time. The user_data
field shall be equivalent to the user_data field passed to vpi_register_cb().

The callback application can use the information in the passed structure and information retrieved from

other interface routines to perform the desired callback processing.

27.33.3 Simulator action and feature related callbacks

The vpi_register_cb() routine can register callbacks to occur for simulator action reasons or simulator fea-

ture reasons. Simulator action reasons are callbacks such as the end of compilation or end of simulation.

Simulator feature reasons are software-product-specific features, such as restarting from a saved simulation

state or entering an interactive mode. Actions are differentiated from features in that actions shall occur in all

VPI-compliant products, whereas features might not exist in all VPI-compliant products.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 751
This is an unapproved IEEE Standards Draft, subject to change.

The following action-related callbacks shall be defined:

cbEndOfCompile End of simulation data structure compilation or build

cbStartOfSimulation Start of simulation (beginning of time 0 simulation cycle)

cbEndOfSimulation End of simulation (e.g., $finish system task executed)

cbError Simulation run-time error occurred

cbPLIError Simulation run-time error occurred in a PLI function call

cbTchkViolation Timing check error occurred

cbSignal A signal occurred

Examples of possible feature related callbacks are

cbStartOfSave Simulation save state command invoked

cbEndOfSave Simulation save state command completed

cbStartOfRestart Simulation restart from saved state command invoked

cbEndOfRestart Simulation restart command completed

cbEnterInteractive Simulation entering interactive debug mode (e.g., $stop system task

executed)

cbExitInteractive Simulation exiting interactive mode

cbInteractiveScopeChange Simulation command to change interactive scope executed

cbUnresolvedSystf Unknown user-defined system task or function encountered

The only fields in the s_cb_data structure that shall need to be setup for simulation action/feature call-

backs are the reason, cb_rtn, and user_data (if desired) fields.

vpi_register_cb() can be used to set up a signal handler. To do this, set the reason field to cbSignal and set

the index field to one of the legal signals specified by the operating system. When this signal occurs, the sim-

ulator will trap the signal, proceed to a safe point (if possible), then call the callback routine.

When a simulation action/feature callback occurs, the user routine shall be passed a pointer to an

s_cb_data structure. The reason field shall contain the reason for the callback. For cbTchkViolation
callbacks, the obj field shall be a handle to the timing check. For cbInteractiveScopeChange, obj shall be a

handle to the new scope. For cbUnresolvedSystf, user_data shall point to the name of the unresolved task or

function. On a cbError callback, the routine vpi_chk_error() can be called to retrieve error information.

When an implementation restarts the only VPI callbacks that shall exist are those for cbStartOfRestart and

cbEndOfRestart. Note when a user registers for these two callbacks the user_data field should not be a

pointer into memory. The reason for this is that the executable used to restart an implementation may not be

the exact same one used to save the implementation state. A typical use of the user_data field, for these two

callbacks would be to store the ID returned from a call to vpi_put_data().

With the exception of cbStartOfRestart and cbEndOfRestart callbacks, when a restart occurs all regis-

tered callbacks shall be removed.

The following example shows a callback application that reports cpu usage at the end of a simulation. If the

user routine setup_report_cpu() is placed in the vlog_startup_routines list, it shall be called

just after the simulator is invoked.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

752 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

static PLI_INT32 initial_cputime_g;

void report_cpu()
{

PLI_INT32 total = get_current_cputime() - initial_cputime_g;
vpi_printf(“Simulation complete. CPU time used: %d\n”, total);

}

void setup_report_cpu()
{

static s_cb_data cb_data_s = {cbEndOfSimulation, report_cpu};
initial_cputime_g = get_current_cputime();
vpi_register_cb(&cb_data_s);

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 753
This is an unapproved IEEE Standards Draft, subject to change.

27.34 vpi_register_systf()

The VPI routine vpi_register_systf() shall register callbacks for user-defined system tasks or functions.

Callbacks can be registered to occur when a user-defined system task or function is encountered during com-

pilation or execution of Verilog HDL source code.

The systf_data_p argument shall point to a s_vpi_systf_data structure, which is defined in

vpi_user.h and listed in Figure 189.

Figure 189—The s_vpi_systf_data structure definition

vpi_register_systf()

Synopsis: Register user-defined system task/function-related callbacks.

Syntax: vpi_register_systf(systf_data_p)

Type Description

Returns: vpiHandle Handle to the callback object

Type Name Description

Arguments: p_vpi_systf_data systf_data_p Pointer to a structure with data about when callbacks

should occur and the data to be passed

Related
routines:

Use vpi_register_cb() to register callbacks for simulation-related events

typedef struct t_vpi_systf_data
{
 PLI_INT32 type; /* vpiSysTask, vpiSysFunc */
 PLI_INT32 sysfunctype; /* vpiSysTask, vpi[Int,Real,Time,Sized,
 SizedSigned]Func */
 PLI_BYTE8 *tfname; /* first character must be `$' */
 PLI_INT32 (*calltf)(PLI_BYTE8 *);
 PLI_INT32 (*compiletf)(PLI_BYTE8 *);
 PLI_INT32 (*sizetf)(PLI_BYTE8 *); /* for sized function
 callbacks only */
 PLI_BYTE8 *user_data;
} s_vpi_systf_data, *p_vpi_systf_data;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

754 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

27.34.1 System task and function callbacks

User-defined Verilog system tasks and functions that use VPI routines can be registered with

vpi_register_systf(). The following system task/function-related callbacks are defined.

The type field of the s_vpi_systf_data structure shall register the user application to be a system task

or a system function. The type field value shall be an integer constant of vpiSysTask or vpiSysFunc.

The sysfunctype field of the s_vpi_systf_data structure shall define the type of value that a system

function shall return. The sysfunctype field shall be an integer constant of vpiIntFunc, vpiRealFunc, vpi-
TimeFunc, vpiSizedFunc or vpiSizedSignedFunc. This field shall only be used when the type field is set to

vpiSysFunc.

tfname is a character string containing the name of the system task or function as it will be used in Verilog

source code. The name shall begin with a dollar sign ($), and shall be followed by one or more ASCII char-

acters which are legal in Verilog HDL simple identifiers. These are the characters A through Z, a through z,

0 through 9, underscore (_), and the dollar sign ($). The maximum name length shall be the same as for

Verilog HDL identifiers.

The compiletf, calltf, and sizetf fields of the s_vpi_systf_data structure shall be pointers to the user-

provided applications that are to be invoked by the system task/function callback mechanism. One or more

of the compiletf, calltf, and sizetf fields can be set to NULL if they are not needed. Callbacks to the applica-

tions pointed to by the compiletf and sizetf fields shall occur when the simulation data structure is compiled

or built (or for the first invocation if the system task or function is invoked from an interactive mode). Call-

backs to the application pointed to by the calltf routine shall occur each time the system task or function is

invoked during simulation execution.

The sizetf application shall only be called if the PLI application type is vpiSysFunc and the sysfunctype is

vpiSizedFunc or vpiSizedSignedFunc. If no sizetf is provided, a user-defined system function of type vpi-
SizedFunc or vpiSizedSignedFunc shall return 32-bits.

The contents of the user_data field of the s_vpi_systf_data structure shall be the only argument passed to the

compiletf, sizetf, and calltf routines when they are called. This argument shall be of the type “PLI_BYTE8
*”.

The following two examples illustrate allocating and filling in the s_vpi_systf_data structure and call-

ing the vpi_register_systf() function. These examples show two different C programming meth-

ods of filling in the structure fields. A third method is shown in 27.34.3.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 755
This is an unapproved IEEE Standards Draft, subject to change.

/*
 * VPI registration data for a $list_nets system task
 */
void listnets_register()
{
 s_vpi_systf_data tf_data;
 tf_data.type = vpiSysTask;
 tf_data.tfname = “$list_nets”;
 tf_data.calltf = ListCall;
 tf_data.compiletf = ListCheck;
 vpi_register_systf(&tf_data);
}

/*
 * VPI registration data for a $my_random system function
 */
void my_random_init()
{
 s_vpi_systf_data func_data;
 p_vpi_systf_data func_data_p = &func_data;
 PLI_BYTE8 *my_workarea;
 my_workarea = malloc(256);
 func_data_p->type = vpiSysFunc;
 func_data_p->sysfunctype = vpiSizedFunc;
 func_data_p->tfname = “$my_random”;
 func_data_p->calltf = my_random;
 func_data_p->compiletf = my_random_compiletf;
 func_data_p->compiletf = my_random_sizetf;
 func_data_p->user_data = my_workarea;
 vpi_register_systf(func_data_p);
}

27.34.2 Initializing VPI system task/function callbacks

A means of initializing system task/function callbacks and performing any other desired task just after the

simulator is invoked shall be provided by placing routines in a NULL-terminated static array,

vlog_startup_routines. A C function using the array definition shall be provided as follows:

void (*vlog_startup_routines[]) ();

This C function shall be provided with a VPI-compliant product. Entries in the array shall be added by the

user. The location of vlog_startup_routines and the procedure for linking vlog_startup_routines with a

software product shall be defined by the product vendor. (Note that callbacks can also be registered or

removed at any time during an application routine, not just at startup time).

This array of C functions shall be for registering system tasks and functions. User tasks and functions that

appear in a compiled description shall generally be registered by a routine in this array.

The following example uses vlog_startup_routines to register the system task and system function which

were defined in the examples in 27.34.1.

Note that a tool vendor shall supply a file which contains the vlog_startup_routines array. The

names of the PLI application register functions are added to this vendor supplied file.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

756 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

extern void listnets_register();
extern void my_random_init();
void (*vlog_startup_routines[]) () =
{
 listnets_register,
 my_random_init,
 0
}

27.34.3 Registering multiple system tasks and functions

Multiple system tasks and functions can be registered at least two different ways:

— Allocate and define separate s_vpi_systf_data structures for each system task or function, and
call vpi_register_systf() once for each structure. This is the method which was used by the
examples in 27.34.1 and 27.34.2.

— Allocate a static array of s_vpi_systf_data structures, and call vpi_register_systf() once for
each structure in the array. If the final element in the array is set to zero, then the calls to
vpi_register_systf() can be placed in a loop which terminates when it reaches the 0.

The following example uses a static structure to declare three system tasks and functions, and places

vpi_register_systf() in a loop to register them.

/*In a vendor product file which contains vlog_startup_routines ...*/
extern void register_my_systfs();
extern void my_init();
void (*vlog_startup_routines[])() =
{

setup_report_cpu, /* user routine example in 27.33.3 */
register_my_systfs, /* user routine listed below */
0 /* must be last entry in list */

}

/* In a user provided file... */
void register_my_systfs()
{

static s_vpi_systf_data systfTestList[] = {
{vpiSysTask, 0, “$my_task”, my_task_calltf, my_task_comptf,0,0},
{vpiSysFunc, vpiIntFunc, “$my_int_func”, my_int_func_calltf,

my_int_func_comptf, 0,0},
{vpiSysFunc, vpiSizedFunc, “$my_sized_func”,

my_sized_func_calltf, my_sized_func_comptf,
my_sized_func_sizetf,0},

0};

p_vpi_systf_data systf_data_p = &(systfTestList[0]);

while (systf_data_p->type)
vpi_register_systf(systf_data_p++);

}

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 757
This is an unapproved IEEE Standards Draft, subject to change.

27.35 vpi_remove_cb()

The VPI routine vpi_remove_cb() shall remove callbacks that were registered with vpi_register_cb(). The

argument to this routine shall be a handle to the callback object. The routine shall return a 1 (true) if success-

ful, and a 0 (false) on a failure. After vpi_remove_cb() is called with a handle to the callback, the handle is

no longer valid.

vpi_remove_cb()

Synopsis: Remove a simulation callback registered with vpi_register_cb().

Syntax: vpi_remove_cb(cb_obj)

Type Description

Returns: PLI_INT32 1 (true) if successful; 0 (false) on a failure

Type Name Description

Arguments: vpiHandle cb_obj Handle to the callback object

Related
routines:

Use vpi_register_cb() to register callbacks for simulation-related events

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

758 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

27.36 vpi_scan()

The VPI routine vpi_scan() shall traverse the instantiated Verilog HDL hierarchy and return handles to

objects as directed by the iterator itr. The iterator handle shall be obtained by calling vpi_iterate() for a spe-

cific object type. Once vpi_scan() returns NULL, the iterator handle is no longer valid and cannot be used

again.

The following example application uses vpi_iterate() and vpi_scan() to display each net (including the size

for vectors) declared in the module. The example assumes it shall be passed a valid module handle.

void display_nets(mod)
vpiHandle mod;
{

vpiHandle net;
vpiHandle itr;

vpi_printf(“Nets declared in module %s\n”,
vpi_get_str(vpiFullName, mod));

itr = vpi_iterate(vpiNet, mod);
while (net = vpi_scan(itr))
{

vpi_printf(“\t%s”, vpi_get_str(vpiName, net));
if (vpi_get(vpiVector, net))
{

vpi_printf(“ of size %d\n”, vpi_get(vpiSize, net));
}
else vpi_printf(“\n”);

}
}

vpi_scan()

Synopsis: Scan the Verilog HDL hierarchy for objects with a one-to-many relationship.

Syntax: vpi_scan(itr)

Type Description

Returns: vpiHandle Handle to an object

Type Name Description

Arguments: vpiHandle itr Handle to an iterator object returned from vpi_iterate()

Related
routines:

Use vpi_iterate() to obtain an iterator handle

Use vpi_handle() to obtain handles to an object with a one-to-one relationship

Use vpi_handle_multi() to obtain a handle to an object with a many-to-one relationship

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 759
This is an unapproved IEEE Standards Draft, subject to change.

27.37 vpi_vprintf()

This routine performs the same function as vpi_printf(), except that varargs has already been started.

vpi_vprintf()

Synopsis: Write to the output channel of the software product which invoked the PLI application and the current product

log file using varargs which are already started.

Syntax: vpi_vprintf(format, ap)

Type Description

Returns: PLI_INT32 The number of characters written

Type Name Description

Arguments: PLI_BYTE8 * format A format string using the C printf() format

va_list ap An already started varargs list

Related
routines:

Use vpi_printf() to write a finite number of arguments

Use vpi_mcd_printf() to write to an opened file

Use vpi_mcd_vprintf() to write a variable number of arguments to an opened file

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

760 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Annex A

(normative)

Formal syntax definition

The formal syntax of Verilog HDL is described using Backus-Naur Form (BNF).

A.1 Source text

A.1.1 Library source text

library_text ::= { library_descriptions }

library_descriptions ::=

 library_declaration

 | include_statement

 | config_declaration

library_declaration ::=

library library_identifier file_path_spec [{ , file_path_spec }]

 [-incdir file_path_spec [{ , file_path_spec }] ;
file_path_spec ::= file_path

include_statement ::= include <file_path_spec> ;

A.1.2 Configuration source text

config_declaration ::=

config config_identifier ;
 design_statement

 {config_rule_statement}

endconfig
design_statement ::= design { [library_identifier.]cell_identifier } ;
config_rule_statement ::=

 default_clause liblist_clause

 | inst_clause liblist_clause

 | inst_clause use_clause

 | cell_clause liblist_clause

 | cell_clause use_clause

default_clause ::= default
inst_clause ::= instance inst_name

inst_name ::= topmodule_identifier{.instance_identifier}

cell_clause ::= cell [library_identifier.]cell_identifier

liblist_clause ::= liblist [{library_identifier}]

use_clause ::= use [library_identifier.]cell_identifier[:config]

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 761
This is an unapproved IEEE Standards Draft, subject to change.

A.1.3 Module and primitive source text

source_text ::= { description }

description ::=

 module_declaration

 | udp_declaration

module_declaration ::=

 { attribute_instance } module_keyword module_identifier [module_parameter_port_list]

list_of_ports ; { module_item }

 endmodule
 | { attribute_instance } module_keyword module_identifier [module_parameter_port_list]

 [list_of_port_declarations] ; { non_port_module_item }

 endmodule
module_keyword ::= module | macromodule

A.1.4 Module parameters and ports

module_parameter_port_list ::= # (parameter_declaration { , parameter_declaration })
list_of_ports ::= (port { , port })
list_of_port_declarations ::=

(port_declaration { , port_declaration })
 | ()
port ::=

 [port_expression]

 | . port_identifier ([port_expression])
port_expression ::=

 port_reference

 | { port_reference { , port_reference } }
port_reference ::=

 port_identifier

 | port_identifier [constant_expression]
 | port_identifier [range_expression]
port_declaration ::=

 {attribute_instance} inout_declaration

 | {attribute_instance} input_declaration

 | {attribute_instance} output_declaration

A.1.5 Module items

module_item ::=

 module_or_generate_item

 | port_declaration ;
 | { attribute_instance } generated_instantiation

 | { attribute_instance } local_parameter_declaration ;
 | { attribute_instance } parameter_declaration ;
 | { attribute_instance } specify_block

 | { attribute_instance } specparam_declaration

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

762 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

module_or_generate_item ::=

 { attribute_instance } module_or_generate_item_declaration

 | { attribute_instance } parameter_override

 | { attribute_instance } continuous_assign

 | { attribute_instance } gate_instantiation

 | { attribute_instance } udp_instantiation

 | { attribute_instance } module_instantiation

 | { attribute_instance } initial_construct

 | { attribute_instance } always_construct

module_or_generate_item_declaration ::=

 net_declaration

 | reg_declaration

 | integer_declaration

 | real_declaration

 | time_declaration

 | realtime_declaration

 | event_declaration

 | genvar_declaration

 | task_declaration

 | function_declaration

non_port_module_item ::=

 { attribute_instance } generated_instantiation

 | { attribute_instance } local_parameter_declaration ;
 | { attribute_instance } parameter_declaration ;
 | { attribute_instance } specify_block

 | { attribute_instance } specparam_declaration

 | { attribute_instance } module_or_generate_item

parameter_override ::= defparam list_of_defparam_assignments ;

A.2 Declarations

A.2.1 Declaration types

A.2.1.1 Module parameter declarations
local_parameter_declaration ::=

 localparam [signed] [range] list_of_param_assignments

 | localparam integer list_of_param_assignments

 | localparam real list_of_param_assignments

 | localparam realtime list_of_param_assignments

 | localparam time list_of_param_assignments

parameter_declaration ::=

 parameter [signed] [range] list_of_param_assignments

 | parameter integer list_of_param_assignments

 | parameter real list_of_param_assignments

 | parameter realtime list_of_param_assignments

 | parameter time list_of_param_assignments

specparam_declaration ::= specparam [range] list_of_specparam_assignments ;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 763
This is an unapproved IEEE Standards Draft, subject to change.

A.2.1.2 Port declarations
inout_declaration ::= inout [net_type] [signed] [range]

 list_of_port_identifiers

input_declaration ::= input [net_type] [signed] [range]

 list_of_port_identifiers

output_declaration ::=

output [net_type] [signed] [range]

 list_of_port_identifiers

 | output [reg] [signed] [range]

 list_of_port_identifiers

 | output reg [signed] [range]

 list_of_variable_port_identifiers

 | output [output_variable_type]

 list_of_port_identifiers

 | output output_variable_type

 list_of_variable_port_identifiers

A.2.1.3 Type declarations
event_declaration ::= event list_of_event_identifiers ;
genvar_declaration ::= genvar list_of_genvar_identifiers ;
integer_declaration ::= integer list_of_variable_identifiers ;
net_declaration ::=

 net_type [signed]

 [delay3] list_of_net_identifiers ;
 | net_type [drive_strength] [signed]

 [delay3] list_of_net_decl_assignments ;
 | net_type [vectored | scalared] [signed]

 range [delay3] list_of_net_identifiers ;
 | net_type [drive_strength] [vectored | scalared] [signed]

 range [delay3] list_of_net_decl_assignments ;
 | trireg [charge_strength] [signed]

 [delay3] list_of_net_identifiers ;
 | trireg [drive_strength] [signed]

 [delay3] list_of_net_decl_assignments ;
 | trireg [charge_strength] [vectored | scalared] [signed]

 range [delay3] list_of_net_identifiers ;
 | trireg [drive_strength] [vectored | scalared] [signed]

 range [delay3] list_of_net_decl_assignments ;
real_declaration ::= real list_of_real_identifiers ;
realtime_declaration ::= realtime list_of_real_identifiers ;
reg_declaration ::= reg [signed] [range]

 list_of_variable_identifiers ;
time_declaration ::= time list_of_variable_identifiers ;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

764 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

A.2.2 Declaration data types

A.2.2.1 Net and variable types
net_type ::=

supply0 | supply1
 | tri | triand | trior | tri0 | tri1
 | wire | wand | wor
output_variable_type ::= integer | time
real_type ::=

real_identifier [= constant_expression]

 | real_identifier dimension { dimension }

variable_type ::=

 variable_identifier [= constant_expression]

 | variable_identifier dimension { dimension }

A.2.2.2 Strengths
drive_strength ::=

(strength0 , strength1)
 | (strength1 , strength0)
 | (strength0 , highz1)
 | (strength1 , highz0)
 | (highz0 , strength1)
 | (highz1 , strength0)
strength0 ::= supply0 | strong0 | pull0 | weak0
strength1 ::= supply1 | strong1 | pull1 | weak1
charge_strength ::= (small) | (medium) | (large)

A.2.2.3 Delays
delay3 ::=

 # delay_value

 | # (mintypmax_expression [, mintypmax_expression [, mintypmax_expression]])
delay2 ::=

 # delay_value

 | # (mintypmax_expression [, mintypmax_expression])
delay_value ::=

 unsigned_number

 | real_number

 | identifier

A.2.3 Declaration lists

list_of_defparam_assignments ::= defparam_assignment { , defparam_assignment }

list_of_event_identifiers ::= event_identifier [dimension { dimension }]

 { , event_identifier [dimension { dimension }] }

list_of_genvar_identifiers ::= genvar_identifier { , genvar_identifier }

list_of_net_decl_assignments ::= net_decl_assignment { , net_decl_assignment }

list_of_net_identifiers ::= net_identifier [dimension { dimension }]

 { , net_identifier [dimension { dimension }] }

list_of_param_assignments ::= param_assignment { , param_assignment }

list_of_port_identifiers ::= port_identifier { , port_identifier }

list_of_real_identifiers ::= real_type { , real_type }

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 765
This is an unapproved IEEE Standards Draft, subject to change.

list_of_specparam_assignments ::= specparam_assignment { , specparam_assignment }

list_of_variable_identifiers ::= variable_type { , variable_type }

list_of_variable_port_identifiers ::= port_identifier [= constant_expression]

 { , port_identifier [= constant_expression] }

A.2.4 Declaration assignments

defparam_assignment ::= hierarchical_parameter_identifier = constant_expression

net_decl_assignment ::= net_identifier = expression

param_assignment ::= parameter_identifier = constant_expression

specparam_assignment ::=

 specparam_identifier = constant_mintypmax_expression

 | pulse_control_specparam

pulse_control_specparam ::=

PATHPULSE$ = (reject_limit_value [, error_limit_value]) ;
 | PATHPULSE$specify_input_terminal_descriptor$specify_output_terminal_descriptor

= (reject_limit_value [, error_limit_value]) ;
error_limit_value ::= limit_value

reject_limit_value ::= limit_value

limit_value ::= constant_mintypmax_expression

A.2.5 Declaration ranges

dimension ::= [dimension_constant_expression : dimension_constant_expression]
range ::= [msb_constant_expression : lsb_constant_expression]

A.2.6 Function declarations

function_declaration ::=

function [automatic] [signed] [range_or_type] function_identifier ;
 function_item_declaration { function_item_declaration }

 function_statement

endfunction
 | function [automatic] [signed] [range_or_type] function_identifier (function_port_list) ;
 block_item_declaration { block_item_declaration }

 function_statement

endfunction
function_item_declaration ::=

 block_item_declaration

 | tf_input_declaration ;
function_port_list ::= { attribute_instance } tf_input_declaration { , { attribute_instance }

tf_input_declaration }

range_or_type ::= range | integer | real | realtime | time

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

766 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

A.2.7 Task declarations

task_declaration ::=

task [automatic] task_identifier ;
 { task_item_declaration }

 statement_or_null

endtask
 | task [automatic] task_identifier (task_port_list) ;
 { block_item_declaration }

 statement_or_null

endtask
task_item_declaration ::=

 block_item_declaration

 | { attribute_instance } tf_input_declaration ;
 | { attribute_instance } tf_output_declaration ;
 | { attribute_instance } tf_inout_declaration ;
task_port_list ::= task_port_item { , task_port_item }

task_port_item ::=

 { attribute_instance } tf_input_declaration

 | { attribute_instance } tf_output_declaration

 | { attribute_instance } tf_inout_declaration

tf_input_declaration ::=

input [reg] [signed] [range] list_of_port_identifiers

 | input [task_port_type] list_of_port_identifiers

tf_output_declaration ::=

 output [reg] [signed] [range] list_of_port_identifiers

 | output [task_port_type] list_of_port_identifiers

tf_inout_declaration ::=

 inout [reg] [signed] [range] list_of_port_identifiers

 | inout [task_port_type] list_of_port_identifiers

task_port_type ::=

 time | real | realtime | integer

A.2.8 Block item declarations

block_item_declaration ::=

{ attribute_instance } reg [signed] [range] list_of_block_variable_identifiers ;
 | { attribute_instance } integer list_of_block_variable_identifiers ;
 | { attribute_instance } time list_of_block_variable_identifiers ;
 | { attribute_instance } real list_of_block_real_identifiers ;
 | { attribute_instance } realtime list_of_block_real_identifiers ;
 | { attribute_instance } event_declaration

 | { attribute_instance } local_parameter_declaration ;
 | { attribute_instance } parameter_declaration ;
list_of_block_variable_identifiers ::= block_variable_type { , block_variable_type }

list_of_block_real_identifiers ::= block_real_type { , block_real_type }

block_variable_type ::= variable_identifier { dimension }

block_real_type ::= real_identifier { dimension }

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 767
This is an unapproved IEEE Standards Draft, subject to change.

A.3 Primitive instances

A.3.1 Primitive instantiation and instances

gate_instantiation ::=

 cmos_switchtype [delay3]

 cmos_switch_instance { , cmos_switch_instance } ;
 | enable_gatetype [drive_strength] [delay3]

 enable_gate_instance { , enable_gate_instance } ;
 | mos_switchtype [delay3]

 mos_switch_instance { , mos_switch_instance } ;
 | n_input_gatetype [drive_strength] [delay2]

 n_input_gate_instance { , n_input_gate_instance } ;
 | n_output_gatetype [drive_strength] [delay2]

 n_output_gate_instance { , n_output_gate_instance } ;

 | pass_en_switchtype [delay2]

 pass_enable_switch_instance { , pass_enable_switch_instance } ;
 | pass_switchtype

 pass_switch_instance { , pass_switch_instance } ;
 | pulldown [pulldown_strength]

 pull_gate_instance { , pull_gate_instance } ;
 | pullup [pullup_strength]

 pull_gate_instance { , pull_gate_instance } ;
cmos_switch_instance ::= [name_of_gate_instance] (output_terminal , input_terminal ,
 ncontrol_terminal , pcontrol_terminal)
enable_gate_instance ::= [name_of_gate_instance] (output_terminal , input_terminal , enable_terminal)
mos_switch_instance ::= [name_of_gate_instance] (output_terminal , input_terminal , enable_terminal)
n_input_gate_instance ::= [name_of_gate_instance] (output_terminal , input_terminal { , input_terminal })
n_output_gate_instance ::= [name_of_gate_instance] (output_terminal { , output_terminal } ,

input_terminal)
pass_switch_instance ::= [name_of_gate_instance] (inout_terminal , inout_terminal)
pass_enable_switch_instance ::= [name_of_gate_instance] (inout_terminal , inout_terminal ,

enable_terminal)
pull_gate_instance ::= [name_of_gate_instance] (output_terminal)
name_of_gate_instance ::= gate_instance_identifier [range]

A.3.2 Primitive strengths

pulldown_strength ::=

(strength0 , strength1)
 | (strength1 , strength0)
 | (strength0)
pullup_strength ::=

(strength0 , strength1)
 | (strength1 , strength0)
 | (strength1)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

768 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

A.3.3 Primitive terminals

enable_terminal ::= expression

inout_terminal ::= net_lvalue

input_terminal ::= expression

ncontrol_terminal ::= expression

output_terminal ::= net_lvalue

pcontrol_terminal ::= expression

A.3.4 Primitive gate and switch types

cmos_switchtype ::= cmos | rcmos
enable_gatetype ::= bufif0 | bufif1 | notif0 | notif1
mos_switchtype ::= nmos | pmos | rnmos | rpmos
n_input_gatetype ::= and | nand | or | nor | xor | xnor
n_output_gatetype ::= buf | not
pass_en_switchtype ::= tranif0 | tranif1 | rtranif1 | rtranif0
pass_switchtype ::= tran | rtran

A.4 Module and generated instantiation

A.4.1 Module instantiation

module_instantiation ::=

 module_identifier [parameter_value_assignment]

 module_instance { , module_instance } ;
parameter_value_assignment ::= # (list_of_parameter_assignments)
list_of_parameter_assignments ::=

 ordered_parameter_assignment { , ordered_parameter_assignment } |

 named_parameter_assignment { , named_parameter_assignment }

ordered_parameter_assignment ::= expression

named_parameter_assignment ::= . parameter_identifier ([expression])
module_instance ::= name_of_instance ([list_of_port_connections])
name_of_instance ::= module_instance_identifier [range]

list_of_port_connections ::=

 ordered_port_connection { , ordered_port_connection }

 | named_port_connection { , named_port_connection }

ordered_port_connection ::= { attribute_instance } [expression]

named_port_connection ::= { attribute_instance } . port_identifier ([expression])

A.4.2 Generated instantiation

generated_instantiation ::= generate { generate_item } endgenerate
generate_item_or_null ::= generate_item | ;
generate_item ::=

 generate_conditional_statement

 | generate_case_statement

 | generate_loop_statement

 | generate_block

 | module_or_generate_item

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 769
This is an unapproved IEEE Standards Draft, subject to change.

generate_conditional_statement ::=

if (constant_expression) generate_item_or_null [else generate_item_or_null]

generate_case_statement ::= case (constant_expression)
 genvar_case_item { genvar_case_item } endcase
genvar_case_item ::= constant_expression { , constant_expression } :
 generate_item_or_null | default [:] generate_item_or_null

generate_loop_statement ::= for (genvar_assignment ; constant_expression ; genvar_assignment)
begin : generate_block_identifier { generate_item } end

genvar_assignment ::= genvar_identifier = constant_expression

generate_block ::= begin [: generate_block_identifier] { generate_item } end

A.5 UDP declaration and instantiation

A.5.1 UDP declaration

udp_declaration ::=

 { attribute_instance } primitive udp_identifier (udp_port_list) ;
 udp_port_declaration { udp_port_declaration }

 udp_body

endprimitive
 | { attribute_instance } primitive udp_identifier (udp_declaration_port_list) ;
 udp_body

endprimitive

A.5.2 UDP ports

udp_port_list ::= output_port_identifier , input_port_identifier { , input_port_identifier }

udp_declaration_port_list ::=

 udp_output_declaration , udp_input_declaration { , udp_input_declaration }

udp_port_declaration ::=

 udp_output_declaration ;
 | udp_input_declaration ;
 | udp_reg_declaration ;
udp_output_declaration ::=

 { attribute_instance } output port_identifier

 | { attribute_instance } output reg port_identifier [= constant_expression]

udp_input_declaration ::= { attribute_instance } input list_of_port_identifiers

udp_reg_declaration ::= { attribute_instance } reg variable_identifier

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

770 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

A.5.3 UDP body

udp_body ::= combinational_body | sequential_body

combinational_body ::= table combinational_entry { combinational_entry } endtable
combinational_entry ::= level_input_list : output_symbol ;
sequential_body ::= [udp_initial_statement] table sequential_entry { sequential_entry } endtable
udp_initial_statement ::= initial output_port_identifier = init_val ;
init_val ::= 1'b0 | 1'b1 | 1'bx | 1'bX | 1'B0 | 1'B1 | 1'Bx | 1'BX | 1 | 0
sequential_entry ::= seq_input_list : current_state : next_state ;
seq_input_list ::= level_input_list | edge_input_list

level_input_list ::= level_symbol { level_symbol }

edge_input_list ::= { level_symbol } edge_indicator { level_symbol }

edge_indicator ::= (level_symbol level_symbol) | edge_symbol

current_state ::= level_symbol

next_state ::= output_symbol | -
output_symbol ::= 0 | 1 | x | X
level_symbol ::= 0 | 1 | x | X | ? | b | B
edge_symbol ::= r | R | f | F | p | P | n | N | *

A.5.4 UDP instantiation

udp_instantiation ::= udp_identifier [drive_strength] [delay2]

 udp_instance { , udp_instance } ;
udp_instance ::= [name_of_udp_instance] (output_terminal , input_terminal

 { , input_terminal })
name_of_udp_instance ::= udp_instance_identifier [range]

A.6 Behavioral statements

A.6.1 Continuous assignment statements

continuous_assign ::= assign [drive_strength] [delay3] list_of_net_assignments ;
list_of_net_assignments ::= net_assignment { , net_assignment }

net_assignment ::= net_lvalue = expression

A.6.2 Procedural blocks and assignments

initial_construct ::= initial statement

always_construct ::= always statement

blocking_assignment ::= variable_lvalue = [delay_or_event_control] expression

nonblocking_assignment ::= variable_lvalue <= [delay_or_event_control] expression

procedural_continuous_assignments ::=

assign variable_assignment

 | deassign variable_lvalue

 | force variable_assignment

 | force net_assignment

 | release variable_lvalue

 | release net_lvalue

variable_assignment ::= variable_lvalue = expression

function_blocking_assignment ::= variable_lvalue = expression

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 771
This is an unapproved IEEE Standards Draft, subject to change.

function_statement_or_null ::=

 function_statement

 | { attribute_instance } ;

A.6.3 Parallel and sequential blocks

function_seq_block ::= begin [: block_identifier

 { block_item_declaration }] { function_statement } end
par_block ::= fork [: block_identifier

 { block_item_declaration }] { statement } join
seq_block ::= begin [: block_identifier

 { block_item_declaration }] { statement } end

A.6.4 Statements

statement ::=

 { attribute_instance } blocking_assignment ;
 | { attribute_instance } case_statement

 | { attribute_instance } conditional_statement

 | { attribute_instance } disable_statement

 | { attribute_instance } event_trigger

 | { attribute_instance } loop_statement

 | { attribute_instance } nonblocking_assignment ;
 | { attribute_instance } par_block

 | { attribute_instance } procedural_continuous_assignments ;
 | { attribute_instance } procedural_timing_control_statement

 | { attribute_instance } seq_block

 | { attribute_instance } system_task_enable

 | { attribute_instance } task_enable

 | { attribute_instance } wait_statement

statement_or_null ::=

 statement

 | { attribute_instance } ;
function_statement ::=

 { attribute_instance } function_blocking_assignment ;
 | { attribute_instance } function_case_statement

 | { attribute_instance } function_conditional_statement

 | { attribute_instance } function_loop_statement

 | { attribute_instance } function_seq_block

 | { attribute_instance } disable_statement

 | { attribute_instance } system_task_enable

A.6.5 Timing control statements

delay_control ::=

delay_value

 | # (mintypmax_expression)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

772 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

delay_or_event_control ::=

 delay_control

 | event_control

 | repeat (expression) event_control

disable_statement ::=

disable hierarchical_task_identifier ;
 | disable hierarchical_block_identifier ;
event_control ::=

@ event_identifier

 | @ (event_expression)
 | @*
 | @ (*)
event_trigger ::=

-> hierarchical_event_identifier { [expression] } ;
event_expression ::=

 expression

 | hierarchical_identifier

 | posedge expression

 | negedge expression

 | event_expression or event_expression

 | event_expression , event_expression

procedural_timing_control ::=

 delay_control

 | event_control

procedural_timing_control_statement ::=

procedural_timing_control statement_or_null

wait_statement ::=

wait (expression) statement_or_null

A.6.6 Conditional statements

conditional_statement ::=

if (expression)
 statement_or_null [else statement_or_null]

 | if_else_if_statement

if_else_if_statement ::=

if (expression) statement_or_null

 { else if (expression) statement_or_null }

 [else statement_or_null]

function_conditional_statement ::=

if (expression) function_statement_or_null

 [else function_statement_or_null]

 | function_if_else_if_statement

function_if_else_if_statement ::=

if (expression) function_statement_or_null

 { else if (expression) function_statement_or_null }

 [else function_statement_or_null]

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 773
This is an unapproved IEEE Standards Draft, subject to change.

A.6.7 Case statements

case_statement ::=

case (expression)
 case_item { case_item } endcase
 | casez (expression)
 case_item { case_item } endcase
 | casex (expression)
 case_item { case_item } endcase
case_item ::=

 expression { , expression } : statement_or_null

 | default [:] statement_or_null

function_case_statement ::=

case (expression)
 function_case_item { function_case_item } endcase
 | casez (expression)
 function_case_item { function_case_item } endcase
 | casex (expression)
 function_case_item { function_case_item } endcase
function_case_item ::=

 expression { , expression } : function_statement_or_null

 | default [:] function_statement_or_null

A.6.8 Looping statements

function_loop_statement ::=

forever function_statement

 | repeat (expression) function_statement

 | while (expression) function_statement

| for (variable_assignment ; expression ; variable_assignment)
 function_statement

loop_statement ::=

forever statement

 | repeat (expression) statement

 | while (expression) statement

 | for (variable_assignment ; expression ; variable_assignment)
 statement

A.6.9 Task enable statements

system_task_enable ::= system_task_identifier [(expression { , expression })] ;
task_enable ::= hierarchical_task_identifier [(expression { , expression })] ;

A.7 Specify section

A.7.1 Specify block declaration

specify_block ::= specify { specify_item } endspecify

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

774 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

specify_item ::=

 specparam_declaration

 | pulsestyle_declaration

 | showcancelled_declaration

 | path_declaration

 | system_timing_check

pulsestyle_declaration ::=

pulsestyle_onevent list_of_path_outputs ;
 | pulsestyle_ondetect list_of_path_outputs ;
showcancelled_declaration ::=

showcancelled list_of_path_outputs ;
 | noshowcancelled list_of_path_outputs ;

A.7.2 Specify path declarations

path_declaration ::=

 simple_path_declaration ;
 | edge_sensitive_path_declaration ;
 | state_dependent_path_declaration ;
simple_path_declaration ::=

 parallel_path_description = path_delay_value

 | full_path_description = path_delay_value

parallel_path_description ::=

(specify_input_terminal_descriptor [polarity_operator] => specify_output_terminal_descriptor)
full_path_description ::=

(list_of_path_inputs [polarity_operator] *> list_of_path_outputs)
list_of_path_inputs ::=

 specify_input_terminal_descriptor { , specify_input_terminal_descriptor }

list_of_path_outputs ::=

 specify_output_terminal_descriptor { , specify_output_terminal_descriptor }

A.7.3 Specify block terminals

specify_input_terminal_descriptor ::=

 input_identifier

 | input_identifier [constant_expression]
 | input_identifier [range_expression]
specify_output_terminal_descriptor ::=

 output_identifier

 | output_identifier [constant_expression]
 | output_identifier [range_expression]
input_identifier ::= input_port_identifier | inout_port_identifier

output_identifier ::= output_port_identifier | inout_port_identifier

A.7.4 Specify path delays

path_delay_value ::=

 list_of_path_delay_expressions

 | (list_of_path_delay_expressions)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 775
This is an unapproved IEEE Standards Draft, subject to change.

list_of_path_delay_expressions ::=

 t_path_delay_expression

 | trise_path_delay_expression , tfall_path_delay_expression

 | trise_path_delay_expression , tfall_path_delay_expression , tz_path_delay_expression

 | t01_path_delay_expression , t10_path_delay_expression , t0z_path_delay_expression ,
 tz1_path_delay_expression , t1z_path_delay_expression , tz0_path_delay_expression

 | t01_path_delay_expression , t10_path_delay_expression , t0z_path_delay_expression ,
 tz1_path_delay_expression , t1z_path_delay_expression , tz0_path_delay_expression ,
 t0x_path_delay_expression , tx1_path_delay_expression , t1x_path_delay_expression ,
 tx0_path_delay_expression , txz_path_delay_expression , tzx_path_delay_expression

t_path_delay_expression ::= path_delay_expression

trise_path_delay_expression ::= path_delay_expression

tfall_path_delay_expression ::= path_delay_expression

tz_path_delay_expression ::= path_delay_expression

t01_path_delay_expression ::= path_delay_expression

t10_path_delay_expression ::= path_delay_expression

t0z_path_delay_expression ::= path_delay_expression

tz1_path_delay_expression ::= path_delay_expression

t1z_path_delay_expression ::= path_delay_expression

tz0_path_delay_expression ::= path_delay_expression

t0x_path_delay_expression ::= path_delay_expression

tx1_path_delay_expression ::= path_delay_expression

t1x_path_delay_expression ::= path_delay_expression

tx0_path_delay_expression ::= path_delay_expression

txz_path_delay_expression ::= path_delay_expression

tzx_path_delay_expression ::= path_delay_expression

path_delay_expression ::= constant_mintypmax_expression

edge_sensitive_path_declaration ::=

 parallel_edge_sensitive_path_description = path_delay_value

 | full_edge_sensitive_path_description = path_delay_value

parallel_edge_sensitive_path_description ::=

([edge_identifier] specify_input_terminal_descriptor =>
 specify_output_terminal_descriptor [polarity_operator] : data_source_expression)
full_edge_sensitive_path_description ::=

([edge_identifier] list_of_path_inputs *>
 list_of_path_outputs [polarity_operator] : data_source_expression)
data_source_expression ::= expression

edge_identifier ::= posedge | negedge
state_dependent_path_declaration ::=

 if (module_path_expression) simple_path_declaration

 | if (module_path_expression) edge_sensitive_path_declaration

 | ifnone simple_path_declaration

polarity_operator ::= + | -

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

776 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

A.7.5 System timing checks

A.7.5.1 System timing check commands
system_timing_check ::=

 $setup_timing_check

 | $hold_timing_check

 | $setuphold_timing_check

 | $recovery_timing_check

 | $removal_timing_check

 | $recrem_timing_check

 | $skew_timing_check

 | $timeskew_timing_check

 | $fullskew_timing_check

 | $period_timing_check

 | $width_timing_check

 | $nochange_timing_check

$setup_timing_check ::=

 $setup (data_event , reference_event , timing_check_limit [, [notify_reg]]) ;
$hold_timing_check ::=

$hold (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;
$setuphold_timing_check ::=

$setuphold (reference_event , data_event , timing_check_limit , timing_check_limit

 [, [notify_reg] [, [stamptime_condition] [, [checktime_condition]

 [, [delayed_reference] [, [delayed_data]]]]]]) ;
$recovery_timing_check ::=

$recovery (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;
$removal_timing_check ::=

$removal (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;
$recrem_timing_check ::=

$recrem (reference_event , data_event , timing_check_limit , timing_check_limit

 [, [notify_reg] [, [stamptime_condition] [, [checktime_condition]

 [, [delayed_reference] [, [delayed_data]]]]]]) ;
$skew_timing_check ::=

$skew (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;
$timeskew_timing_check ::=

$timeskew (reference_event , data_event , timing_check_limit

 [, [notify_reg] [, [event_based_flag] [, [remain_active_flag]]]]) ;
$fullskew_timing_check ::=

$fullskew (reference_event , data_event , timing_check_limit , timing_check_limit

 [, [notify_reg] [, [event_based_flag] [, [remain_active_flag]]]]) ;
$period_timing_check ::=

$period (controlled_reference_event , timing_check_limit [, [notify_reg]]) ;
$width_timing_check ::=

$width (controlled_reference_event , timing_check_limit ,
 threshold [, [notify_reg]]) ;
$nochange_timing_check ::=

$nochange (reference_event , data_event , start_edge_offset ,
 end_edge_offset [, [notify_reg]]) ;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 777
This is an unapproved IEEE Standards Draft, subject to change.

A.7.5.2 System timing check command arguments
checktime_condition ::= mintypmax_expression

controlled_reference_event ::= controlled_timing_check_event

data_event ::= timing_check_event

delayed_data ::=

 terminal_identifier

 | terminal_identifier [constant_mintypmax_expression]
delayed_reference ::=

 terminal_identifier

 | terminal_identifier [constant_mintypmax_expression]
end_edge_offset ::= mintypmax_expression

event_based_flag ::= constant_expression

notify_reg ::= variable_identifier

reference_event ::= timing_check_event

remain_active_flag ::= constant_mintypmax_expression

stamptime_condition ::= mintypmax_expression

start_edge_offset ::= mintypmax_expression

threshold ::=constant_expression

timing_check_limit ::= expression

A.7.5.3 System timing check event definitions
timing_check_event ::=

 [timing_check_event_control] specify_terminal_descriptor [&&& timing_check_condition]

controlled_timing_check_event ::=

 timing_check_event_control specify_terminal_descriptor [&&& timing_check_condition]

timing_check_event_control ::=

posedge
 | negedge
 | edge_control_specifier

specify_terminal_descriptor ::=

 specify_input_terminal_descriptor

 | specify_output_terminal_descriptor

edge_control_specifier ::= edge [edge_descriptor { , edge_descriptor }]

edge_descriptor1 ::=

01
 | 10
 | z_or_x zero_or_one

 | zero_or_one z_or_x

zero_or_one ::= 0 | 1
z_or_x ::= x | X | z | Z
timing_check_condition ::=

 scalar_timing_check_condition

 | (scalar_timing_check_condition)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

778 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

scalar_timing_check_condition ::=

 expression

 | ~ expression

 | expression == scalar_constant

 | expression === scalar_constant

 | expression != scalar_constant

 | expression !== scalar_constant

scalar_constant ::=

1'b0 | 1'b1 | 1'B0 | 1'B1 | 'b0 | 'b1 | 'B0 | 'B1 | 1 | 0

A.8 Expressions

A.8.1 Concatenations

concatenation ::= { expression { , expression } }
constant_concatenation ::= { constant_expression { , constant_expression } }
constant_multiple_concatenation ::= { constant_expression constant_concatenation }
module_path_concatenation ::= { module_path_expression { , module_path_expression } }
module_path_multiple_concatenation ::= { constant_expression module_path_concatenation }
multiple_concatenation ::= { constant_expression concatenation }

A.8.2 Function calls

constant_function_call ::= function_identifier { attribute_instance }

 (constant_expression { , constant_expression })
function_call ::= hierarchical_function_identifier{ attribute_instance }

 (expression { , expression })
system_function_call ::= system_function_identifier

 [(expression { , expression })]

A.8.3 Expressions

base_expression ::= expression

conditional_expression ::= expression1 ? { attribute_instance } expression2 : expression3

constant_base_expression ::= constant_expression

constant_expression ::=

 constant_primary

 | unary_operator { attribute_instance } constant_primary

 | constant_expression binary_operator { attribute_instance } constant_expression

 | constant_expression ? { attribute_instance } constant_expression : constant_expression

 | string

constant_mintypmax_expression ::=

 constant_expression

 | constant_expression : constant_expression : constant_expression

constant_range_expression ::=

 constant_expression

 | msb_constant_expression : lsb_constant_expression

 | constant_base_expression +: width_constant_expression

 | constant_base_expression -: width_constant_expression

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 779
This is an unapproved IEEE Standards Draft, subject to change.

dimension_constant_expression ::= constant_expression

expression1 ::= expression

expression2 ::= expression

expression3 ::= expression

expression ::=

 primary

 | unary_operator { attribute_instance } primary

 | expression binary_operator { attribute_instance } expression

 | conditional_expression

 | string

lsb_constant_expression ::= constant_expression

mintypmax_expression ::=

 expression

 | expression : expression : expression

module_path_conditional_expression ::= module_path_expression ? { attribute_instance }

 module_path_expression : module_path_expression

module_path_expression ::=

 module_path_primary

 | unary_module_path_operator { attribute_instance } module_path_primary

| module_path_expression binary_module_path_operator { attribute_instance }

 module_path_expression

 | module_path_conditional_expression

module_path_mintypmax_expression ::=

 module_path_expression

 | module_path_expression : module_path_expression : module_path_expression

msb_constant_expression ::= constant_expression

range_expression ::=

 expression

 | msb_constant_expression : lsb_constant_expression

 | base_expression +: width_constant_expression

 | base_expression -: width_constant_expression

width_constant_expression ::= constant_expression

A.8.4 Primaries

constant_primary ::=

 constant_concatenation

 | constant_function_call

 | (constant_mintypmax_expression)
 | constant_multiple_concatenation

 | genvar_identifier

 | number

 | parameter_identifier

 | specparam_identifier

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

780 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

module_path_primary ::=

 number

 | identifier

 | module_path_concatenation

 | module_path_multiple_concatenation

 | function_call

 | system_function_call

 | constant_function_call

 | (module_path_mintypmax_expression)
primary ::=

 number

 | hierarchical_identifier

 | hierarchical_identifier [expression] { [expression] }
 | hierarchical_identifier [expression] { [expression] } [range_expression]
 | hierarchical_identifier [range_expression]
 | concatenation

 | multiple_concatenation

 | function_call

 | system_function_call

 | constant_function_call

 | (mintypmax_expression)

A.8.5 Expression left-side values

net_lvalue ::=

 hierarchical_net_identifier { [constant_expression] } [[constant_range_expression]]
 | { net_lvalue { , net_lvalue } }
variable_lvalue ::=

 hierarchical_variable_identifier { [expression] } [[range_expression]]
 | { variable_lvalue { , variable_lvalue } }

A.8.6 Operators

unary_operator ::=

+ | - | ! | ~ | & | ~& | | | ~| | ^ | ~^ | ^~
binary_operator ::=

 + | - | * | / | % | == | != | === | !== | && | || | **
 | < | <= | > | >= | & | | | ^ | ^~ | ~^ | >> | << | >>> | <<<
unary_module_path_operator ::=

! | ~ | & | ~& | | | ~| | ^ | ~^ | ^~
binary_module_path_operator ::=

 == | != | && | || | & | | | ^ | ^~ | ~^

A.8.7 Numbers

number ::=

 decimal_number

 | octal_number

 | binary_number

 | hex_number

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 781
This is an unapproved IEEE Standards Draft, subject to change.

 | real_number

real_number1 ::=

 unsigned_number . unsigned_number

 | unsigned_number [. unsigned_number] exp [sign] unsigned_number

exp ::= e | E
decimal_number ::=

 unsigned_number

 | [size] decimal_base unsigned_number

 | [size] decimal_base x_digit { _ }

 | [size] decimal_base z_digit { _ }

binary_number ::= [size] binary_base binary_value

octal_number ::= [size] octal_base octal_value

hex_number ::= [size] hex_base hex_value

sign ::= + | -
size ::= non_zero_unsigned_number

non_zero_unsigned_number1 ::= non_zero_decimal_digit { _ | decimal_digit}

unsigned_number1 ::= decimal_digit { _ | decimal_digit }

binary_value1 ::= binary_digit { _ | binary_digit }

octal_value1 ::= octal_digit { _ | octal_digit }

hex_value1 ::= hex_digit { _ | hex_digit }

decimal_base1 ::= '[s|S]d | '[s|S]D

binary_base1 ::= '[s|S]b | '[s|S]B

octal_base1 ::= '[s|S]o | '[s|S]O

hex_base1 ::= '[s|S]h | '[s|S]H
non_zero_decimal_digit ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
decimal_digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
binary_digit ::= x_digit | z_digit | 0 | 1
octal_digit ::= x_digit | z_digit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
hex_digit ::=

x_digit | z_digit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
 | a | b | c | d | e | f | A | B | C | D | E | F
x_digit ::= x | X
z_digit ::= z | Z | ?

A.8.8 Strings

string ::= " { Any_ASCII_Characters_except_new_line } "

A.9 General

A.9.1 Attributes

attribute_instance ::= (* attr_spec { , attr_spec } *)
attr_spec ::=

 attr_name = constant_expression

 | attr_name

attr_name ::= identifier

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

782 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

A.9.2 Comments

comment ::=

 one_line_comment

 | block_comment

one_line_comment ::= // comment_text \n

block_comment ::= /* comment_text */
comment_text ::= { Any_ASCII_character }

A.9.3 Identifiers

arrayed_identifier ::=

 simple_arrayed_identifier

 | escaped_arrayed_identifier

block_identifier ::= identifier

cell_identifier ::= identifier

config_identifier ::= identifier

escaped_arrayed_identifier ::= escaped_identifier [range]

escaped_hierarchical_identifier4 ::=

 escaped_hierarchical_branch

 { .simple_hierarchical_branch | .escaped_hierarchical_branch }

escaped_identifier ::= \ {Any_ASCII_character_except_white_space} white_space

event_identifier ::= identifier

function_identifier ::= identifier

gate_instance_identifier ::= arrayed_identifier

generate_block_identifier ::= identifier

genvar_identifier ::= identifier

hierarchical_block_identifier ::= hierarchical_identifier

hierarchical_event_identifier ::= hierarchical_identifier

hierarchical_function_identifier ::= hierarchical_identifier

hierarchical_identifier ::=

 simple_hierarchical_identifier

 | escaped_hierarchical_identifier

hierarchical_net_identifier ::= hierarchical_identifier

hierarchical_parameter_identifier ::= hierarchical_identifier

hierarchical_variable_identifier ::= hierarchical_identifier

hierarchical_task_identifier ::= hierarchical_identifier

identifier ::=

 simple_identifier

 | escaped_identifier

inout_port_identifier ::= identifier

input_port_identifier ::= identifier

instance_identifier ::= identifier

library_identifier ::= identifier

module_identifier ::= identifier

module_instance_identifier ::= arrayed_identifier

net_identifier ::= identifier

output_port_identifier ::= identifier

parameter_identifier ::= identifier

port_identifier ::= identifier

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 783
This is an unapproved IEEE Standards Draft, subject to change.

real_identifier ::= identifier

simple_arrayed_identifier ::= simple_identifier [range]

simple_hierarchical_identifier3 ::=

 simple_hierarchical_branch [.escaped_identifier]

simple_identifier2 ::= [a-zA-Z_] { [a-zA-Z0-9_$] }

specparam_identifier ::= identifier

system_function_identifier5 ::= $[a-zA-Z0-9_$]{ [a-zA-Z0-9_$] }

system_task_identifier5 ::= $[a-zA-Z0-9_$]{ [a-zA-Z0-9_$] }

task_identifier ::= identifier

terminal_identifier ::= identifier

text_macro_identifier ::= simple_identifier

topmodule_identifier ::= identifier

udp_identifier ::= identifier

udp_instance_identifier ::= arrayed_identifier

variable_identifier ::= identifier

A.9.4 Identifier branches

simple_hierarchical_branch3 ::=

 simple_identifier [[unsigned_number]]
 [{ .simple_identifier [[unsigned_number]] }]

escaped_hierarchical_branch4 ::=

 escaped_identifier [[unsigned_number]]
 [{ .escaped_identifier [[unsigned_number]] }]

A.9.5 White space

white_space ::= space | tab | newline | eof6

NOTES

1) Embedded spaces are illegal.

2) A simple_identifier shall start with an alpha or underscore (_) character, shall have at least one

character, and shall not have any spaces.

3) The period (.) in simple_hierarchical_identifier and simple_hierarchical_

branch shall not be preceded or followed by white_space.

4) The period in escaped_hierarchical_identifier and escaped_hierarchical_

branch shall be preceded by white_space, but shall not be followed by white_space.

5) The $ character in a system_function_identifier or system_task_identifier shall not be followed

by white_space. A system_function_identifier or system_task_identifier shall not be escaped.

6) End of file.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

784 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Annex B

(normative)

List of keywords

Keywords are predefined nonescaped identifiers that define Verilog language constructs. An escaped identi-

fier shall not be treated as a keyword.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 785
This is an unapproved IEEE Standards Draft, subject to change.

always
and
assign
automatic
begin
buf
bufif0
bufif1
case
casex
casez
cell
cmos
config
deassign
default
defparam
design
disable
edge
else
end
endcase
endconfig
endfunction
endgenerate
endmodule
endprimitive
endspecify
endtable
endtask
event
for
force
forever
fork
function
generate
genvar
highz0
highz1

if
ifnone
incdir
include
initial
inout
input
instance
integer
join
large
liblist
library
localparam
macromodule
medium
module
nand
negedge
nmos
nor
noshowcancelled
not
notif0
notif1
or
output
parameter
pmos
posedge
primitive
pull0
pull1
pulldown
pullup
pulsestyle_onevent
pulsestyle_ondetect
rcmos
real
realtime
reg

release
repeat
rnmos
rpmos
rtran
rtranif0
rtranif1
scalared
showcancelled
signed
small
specify
specparam
strong0
strong1
supply0
supply1
table
task
time
tran
tranif0
tranif1
tri
tri0
tri1
triand
trior
trireg
unsigned
use
vectored
wait
wand
weak0
weak1
while
wire
wor
xnor
xor

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

786 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Annex C

(informative)

System tasks and functions

The system tasks and functions described in this annex are for informative purposes only and are not part of

the IEEE standard Verilog HDL.

This annex describes system tasks and functions as companions to the system tasks and functions described

in Clause 17 The system tasks and functions described in this annex may not be available in all implementa-

tions of the Verilog HDL. The following system tasks and functions are described in this annex:

The word tool in this annex refers to an implementation of Verilog HDL, typically a logic simulator.

C.1 $countdrivers

Syntax:

$countdrivers (net, [net_is_forced, number_of_01x_drivers, number_of_0_drivers,

 number_of_1_drivers, number_of_x_drivers]);

The $countdrivers system function is provided to count the number of drivers on a specified net so that bus

contention can be identified.

This system function returns a 0 if there is no more than one driver on the net and returns a 1 otherwise

(indicating contention). The specified net shall be a scalar or a bit-select of a vector net. The number of

parameters to the system function may vary according to how much information is desired.

If additional parameters are supplied to the $countdrivers function, each parameter returns the information

described in.

$countdrivers [C.1]

$getpattern [C.2]

$incsave [C.8]

$input [C.3]

$key [C.4]

$list [C.5]

$log [C.6]

$nokey [C.4]

$nolog [C.6]

$reset [C.7]

$reset_count [C.7]

$reset_value [C.7]

$restart [C.8]

$save [C.8]

$scale [C.9]

$scope [C.10]

$showscopes [C.11]

$showvars [C.12]

$sreadmemb [C.13]

$sreadmemh [C.13]

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 787
This is an unapproved IEEE Standards Draft, subject to change.

C.2 $getpattern

Syntax:

$getpattern (mem_element);

The system function $getpattern provides for fast processing of stimulus patterns that have to be propagated

to a large number of scalar inputs. The function reads stimulus patterns that have been loaded into a memory

using the $readmemb or $readmemh system tasks.

Use of this function is limited, however: it may only be used in a continuous assignment statement where the

lefthand side is a concatenation of scalar nets, and the parameter to the system function is a memory element

reference.

Example:

The following example shows how stimuli stored in a file can be read into a memory using $readmemb and

applied to the circuit one pattern at a time using $getpattern.

The memory in_mem is initialized with the stimulus patterns by the $readmemb task. The integer variable

index selects which pattern is being applied to the circuit. The for loop increments the integer variable

index periodically to sequence the patterns.

Table C1—Parameter return value for $countdriver function

Parameter Return value

net_is_forced 1 if net is forced

0 otherwise

number_of_01x_drivers An integer representing the number of

drivers on the net that are in 0, 1, or x

state. This represents the total number

of drivers that are not forced

number_of_0_drivers An integer representing the number of

drivers on the net that are in 0 state

number_of_1_drivers An integer representing the number of

drivers on the net that are in 1 state

number_of_x_drivers An integer representing the number of

drivers on the net that are in x state

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

788 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

C.3 $input

Syntax:

$input ("filename");

The $input system task allows command input text to come from a named file instead of from the terminal.

At the end of the command file, the input is switched back to the terminal.

C.4 $key and $nokey

Syntax:

$key [("filename")] ;
$nokey ;

A key file is created whenever interactive mode is entered for the first time during simulation. The key file

contains all of the text that has been typed in from the standard input. The file also contains information

about asynchronous interrupts.

module top;
parameter in_width=10,
 patterns=200,
 step=20;
reg [1:in_width] in_mem[1:patterns];
integer index;

// declare scalar inputs
wire i1,i2,i3,i4,i5,i6,i7,i8,i9,i10;

// assign patterns to circuit scalar inputs (a new pattern
// is applied to the circuit each time index changes value)
assign {i1,i2,i3,i4,i5,i6,i7,i8,i9,i10} = $getpattern(in_mem[index]);
initial begin

// read stimulus patterns into memory
$readmemb("patt.mem", in_mem);

// step through patterns (note that each assignment
// to index will drive a new pattern onto the circuit
// inputs from the $getpattern system task specified above
for (index = 1; index <= patterns; index = index + 1)

 #step;
end

// instantiate the circuit module - e.g.
mod1 cct (o1,o2,o3,o4,o5, i1,i2,i3,i4,i5,i6,i7,i8,i9,i10);

endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 789
This is an unapproved IEEE Standards Draft, subject to change.

The $nokey and $key system tasks are used to disable and re-enable output to the key file. An optional file

name parameter for $key causes the old key file to be closed, a new file to be created, and output to be

directed to the new file.

C.5 $list

Syntax:

$list [(hierarchical_name)] ;

When invoked without a parameter, $list produces a listing of the module, task, function, or named block

that is defined as the current scope setting. If an optional parameter is supplied, it shall refer to a specific

module, task, function or named block, in which case the specified object is listed.

C.6 $log and $nolog

Syntax:

$log [("filename")] ;
$nolog ;

A log file contains a copy of all the text that is printed to the standard output. The log file may also contain,

at the beginning of the file, the host command that was used to run the tool.

The $nolog and $log system tasks are used to disable and re-enable output to the log file. The $nolog task

disables output to the log file, while the $log task re-enables the output. An optional file name parameter for

$log causes the old file to be closed, a new log file to be created, and output to be directed to the new log file.

C.7 $reset, $reset_count, and $reset_value

Syntax:

$reset [(stop_value [, reset_value , [diagnostics_value]])] ;
$reset_count ;
$reset_value ;

The $reset system task enables a tool to be reset to its “Time 0” state so that processing (e.g., simulation)

can begin again.

The $reset_count system function keeps track of the number of times the tool is reset. The $reset_value
system function returns the value specified by the reset_value parameter argument to the $reset system

task. The $reset_value system function is used to communicate information from before a reset of a tool to

the time 0 state to after the reset.

The following are some of the simulation methods that can be employed with this system task and these sys-

tem functions:

— Determine the force statements a design needs to operate correctly, reset the simulation time to 0,
enter these force statements, and start to simulate again

— Reset the simulation time to 0 and apply new stimuli
— Determine that debug system tasks, such as $monitor and $strobe, are keeping track of the correct

nets or regs, reset the simulation time to 0, and begin simulation again

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

790 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The $reset system task tells a tool to return the processing of the design to its logical state at time 0. When a

tool executes the $reset system task, it takes the following actions to stop the process:

1) Disables all concurrent activity, initiated in either initial or always procedural blocks in the source

description or through interactive mode (disables, for example, all force and assign statements, the

current $monitor system task, and any other active tasks)

2) Cancels all scheduled simulation events

After a simulation tool executes the $reset system task, the simulation is in the following state:

— The simulation time is 0.
— All regs and nets contain their initial values.
— The tool begins to execute the first procedural statements in all initial and always blocks.

The stop_value argument indicates whether interactive mode or processing is entered immediately after

resetting of the tool. A value of 0 or no argument causes interactive mode to be entered after resetting the

tool. A nonzero value passed to $reset causes the tool to begin processing immediately.

The reset_value argument is an integer, which specifies the value that shall be returned by the

$reset_value system function after the tool is reset. All declared integers return to their initial value after

reset, but entering an integer as this argument allows access to what its value was before the reset with the

$reset_value system function. This argument provides a means of communicating information from before

the reset of a tool to after the reset of the tool.

The diagnostic_value specifies the kind of diagnostic messages a tool displays before it resets the

time to 0. Increasing integer values results in increased information. A value of zero results in no diagnostic

message.

C.8 $save, $restart, and $incsave

Three system tasks $save, $restart, and $incsave work in conjunction with one another to save the complete

state of simulation into a permanent file such that the simulation state can be reloaded at a later time and pro-

cessing can continue where it left off.

Syntax:

$save("file_name");
$restart("file_name");
$incsave("incremental_file_name");

All three system tasks take a file name as a parameter. The file name has to be supplied as a string enclosed

in quotation marks.

The $save system task saves the complete state into the host operating system file specified as a parameter.

The $incsave system task saves only what has changed since the last invocation of $save. It is not possible

to do an incremental save on any file other than the one produced by the last $save.

The $restart system task restores a previously saved state from a specified file.

Restarting from an incremental save is similar to restarting from a full save, except that the name of the

incremental save file is specified in the restart command. The full save file that the incremental save file was

based upon shall still be present, as it is required for a successful restart. If the full save file has been changed

in any way since the incremental save was performed, errors will result.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 791
This is an unapproved IEEE Standards Draft, subject to change.

The incremental restart is useful for going back in time. If a full save is performed near the beginning of pro-

cessing, and an incremental save is done at regular intervals, then going back in time is as simple as restart-

ing from the appropriate file.

Example:

C.9 $scale

Syntax:

$scale (hierarchical_name) ;

The $scale function takes a time value from a module with one time unit to be used in a module with a dif-

ferent time unit. The time value is converted from the time unit of one module to the time unit of the module

that invokes $scale.

C.10 $scope

Syntax:

$scope (hierarchical_name) ;

The $scope system task allows a particular level of hierarchy to be specified as the scope for identifying

objects. This task accepts a single parameter argument that shall be the complete hierarchical name of a

module, task, function, or named block. The initial setting of the interactive scope is the first top-level mod-

ule.

C.11 $showscopes

Syntax:

$showscopes [(n)];

module checkpoint;

initial
#500 $save("save.dat"); // full save

always begin // incremental save every 10000 units,
// files are recycled every 40000 units

#100000 $incsave("inc1.dat");
#100000 $incsave("inc2.dat");
#100000 $incsave("inc3.dat");
#100000 $incsave("inc4.dat");

end
endmodule

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

792 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The $showscopes system task produces a complete list of modules, tasks, functions, and named blocks that

are defined at the current scope level. An optional integer parameter can be given to $showscopes. A non-

zero parameter value causes all the modules, tasks, functions, and named blocks in or below the current hier-

archical scope to be listed. No parameter or a zero value results in only objects at the current scope level to

be listed.

C.12 $showvars

Syntax:

$showvars [(list_of_variables)] ;

The $showvars system task produces status information for reg and net variables, both scalar and vector.

When invoked without parameters, $showvars displays the status of all variables in the current scope. When

invoked with a list of variables, $showvars shows only the status of the specified variables. If the list of vari-

ables includes a bit-select or part-select of a reg or net, then the status information for all the bits of that reg

or net are displayed.

C.13 $sreadmemb and $sreadmemh

Syntax:

$sreadmemb (mem_name , start_address , finish_address , string { , string }) ;
$sreadmemh (mem_name , start_address , finish_address , string { , string }) ;

The system tasks $sreadmemb and $sreadmemh load data into memory mem_name from a character

string.

The $sreadmemh and $sreadmemb system tasks take memory data values and addresses as string argu-

ments. The start and finish addresses indicate the bounds for where the data from strings will be stored in the

memory. These strings take the same format as the strings that appear in the input files passed as arguments

to $readmemb and $readmemh.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 793
This is an unapproved IEEE Standards Draft, subject to change.

Annex D

(informative)

Compiler directives

The compiler directives described in this annex are for informative purposes only and are not part of the

IEEE standard Verilog HDL.

This annex describes additional compiler directives as companions to the compiler directives described in

Clause 19. The compiler directives described in this annex may not be available in all implementations of

the Verilog HDL. The following compiler directives are described in this annex:

The word tool in this annex refers to an implementation of Verilog HDL, typically a logic simulator.

D.1 `default_decay_time

The `default_decay_time compiler directive specifies the decay time for the trireg nets that do not have any

decay time specified in the declaration. This compiler directive applies to all of the trireg nets in all the mod-

ules that follow it in the source description. An argument specifying the charge decay time shall be used with

this compiler directive.

Syntax:

`default_decay_time integer_constant | real_constant | infinite

Examples:

Example 1—The following example shows how the default decay time for all trireg nets can be set to 100

time units:

`default_decay_time 100

Example 2—The following example shows how to avoid charge decay on trireg nets:

`default_decay_time infinite

The keyword infinite specifies no charge decay for all the trireg nets that do not have decay time specifica-

tion.

D.2 `default_trireg_strength

The `default_trireg_strength compiler directive specifies the charge strength of trireg nets.

`default_decay_time [D.1]

`default_trireg_strength [D.2]

`delay_mode_distributed [D.3]

`delay_mode_path [D.4]

`delay_mode_unit [D.5]

`delay_mode_zero [D.6]

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

794 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Syntax:

`default_trireg_strength integer_constant

The integer constant shall be between 0 and 250. It indicates the relative strength of the capacitance on the

trireg net.

D.3 `delay_mode_distributed

The `delay_mode_distributed compiler directive specifies the distributed delay mode for all modules that

follow this directive in the source description.

Syntax:

`delay_mode_distributed

This compiler directive shall be used before the declaration of the module whose delay mode is being

controlled.

D.4 `delay_mode_path

The `delay_mode_path compiler directive specifies the path delay mode for all modules that follow this

directive in the source description.

Syntax:

`delay_mode_path

This compiler directive shall be used before the declaration of the module whose delay mode is being

controlled.

D.5 `delay_mode_unit

The `delay_mode_unit compiler directive specifies the unit delay mode for all modules that follow this

directive in the source description.

Syntax:

`delay_mode_unit

This compiler directive shall be used before the declaration of the module whose delay mode is being con-

trolled.

D.6 `delay_mode_zero

The `delay_mode_zero compiler directive specifies the zero-delay mode for all modules that follow this

directive in the source description.

Syntax:

`delay_mode_zero

This compiler directive shall be used before the declaration of the module whose delay mode is being con-

trolled.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 795
This is an unapproved IEEE Standards Draft, subject to change.

Annex E

(normative)

acc_user.h

/***
 * acc_user.h
 *
 * IEEE 1364-2001 Verilog HDL Programming Language Interface (PLI).
 *
 * This file contains the constant definitions, structure definitions, and
 * routine declarations for the Verilog Programming Language Interface ACC
 * access routines.
 *
 **/

#ifndef ACC_USER_H
#define ACC_USER_H

#ifdef __cplusplus
extern "C" {
#endif

/*---*/
/*--------------------------- Portability Help ------------------------------*/
/*---*/
/* Sized variables */
#ifndef PLI_TYPES
#define PLI_TYPES
typedef int PLI_INT32;
typedef unsigned int PLI_UINT32;
typedef short PLI_INT16;
typedef unsigned short PLI_UINT16;
typedef char PLI_BYTE8;
typedef unsigned char PLI_UBYTE8;
#endif

/* export a symbol */
#if WIN32
#ifndef PLI_DLLISPEC
#define PLI_DLLISPEC __declspec(dllimport)
#define ACC_USER_DEFINED_DLLISPEC 1
#endif
#else
#ifndef PLI_DLLISPEC
#define PLI_DLLISPEC
#endif
#endif

/* import a symbol */
#if WIN32
#ifndef PLI_DLLESPEC
#define PLI_DLLESPEC __declspec(dllexport)
#define ACC_USER_DEFINED_DLLESPEC 1
#endif
#else
#ifndef PLI_DLLESPEC
#define PLI_DLLESPEC
#endif
#endif

/* mark a function as external */
#ifndef PLI_EXTERN
#define PLI_EXTERN
#endif

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

796 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

/* mark a variable as external */
#ifndef PLI_VEXTERN
#define PLI_VEXTERN extern
#endif

#ifndef PLI_PROTOTYPES
#define PLI_PROTOTYPES
#define PROTO_PARAMS(params) params
/* object is imported by the application */
#define XXTERN PLI_EXTERN PLI_DLLISPEC
/* object is exported by the application */
#define EETERN PLI_EXTERN PLI_DLLESPEC
#endif

/*
 * The following group of defines exists purely for backwards compatibility
 */
#ifndef PLI_EXTRAS
#define PLI_EXTRAS
#define bool int
#define true 1
#define TRUE 1
#define false 0
#define FALSE 0
#define null 0L
#endif

/*---*/
/*------------------------------- definitions -------------------------------*/
/*---*/

/*----------------------------- general defines -----------------------------*/
typedef PLI_INT32 *HANDLE;
#ifndef VPI_USER_CDS_H
typedef PLI_INT32 *handle;
#endif

/*------------------------------- object types ------------------------------*/
#define accModule 20
#define accScope 21
#define accNet 25
#define accReg 30
#define accRegister accReg
#define accPort 35
#define accTerminal 45
#define accInputTerminal 46
#define accOutputTerminal 47
#define accInoutTerminal 48
#define accCombPrim 140
#define accSeqPrim 142
#define accAndGate 144
#define accNandGate 146
#define accNorGate 148
#define accOrGate 150
#define accXorGate 152
#define accXnorGate 154
#define accBufGate 156
#define accNotGate 158
#define accBufif0Gate 160
#define accBufif1Gate 162
#define accNotif0Gate 164
#define accNotif1Gate 166
#define accNmosGate 168
#define accPmosGate 170
#define accCmosGate 172
#define accRnmosGate 174
#define accRpmosGate 176
#define accRcmosGate 178
#define accRtranGate 180
#define accRtranif0Gate 182
#define accRtranif1Gate 184

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 797
This is an unapproved IEEE Standards Draft, subject to change.

#define accTranGate 186
#define accTranif0Gate 188
#define accTranif1Gate 190
#define accPullupGate 192
#define accPulldownGate 194
#define accIntegerParam 200
#define accIntParam accIntegerParam
#define accRealParam 202
#define accStringParam 204
#define accPath 206
#define accTchk 208
#define accPrimitive 210
#define accBit 212
#define accPortBit 214
#define accNetBit 216
#define accRegBit 218
#define accParameter 220
#define accSpecparam 222
#define accTopModule 224
#define accModuleInstance 226
#define accCellInstance 228
#define accModPath 230
#define accWirePath 234
#define accInterModPath 236
#define accScalarPort 250
#define accBitSelectPort 252
#define accPartSelectPort 254
#define accVectorPort 256
#define accConcatPort 258
#define accWire 260
#define accWand 261
#define accWor 262
#define accTri 263
#define accTriand 264
#define accTrior 265
#define accTri0 266
#define accTri1 267
#define accTrireg 268
#define accSupply0 269
#define accSupply1 270
#define accNamedEvent 280
#define accEventVar accNamedEvent
#define accIntegerVar 281
#define accIntVar 281
#define accRealVar 282
#define accTimeVar 283
#define accScalar 300
#define accVector 302
#define accCollapsedNet 304
#define accExpandedVector 306
#define accUnExpandedVector 307
#define accProtected 308
#define accSetup 366
#define accHold 367
#define accWidth 368
#define accPeriod 369
#define accRecovery 370
#define accSkew 371
#define accNochange 376
#define accNoChange accNochange
#define accSetuphold 377
#define accInput 402
#define accOutput 404
#define accInout 406
#define accMixedIo 407
#define accPositive 408
#define accNegative 410
#define accUnknown 412
#define accPathTerminal 420
#define accPathInput 422
#define accPathOutput 424
#define accDataPath 426

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

798 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

#define accTchkTerminal 428
#define accBitSelect 500
#define accPartSelect 502
#define accTask 504
#define accFunction 506
#define accStatement 508
#define accTaskCall 510
#define accFunctionCall 512
#define accSystemTask 514
#define accSystemFunction 516
#define accSystemRealFunction 518
#define accUserTask 520
#define accUserFunction 522
#define accUserRealFunction 524
#define accNamedBeginStat 560
#define accNamedForkStat 564
#define accConstant 600
#define accConcat 610
#define accOperator 620
#define accMinTypMax 696
#define accModPathHasIfnone 715

/*------------------ parameter values for acc_configure() -------------------*/
#define accPathDelayCount 1
#define accPathDelimStr 2
#define accDisplayErrors 3
#define accDefaultAttr0 4
#define accToHiZDelay 5
#define accEnableArgs 6
#define accDisplayWarnings 8
#define accDevelopmentVersion 11
#define accMapToMipd 17
#define accMinTypMaxDelays 19

/*------------ edge information used by acc_handle_tchk(), etc. ------------*/
#define accNoedge 0
#define accNoEdge 0
#define accEdge01 1
#define accEdge10 2
#define accEdge0x 4
#define accEdgex1 8
#define accEdge1x 16
#define accEdgex0 32
#define accPosedge 13
#define accPosEdge accPosedge
#define accNegedge 50
#define accNegEdge accNegedge

/*------------------------------- delay modes -------------------------------*/
#define accDelayModeNone 0
#define accDelayModePath 1
#define accDelayModeDistrib 2
#define accDelayModeUnit 3
#define accDelayModeZero 4
#define accDelayModeMTM 5

/*------------ values for type field in t_setval_delay structure ------------*/
#define accNoDelay 0
#define accInertialDelay 1
#define accTransportDelay 2
#define accPureTransportDelay 3
#define accForceFlag 4
#define accReleaseFlag 5
#define accAssignFlag 6
#define accDeassignFlag 7

/*------------ values for type field in t_setval_value structure ------------*/
#define accBinStrVal 1
#define accOctStrVal 2
#define accDecStrVal 3
#define accHexStrVal 4
#define accScalarVal 5

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 799
This is an unapproved IEEE Standards Draft, subject to change.

#define accIntVal 6
#define accRealVal 7
#define accStringVal 8
#define accVectorVal 10

/*------------------------------ scalar values ------------------------------*/
#define acc0 0
#define acc1 1
#define accX 2
#define accZ 3

/*---------------------------- VCL scalar values ----------------------------*/
#define vcl0 acc0
#define vcl1 acc1
#define vclX accX
#define vclx vclX
#define vclZ accZ
#define vclz vclZ

/*----------- values for vc_reason field in t_vc_record structure -----------*/
#define logic_value_change 1
#define strength_value_change 2
#define real_value_change 3
#define vector_value_change 4
#define event_value_change 5
#define integer_value_change 6
#define time_value_change 7
#define sregister_value_change 8
#define vregister_value_change 9
#define realtime_value_change 10

/*--------------------------- VCL strength values ---------------------------*/
#define vclSupply 7
#define vclStrong 6
#define vclPull 5
#define vclLarge 4
#define vclWeak 3
#define vclMedium 2
#define vclSmall 1
#define vclHighZ 0

/*----------------------- flags used with acc_vcl_add -----------------------*/
#define vcl_verilog_logic 2
#define VCL_VERILOG_LOGIC vcl_verilog_logic
#define vcl_verilog_strength 3
#define VCL_VERILOG_STRENGTH vcl_verilog_strength

/*---------------------- flags used with acc_vcl_delete ---------------------*/
#define vcl_verilog vcl_verilog_logic
#define VCL_VERILOG vcl_verilog

/*---------- values for the type field in the t_acc_time structure --------- */
#define accTime 1
#define accSimTime 2
#define accRealTime 3

/*------------------------------ product types ------------------------------*/
#define accSimulator 1
#define accTimingAnalyzer 2
#define accFaultSimulator 3
#define accOther 4

/*---*/
/*-------------------------- structure definitions --------------------------*/
/*---*/

typedef PLI_INT32 (*consumer_function)();

/*----------------- data structure used with acc_set_value() ----------------*/

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

800 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

typedef struct t_acc_time
{
 PLI_INT32 type;
 PLI_INT32 low,
 high;
 double real;
} s_acc_time, *p_acc_time;

/*----------------- data structure used with acc_set_value() ----------------*/
typedef struct t_setval_delay
{
 s_acc_time time;
 PLI_INT32 model;
} s_setval_delay, *p_setval_delay;

/*--------------------- data structure of vector values ---------------------*/
typedef struct t_acc_vecval
{
 PLI_INT32 aval;
 PLI_INT32 bval;
} s_acc_vecval, *p_acc_vecval;

/*------ data structure used with acc_set_value() and acc_fetch_value() -----*/
typedef struct t_setval_value
{
 PLI_INT32 format;
 union
 {
 PLI_BYTE8 *str;
 PLI_INT32 scalar;
 PLI_INT32 integer;
 double real;
 p_acc_vecval vector;
 } value;
} s_setval_value, *p_setval_value, s_acc_value, *p_acc_value;

/*----------------------- structure for VCL strengths -----------------------*/
typedef struct t_strengths
{
 PLI_UBYTE8 logic_value;
 PLI_UBYTE8 strength1;
 PLI_UBYTE8 strength2;
} s_strengths, *p_strengths;

/*--------------- structure passed to callback routine for VCL --------------*/
typedef struct t_vc_record
{
 PLI_INT32 vc_reason;
 PLI_INT32 vc_hightime;
 PLI_INT32 vc_lowtime;
 PLI_BYTE8 *user_data;
 union
 {
 PLI_UBYTE8 logic_value;
 double real_value;
 handle vector_handle;
 s_strengths strengths_s;
 } out_value;
} s_vc_record, *p_vc_record;

/*------------- structure used with acc_fetch_location() routine ------------*/
typedef struct t_location
{
 PLI_INT32 line_no;
 PLI_BYTE8 *filename;
} s_location, *p_location;

/*---------- structure used with acc_fetch_timescale_info() routine ---------*/
typedef struct t_timescale_info

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 801
This is an unapproved IEEE Standards Draft, subject to change.

{
 PLI_INT16 unit;
 PLI_INT16 precision;
} s_timescale_info, *p_timescale_info;

/*---*/
/*-------------------------- routine declarations ---------------------------*/
/*---*/

XXTERN PLI_INT32 acc_append_delays PROTO_PARAMS((handle object, ...));
XXTERN PLI_INT32 acc_append_pulsere PROTO_PARAMS((handle object, double val1r,
double val1x, ...));
XXTERN void acc_close PROTO_PARAMS((void));
XXTERN handle *acc_collect PROTO_PARAMS((handle (*p_next_routine)(), handle
scope_object, PLI_INT32 *aof_count));
XXTERN PLI_INT32 acc_compare_handles PROTO_PARAMS((handle h1, handle h2));
XXTERN PLI_INT32 acc_configure PROTO_PARAMS((PLI_INT32 item, PLI_BYTE8
*value));
XXTERN PLI_INT32 acc_count PROTO_PARAMS((handle (*next_func)(), handle
object_handle));
XXTERN PLI_INT32 acc_fetch_argc PROTO_PARAMS((void));
XXTERN PLI_BYTE8 **acc_fetch_argv PROTO_PARAMS((void));
XXTERN double acc_fetch_attribute PROTO_PARAMS((handle object, ...));
XXTERN PLI_INT32 acc_fetch_attribute_int PROTO_PARAMS((handle object, ...));
XXTERN PLI_BYTE8 *acc_fetch_attribute_str PROTO_PARAMS((handle object, ...));
XXTERN PLI_BYTE8 *acc_fetch_defname PROTO_PARAMS((handle object_handle));
XXTERN PLI_INT32 acc_fetch_delay_mode PROTO_PARAMS((handle object_p));
XXTERN PLI_INT32 acc_fetch_delays PROTO_PARAMS((handle object, ...));
XXTERN PLI_INT32 acc_fetch_direction PROTO_PARAMS((handle object_handle));
XXTERN PLI_INT32 acc_fetch_edge PROTO_PARAMS((handle acc_obj));
XXTERN PLI_BYTE8 *acc_fetch_fullname PROTO_PARAMS((handle object_handle));
XXTERN PLI_INT32 acc_fetch_fulltype PROTO_PARAMS((handle object_h));
XXTERN PLI_INT32 acc_fetch_index PROTO_PARAMS((handle object_handle));
XXTERN double acc_fetch_itfarg PROTO_PARAMS((PLI_INT32 n, handle tfinst));
XXTERN PLI_INT32 acc_fetch_itfarg_int PROTO_PARAMS((PLI_INT32 n, handle
tfinst));
XXTERN PLI_BYTE8 *acc_fetch_itfarg_str PROTO_PARAMS((PLI_INT32 n, handle
tfinst));
XXTERN PLI_INT32 acc_fetch_location PROTO_PARAMS((p_location location_p,
handle object));
XXTERN PLI_BYTE8 *acc_fetch_name PROTO_PARAMS((handle object_handle));
XXTERN PLI_INT32 acc_fetch_paramtype PROTO_PARAMS((handle param_p));
XXTERN double acc_fetch_paramval PROTO_PARAMS((handle param));
XXTERN PLI_INT32 acc_fetch_polarity PROTO_PARAMS((handle path));
XXTERN PLI_INT32 acc_fetch_precision PROTO_PARAMS((void));
XXTERN PLI_INT32 acc_fetch_pulsere PROTO_PARAMS((handle path_p, double *val1r,
double *val1e, ...));
XXTERN PLI_INT32 acc_fetch_range PROTO_PARAMS((handle node, PLI_INT32 *msb,
PLI_INT32 *lsb));
XXTERN PLI_INT32 acc_fetch_size PROTO_PARAMS((handle obj_h));
XXTERN double acc_fetch_tfarg PROTO_PARAMS((PLI_INT32 n));
XXTERN PLI_INT32 acc_fetch_tfarg_int PROTO_PARAMS((PLI_INT32 n));
XXTERN PLI_BYTE8 *acc_fetch_tfarg_str PROTO_PARAMS((PLI_INT32 n));
XXTERN void acc_fetch_timescale_info PROTO_PARAMS((handle obj,
p_timescale_info aof_timescale_info));
XXTERN PLI_INT32 acc_fetch_type PROTO_PARAMS((handle object_handle));
XXTERN PLI_BYTE8 *acc_fetch_type_str PROTO_PARAMS((PLI_INT32 type));
XXTERN PLI_BYTE8 *acc_fetch_value PROTO_PARAMS((handle object_handle, PLI_BYTE8
*format_str, p_acc_value acc_value_p));
XXTERN void acc_free PROTO_PARAMS((handle *array_ptr));
XXTERN handle acc_handle_by_name PROTO_PARAMS((PLI_BYTE8 *inst_name, handle
scope_p));
XXTERN handle acc_handle_condition PROTO_PARAMS((handle obj));
XXTERN handle acc_handle_conn PROTO_PARAMS((handle term_p));
XXTERN handle acc_handle_datapath PROTO_PARAMS((handle path));
XXTERN handle acc_handle_hiconn PROTO_PARAMS((handle port_ref));
XXTERN handle acc_handle_interactive_scope PROTO_PARAMS((void));
XXTERN handle acc_handle_itfarg PROTO_PARAMS((PLI_INT32 n, handle tfinst));
XXTERN handle acc_handle_loconn PROTO_PARAMS((handle port_ref));
XXTERN handle acc_handle_modpath PROTO_PARAMS((handle mod_p, PLI_BYTE8
*pathin_name, PLI_BYTE8 *pathout_name, ...));

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

802 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

XXTERN handle acc_handle_notifier PROTO_PARAMS((handle tchk));
XXTERN handle acc_handle_object PROTO_PARAMS((PLI_BYTE8 *inst_name, ...));
XXTERN handle acc_handle_parent PROTO_PARAMS((handle object_p));
XXTERN handle acc_handle_path PROTO_PARAMS((handle source, handle
destination));
XXTERN handle acc_handle_pathin PROTO_PARAMS((handle path_p));
XXTERN handle acc_handle_pathout PROTO_PARAMS((handle path_p));
XXTERN handle acc_handle_port PROTO_PARAMS((handle mod_handle, PLI_INT32
port_num, ...));
XXTERN handle acc_handle_scope PROTO_PARAMS((handle object));
XXTERN handle acc_handle_simulated_net PROTO_PARAMS((handle net_h));
XXTERN handle acc_handle_tchk PROTO_PARAMS((handle mod_p, PLI_INT32
tchk_type, PLI_BYTE8 *arg1_conn_name, PLI_INT32 arg1_edgetype, ...));
XXTERN handle acc_handle_tchkarg1 PROTO_PARAMS((handle tchk));
XXTERN handle acc_handle_tchkarg2 PROTO_PARAMS((handle tchk));
XXTERN handle acc_handle_terminal PROTO_PARAMS((handle gate_handle,
PLI_INT32 terminal_index));
XXTERN handle acc_handle_tfarg PROTO_PARAMS((PLI_INT32 n));
XXTERN handle acc_handle_tfinst PROTO_PARAMS((void));
XXTERN PLI_INT32 acc_initialize PROTO_PARAMS((void));
XXTERN handle acc_next PROTO_PARAMS((PLI_INT32 *type_list, handle h_scope,
handle h_object));
XXTERN handle acc_next_bit PROTO_PARAMS ((handle vector, handle bit));
XXTERN handle acc_next_cell PROTO_PARAMS((handle scope, handle cell));
XXTERN handle acc_next_cell_load PROTO_PARAMS((handle net_handle, handle
load));
XXTERN handle acc_next_child PROTO_PARAMS((handle mod_handle, handle
child));
XXTERN handle acc_next_driver PROTO_PARAMS((handle net, handle driver));
XXTERN handle acc_next_hiconn PROTO_PARAMS((handle port, handle hiconn));
XXTERN handle acc_next_input PROTO_PARAMS((handle path, handle pathin));
XXTERN handle acc_next_load PROTO_PARAMS((handle net, handle load));
XXTERN handle acc_next_loconn PROTO_PARAMS((handle port, handle loconn));
XXTERN handle acc_next_modpath PROTO_PARAMS((handle mod_p, handle path));
XXTERN handle acc_next_net PROTO_PARAMS((handle mod_handle, handle net));
XXTERN handle acc_next_output PROTO_PARAMS((handle path, handle pathout));
XXTERN handle acc_next_parameter PROTO_PARAMS((handle module_p, handle
param));
XXTERN handle acc_next_port PROTO_PARAMS((handle ref_obj_p, handle port));
XXTERN handle acc_next_portout PROTO_PARAMS((handle mod_p, handle port));
XXTERN handle acc_next_primitive PROTO_PARAMS((handle mod_handle, handle
prim));
XXTERN handle acc_next_scope PROTO_PARAMS((handle ref_scope_p, handle
scope));
XXTERN handle acc_next_specparam PROTO_PARAMS((handle module_p, handle
sparam));
XXTERN handle acc_next_tchk PROTO_PARAMS((handle mod_p, handle tchk));
XXTERN handle acc_next_terminal PROTO_PARAMS((handle gate_handle, handle
term));
XXTERN handle acc_next_topmod PROTO_PARAMS((handle topmod));
XXTERN PLI_INT32 acc_object_in_typelist PROTO_PARAMS((handle object, PLI_INT32
*type_list));
XXTERN PLI_INT32 acc_object_of_type PROTO_PARAMS((handle object, PLI_INT32
type));
XXTERN PLI_INT32 acc_product_type PROTO_PARAMS((void));
XXTERN PLI_BYTE8 *acc_product_version PROTO_PARAMS((void));
XXTERN PLI_INT32 acc_release_object PROTO_PARAMS((handle obj));
XXTERN PLI_INT32 acc_replace_delays PROTO_PARAMS((handle object, ...));
XXTERN PLI_INT32 acc_replace_pulsere PROTO_PARAMS((handle object, double
val1r, double val1x, ...));
XXTERN void acc_reset_buffer PROTO_PARAMS((void));
XXTERN PLI_INT32 acc_set_interactive_scope PROTO_PARAMS((handle scope,
PLI_INT32 callback_flag));
XXTERN PLI_INT32 acc_set_pulsere PROTO_PARAMS((handle path_p, double val1r,
double val1e));
XXTERN PLI_BYTE8 *acc_set_scope PROTO_PARAMS((handle object, ...));
XXTERN PLI_INT32 acc_set_value PROTO_PARAMS((handle obj, p_setval_value
setval_p, p_setval_delay delay_p));
XXTERN void acc_vcl_add PROTO_PARAMS((handle object_p, PLI_INT32
(*consumer)(p_vc_record), PLI_BYTE8 *user_data, PLI_INT32 vcl_flags));
XXTERN void acc_vcl_delete PROTO_PARAMS((handle object_p, PLI_INT32
(*consumer)(p_vc_record), PLI_BYTE8 *user_data, PLI_INT32 vcl_flags));

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 803
This is an unapproved IEEE Standards Draft, subject to change.

XXTERN PLI_BYTE8 *acc_version PROTO_PARAMS((void));

/*---*/
/*----------------------- global variable definitions -----------------------*/
/*---*/

PLI_VEXTERN PLI_DLLISPEC PLI_INT32 acc_error_flag;

/*---*/
/*---------------------------- macro definitions ----------------------------*/
/*---*/
#define acc_handle_calling_mod_m acc_handle_parent((handle)tf_getinstance())

#undef PLI_EXTERN
#undef PLI_VEXTERN

#ifdef ACC_USER_DEFINED_DLLISPEC
#undef ACC_USER_DEFINED_DLLISPEC
#undef PLI_DLLISPEC
#endif
#ifdef ACC_USER_DEFINED_DLLESPEC
#undef ACC_USER_DEFINED_DLLESPEC
#undef PLI_DLLESPEC
#endif

#ifdef PLI_PROTOTYPES
#undef PLI_PROTOTYPES
#undef PROTO_PARAMS
#undef XXTERN
#undef EETERN
#endif

#ifdef __cplusplus
}
#endif

#endif /* ACC_USER_H */

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

804 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Annex F

(normative)

veriuser.h

/***
 * veriuser.h
 *
 * IEEE 1364-2001 Verilog HDL Programming Language Interface (PLI).
 *
 * This file contains the constant definitions, structure definitions, and
 * routine declarations for the Verilog Programming Language Interface TF
 * task/function routines.
 *
 **/

#ifndef VERIUSER_H
#define VERIUSER_H

#ifdef __cplusplus
extern "C" {
#endif

/*---*/
/*--------------------------- Portability Help ------------------------------*/
/*---*/
/* Sized variables */
#ifndef PLI_TYPES
#define PLI_TYPES
typedef int PLI_INT32;
typedef unsigned int PLI_UINT32;
typedef short PLI_INT16;
typedef unsigned short PLI_UINT16;
typedef char PLI_BYTE8;
typedef unsigned char PLI_UBYTE8;
#endif

/* export a symbol */
#if WIN32
#ifndef PLI_DLLISPEC
#define PLI_DLLISPEC __declspec(dllimport)
#define VERIUSER_DEFINED_DLLISPEC 1
#endif
#else
#ifndef PLI_DLLISPEC
#define PLI_DLLISPEC
#endif
#endif

/* import a symbol */
#if WIN32
#ifndef PLI_DLLESPEC
#define PLI_DLLESPEC __declspec(dllexport)
#define VERIUSER_DEFINED_DLLESPEC 1
#endif
#else
#ifndef PLI_DLLESPEC
#define PLI_DLLESPEC
#endif
#endif

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 805
This is an unapproved IEEE Standards Draft, subject to change.

/* mark a function as external */
#ifndef PLI_EXTERN
#define PLI_EXTERN
#endif

/* mark a variable as external */
#ifndef PLI_VEXTERN
#define PLI_VEXTERN extern
#endif

#ifndef PLI_PROTOTYPES
#define PLI_PROTOTYPES
#define PROTO_PARAMS(params) params
/* object is defined imported by the application */
#define XXTERN PLI_EXTERN PLI_DLLISPEC
/* object is exported by the application */
#define EETERN PLI_EXTERN PLI_DLLESPEC
#endif

/*
 * The following group of defines exists purely for backwards compatibility
 */
#ifndef PLI_EXTRAS
#define PLI_EXTRAS
#define bool int
#define true 1
#define TRUE 1
#define false 0
#define FALSE 0
#define null 0L
#endif

/*---*/
/*------------------------------- definitions -------------------------------*/
/*---*/

/*---------------------- defines for error interception ---------------------*/

#define ERR_MESSAGE 1
#define ERR_WARNING 2
#define ERR_ERROR 3
#define ERR_INTERNAL 4
#define ERR_SYSTEM 5

/*-------------- values for reason parameter to misctf routines -------------*/

#define reason_checktf 1
#define REASON_CHECKTF reason_checktf
#define reason_sizetf 2
#define REASON_SIZETF reason_sizetf
#define reason_calltf 3
#define REASON_CALLTF reason_calltf
#define reason_save 4
#define REASON_SAVE reason_save
#define reason_restart 5
#define REASON_RESTART reason_restart
#define reason_disable 6
#define REASON_DISABLE reason_disable
#define reason_paramvc 7
#define REASON_PARAMVC reason_paramvc
#define reason_synch 8
#define REASON_SYNCH reason_synch

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

806 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

#define reason_finish 9
#define REASON_FINISH reason_finish
#define reason_reactivate 10
#define REASON_REACTIVATE reason_reactivate
#define reason_rosynch 11
#define REASON_ROSYNCH reason_rosynch
#define reason_paramdrc 15
#define REASON_PARAMDRC reason_paramdrc
#define reason_endofcompile 16
#define REASON_ENDOFCOMPILE reason_endofcompile
#define reason_scope 17
#define REASON_SCOPE reason_scope
#define reason_interactive 18
#define REASON_INTERACTIVE reason_interactive
#define reason_reset 19
#define REASON_RESET reason_reset
#define reason_endofreset 20
#define REASON_ENDOFRESET reason_endofreset
#define reason_force 21
#define REASON_FORCE reason_force
#define reason_release 22
#define REASON_RELEASE reason_release
#define reason_startofsave 27
#define reason_startofrestart 28
#define REASON_MAX 28

/*-- types used by tf_typep() and expr_type field in tf_exprinfo structure --*/
#define tf_nullparam 0
#define TF_NULLPARAM tf_nullparam
#define tf_string 1
#define TF_STRING tf_string
#define tf_readonly 10
#define TF_READONLY tf_readonly
#define tf_readwrite 11
#define TF_READWRITE tf_readwrite
#define tf_rwbitselect 12
#define TF_RWBITSELECT tf_rwbitselect
#define tf_rwpartselect 13
#define TF_RWPARTSELECT tf_rwpartselect
#define tf_rwmemselect 14
#define TF_RWMEMSELECT tf_rwmemselect
#define tf_readonlyreal 15
#define TF_READONLYREAL tf_readonlyreal
#define tf_readwritereal 16
#define TF_READWRITEREAL tf_readwritereal

/*---------- types used by node_type field in tf_nodeinfo structure ---------*/
#define tf_null_node 100
#define TF_NULL_NODE tf_null_node
#define tf_reg_node 101
#define TF_REG_NODE tf_reg_node
#define tf_integer_node 102
#define TF_INTEGER_NODE tf_integer_node
#define tf_time_node 103
#define TF_TIME_NODE tf_time_node
#define tf_netvector_node 104
#define TF_NETVECTOR_NODE tf_netvector_node
#define tf_netscalar_node 105
#define TF_NETSCALAR_NODE tf_netscalar_node
#define tf_memory_node 106
#define TF_MEMORY_NODE tf_memory_node
#define tf_real_node 107
#define TF_REAL_NODE tf_real_node

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 807
This is an unapproved IEEE Standards Draft, subject to change.

/*---*/
/*-------------------------- structure definitions --------------------------*/
/*---*/

/*----- structure used with tf_exprinfo() to get expression information -----*/
typedef struct t_tfexprinfo
{
 PLI_INT16 expr_type;
 PLI_INT16 padding;
 struct t_vecval *expr_value_p;
 double real_value;
 PLI_BYTE8 *expr_string;
 PLI_INT32 expr_ngroups;
 PLI_INT32 expr_vec_size;
 PLI_INT32 expr_sign;
 PLI_INT32 expr_lhs_select;
 PLI_INT32 expr_rhs_select;
} s_tfexprinfo, *p_tfexprinfo;

/*------- structure for use with tf_nodeinfo() to get node information ------*/
typedef struct t_tfnodeinfo
{
 PLI_INT16 node_type;
 PLI_INT16 padding;
 union
 {
 struct t_vecval *vecval_p;
 struct t_strengthval *strengthval_p;
 PLI_BYTE8 *memoryval_p;
 double *real_val_p;
 } node_value;
 PLI_BYTE8 *node_symbol;
 PLI_INT32 node_ngroups;
 PLI_INT32 node_vec_size;
 PLI_INT32 node_sign;
 PLI_INT32 node_ms_index;
 PLI_INT32 node_ls_index;
 PLI_INT32 node_mem_size;
 PLI_INT32 node_lhs_element;
 PLI_INT32 node_rhs_element;
 PLI_INT32 *node_handle;
} s_tfnodeinfo, *p_tfnodeinfo;

/*--------------------- data structure of vector values ---------------------*/
typedef struct t_vecval
{
 PLI_INT32 avalbits;
 PLI_INT32 bvalbits;
} s_vecval, *p_vecval;

/*--------------- data structure of scalar net strength values --------------*/
typedef struct t_strengthval
{
 PLI_INT32 strength0;
 PLI_INT32 strength1;
} s_strengthval, *p_strengthval;

/*---*/
/*--------------------------- routine definitions ---------------------------*/
/*---*/

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

808 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

XXTERN void io_mcdprintf PROTO_PARAMS((PLI_INT32 mcd, PLI_BYTE8
*format, ...));
XXTERN void io_printf PROTO_PARAMS((PLI_BYTE8 *format, ...));
XXTERN PLI_BYTE8 *mc_scan_plusargs PROTO_PARAMS((PLI_BYTE8 *plusarg));
XXTERN PLI_INT32 tf_add_long PROTO_PARAMS((PLI_INT32 *aof_lowtime1,
PLI_INT32 *aof_hightime1, PLI_INT32 lowtime2, PLI_INT32 hightime2));
XXTERN PLI_INT32 tf_asynchoff PROTO_PARAMS((void));
XXTERN PLI_INT32 tf_asynchon PROTO_PARAMS((void));
XXTERN PLI_INT32 tf_clearalldelays PROTO_PARAMS((void));
XXTERN PLI_INT32 tf_compare_long PROTO_PARAMS((PLI_UINT32 low1, PLI_UINT32
high1, PLI_UINT32 low2, PLI_UINT32 high2));
XXTERN PLI_INT32 tf_copypvc_flag PROTO_PARAMS((PLI_INT32 nparam));
XXTERN void tf_divide_long PROTO_PARAMS((PLI_INT32 *aof_low1,
PLI_INT32 *aof_high1, PLI_INT32 low2, PLI_INT32 high2));
XXTERN PLI_INT32 tf_dofinish PROTO_PARAMS((void));
XXTERN PLI_INT32 tf_dostop PROTO_PARAMS((void));
XXTERN PLI_INT32 tf_error PROTO_PARAMS((PLI_BYTE8 *fmt, ...));
XXTERN PLI_INT32 tf_evaluatep PROTO_PARAMS((PLI_INT32 pnum));
XXTERN p_tfexprinfo tf_exprinfo PROTO_PARAMS((PLI_INT32 pnum, p_tfexprinfo
pinfo));
XXTERN PLI_BYTE8 *tf_getcstringp PROTO_PARAMS((PLI_INT32 nparam));
XXTERN PLI_BYTE8 *tf_getinstance PROTO_PARAMS((void));
XXTERN PLI_INT32 tf_getlongp PROTO_PARAMS((PLI_INT32 *aof_highvalue,
PLI_INT32 pnum));
XXTERN PLI_INT32 tf_getlongtime PROTO_PARAMS((PLI_INT32 *aof_hightime));
XXTERN PLI_INT32 tf_getnextlongtime PROTO_PARAMS((PLI_INT32 *aof_lowtime,
PLI_INT32 *aof_hightime));
XXTERN PLI_INT32 tf_getp PROTO_PARAMS((PLI_INT32 pnum));
XXTERN PLI_INT32 tf_getpchange PROTO_PARAMS((PLI_INT32 nparam));
XXTERN double tf_getrealp PROTO_PARAMS((PLI_INT32 pnum));
XXTERN double tf_getrealtime PROTO_PARAMS((void));
XXTERN PLI_INT32 tf_gettime PROTO_PARAMS((void));
XXTERN PLI_INT32 tf_gettimeprecision PROTO_PARAMS((void));
XXTERN PLI_INT32 tf_gettimeunit PROTO_PARAMS((void));
XXTERN PLI_BYTE8 *tf_getworkarea PROTO_PARAMS((void));
XXTERN PLI_INT32 tf_iasynchoff PROTO_PARAMS((PLI_BYTE8 *inst));
XXTERN PLI_INT32 tf_iasynchon PROTO_PARAMS((PLI_BYTE8 *inst));
XXTERN PLI_INT32 tf_iclearalldelays PROTO_PARAMS((PLI_BYTE8 *inst));
XXTERN PLI_INT32 tf_icopypvc_flag PROTO_PARAMS((PLI_INT32 nparam,
PLI_BYTE8 *inst));
XXTERN PLI_INT32 tf_ievaluatep PROTO_PARAMS((PLI_INT32 pnum, PLI_BYTE8
*inst));
XXTERN p_tfexprinfo tf_iexprinfo PROTO_PARAMS((PLI_INT32 pnum, p_tfexprinfo
pinfo, PLI_BYTE8 *inst));
XXTERN PLI_BYTE8 *tf_igetcstringp PROTO_PARAMS((PLI_INT32 nparam, PLI_BYTE8
*inst));
XXTERN PLI_INT32 tf_igetlongp PROTO_PARAMS((PLI_INT32 *aof_highvalue,
PLI_INT32 pnum, PLI_BYTE8 *inst));
XXTERN PLI_INT32 tf_igetlongtime PROTO_PARAMS((PLI_INT32 *aof_hightime,
PLI_BYTE8 *inst));
XXTERN PLI_INT32 tf_igetp PROTO_PARAMS((PLI_INT32 pnum, PLI_BYTE8 *inst));
XXTERN PLI_INT32 tf_igetpchange PROTO_PARAMS((PLI_INT32 nparam, PLI_BYTE8
*inst));
XXTERN double tf_igetrealp PROTO_PARAMS((PLI_INT32 pnum, PLI_BYTE8
*inst));
XXTERN double tf_igetrealtime PROTO_PARAMS((PLI_BYTE8 *inst));
XXTERN PLI_INT32 tf_igettime PROTO_PARAMS((PLI_BYTE8 *inst));
XXTERN PLI_INT32 tf_igettimeprecision PROTO_PARAMS((PLI_BYTE8 *inst));
XXTERN PLI_INT32 tf_igettimeunit PROTO_PARAMS((PLI_BYTE8 *inst));
XXTERN PLI_BYTE8 *tf_igetworkarea PROTO_PARAMS((PLI_BYTE8 *inst));
XXTERN PLI_BYTE8 *tf_imipname PROTO_PARAMS((PLI_BYTE8 *cell));
XXTERN PLI_INT32 tf_imovepvc_flag PROTO_PARAMS((PLI_INT32 nparam,
PLI_BYTE8 *inst));

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 809
This is an unapproved IEEE Standards Draft, subject to change.

XXTERN p_tfnodeinfo tf_inodeinfo PROTO_PARAMS((PLI_INT32 pnum, p_tfnodeinfo
pinfo, PLI_BYTE8 *inst));
XXTERN PLI_INT32 tf_inump PROTO_PARAMS((PLI_BYTE8 *inst));
XXTERN PLI_INT32 tf_ipropagatep PROTO_PARAMS((PLI_INT32 pnum, PLI_BYTE8
*inst));
XXTERN PLI_INT32 tf_iputlongp PROTO_PARAMS((PLI_INT32 pnum, PLI_INT32
lowvalue, PLI_INT32 highvalue, PLI_BYTE8 *inst));
XXTERN PLI_INT32 tf_iputp PROTO_PARAMS((PLI_INT32 pnum, PLI_INT32 value,
PLI_BYTE8 *inst));
XXTERN PLI_INT32 tf_iputrealp PROTO_PARAMS((PLI_INT32 pnum, double value,
PLI_BYTE8 *inst));
XXTERN PLI_INT32 tf_irosynchronize PROTO_PARAMS((PLI_BYTE8 *inst));
XXTERN PLI_INT32 tf_isetdelay PROTO_PARAMS((PLI_INT32 delay, PLI_BYTE8
*inst));
XXTERN PLI_INT32 tf_isetlongdelay PROTO_PARAMS((PLI_INT32 lowdelay,
PLI_INT32 highdelay, PLI_BYTE8 *inst));
XXTERN PLI_INT32 tf_isetrealdelay PROTO_PARAMS((double realdelay,
PLI_BYTE8 *inst));
XXTERN PLI_INT32 tf_isetworkarea PROTO_PARAMS((PLI_BYTE8 *workarea,
PLI_BYTE8 *inst));
XXTERN PLI_INT32 tf_isizep PROTO_PARAMS((PLI_INT32 pnum, PLI_BYTE8
*inst));
XXTERN PLI_BYTE8 *tf_ispname PROTO_PARAMS((PLI_BYTE8 *cell));
XXTERN PLI_INT32 tf_istrdelputp PROTO_PARAMS((PLI_INT32 nparam, PLI_INT32
bitlength, PLI_INT32 format_char, PLI_BYTE8 *value_p, PLI_INT32 delay, PLI_INT32
delaytype, PLI_BYTE8 *inst));
XXTERN PLI_BYTE8 *tf_istrgetp PROTO_PARAMS((PLI_INT32 pnum, PLI_INT32
format_char, PLI_BYTE8 *inst));
XXTERN PLI_INT32 tf_istrlongdelputp PROTO_PARAMS((PLI_INT32 nparam,
PLI_INT32 bitlength, PLI_INT32 format_char, PLI_BYTE8 *value_p, PLI_INT32
lowdelay, PLI_INT32 highdelay, PLI_INT32 delaytype, PLI_BYTE8 *inst));
XXTERN PLI_INT32 tf_istrrealdelputp PROTO_PARAMS((PLI_INT32 nparam,
PLI_INT32 bitlength, PLI_INT32 format_char, PLI_BYTE8 *value_p, double
realdelay, PLI_INT32 delaytype, PLI_BYTE8 *inst));
XXTERN PLI_INT32 tf_isynchronize PROTO_PARAMS((PLI_BYTE8 *inst));
XXTERN PLI_INT32 tf_itestpvc_flag PROTO_PARAMS((PLI_INT32 nparam,
PLI_BYTE8 *inst));
XXTERN PLI_INT32 tf_itypep PROTO_PARAMS((PLI_INT32 pnum, PLI_BYTE8
*inst));
XXTERN void tf_long_to_real PROTO_PARAMS((PLI_INT32 int_lo, PLI_INT32
int_hi, double *aof_real));
XXTERN PLI_BYTE8 *tf_longtime_tostr PROTO_PARAMS((PLI_INT32 lowtime,
PLI_INT32 hightime));
XXTERN PLI_INT32 tf_message PROTO_PARAMS((PLI_INT32 level, PLI_BYTE8
*facility, PLI_BYTE8 *messno, PLI_BYTE8 *message, ...));
XXTERN PLI_BYTE8 *tf_mipname PROTO_PARAMS((void));
XXTERN PLI_INT32 tf_movepvc_flag PROTO_PARAMS((PLI_INT32 nparam));
XXTERN void tf_multiply_long PROTO_PARAMS((PLI_INT32 *aof_low1,
PLI_INT32 *aof_high1, PLI_INT32 low2, PLI_INT32 high2));
XXTERN p_tfnodeinfo tf_nodeinfo PROTO_PARAMS((PLI_INT32 pnum, p_tfnodeinfo
pinfo));
XXTERN PLI_INT32 tf_nump PROTO_PARAMS((void));
XXTERN PLI_INT32 tf_propagatep PROTO_PARAMS((PLI_INT32 pnum));
XXTERN PLI_INT32 tf_putlongp PROTO_PARAMS((PLI_INT32 pnum, PLI_INT32
lowvalue, PLI_INT32 highvalue));
XXTERN PLI_INT32 tf_putp PROTO_PARAMS((PLI_INT32 pnum, PLI_INT32 value));
XXTERN PLI_INT32 tf_putrealp PROTO_PARAMS((PLI_INT32 pnum, double value));
XXTERN PLI_INT32 tf_read_restart PROTO_PARAMS((PLI_BYTE8 *blockptr,
PLI_INT32 blocklen));
XXTERN void tf_real_to_long PROTO_PARAMS((double real, PLI_INT32
*aof_int_lo, PLI_INT32 *aof_int_hi));
XXTERN PLI_INT32 tf_rosynchronize PROTO_PARAMS((void));

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

810 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

XXTERN void tf_scale_longdelay PROTO_PARAMS((PLI_BYTE8 *cell,
PLI_INT32 delay_lo, PLI_INT32 delay_hi, PLI_INT32 *aof_delay_lo, PLI_INT32
*aof_delay_hi));
XXTERN void tf_scale_realdelay PROTO_PARAMS((PLI_BYTE8 *cell, double
realdelay, double *aof_realdelay));
XXTERN PLI_INT32 tf_setdelay PROTO_PARAMS((PLI_INT32 delay));
XXTERN PLI_INT32 tf_setlongdelay PROTO_PARAMS((PLI_INT32 lowdelay,
PLI_INT32 highdelay));
XXTERN PLI_INT32 tf_setrealdelay PROTO_PARAMS((double realdelay));
XXTERN PLI_INT32 tf_setworkarea PROTO_PARAMS((PLI_BYTE8 *workarea));
XXTERN PLI_INT32 tf_sizep PROTO_PARAMS((PLI_INT32 pnum));
XXTERN PLI_BYTE8 *tf_spname PROTO_PARAMS((void));
XXTERN PLI_INT32 tf_strdelputp PROTO_PARAMS((PLI_INT32 nparam, PLI_INT32
bitlength, PLI_INT32 format_char, PLI_BYTE8 *value_p, PLI_INT32 delay, PLI_INT32
delaytype));
XXTERN PLI_BYTE8 *tf_strgetp PROTO_PARAMS((PLI_INT32 pnum, PLI_INT32
format_char));
XXTERN PLI_BYTE8 *tf_strgettime PROTO_PARAMS((void));
XXTERN PLI_INT32 tf_strlongdelputp PROTO_PARAMS((PLI_INT32 nparam,
PLI_INT32 bitlength, PLI_INT32 format_char, PLI_BYTE8 *value_p, PLI_INT32
lowdelay, PLI_INT32 highdelay, PLI_INT32 delaytype));
XXTERN PLI_INT32 tf_strrealdelputp PROTO_PARAMS((PLI_INT32 nparam,
PLI_INT32 bitlength, PLI_INT32 format_char, PLI_BYTE8 *value_p, double
realdelay, PLI_INT32 delaytype));
XXTERN PLI_INT32 tf_subtract_long PROTO_PARAMS((PLI_INT32 *aof_lowtime1,
PLI_INT32 *aof_hightime1, PLI_INT32 lowtime2, PLI_INT32 hightime2));
XXTERN PLI_INT32 tf_synchronize PROTO_PARAMS((void));
XXTERN PLI_INT32 tf_testpvc_flag PROTO_PARAMS((PLI_INT32 nparam));
XXTERN PLI_INT32 tf_text PROTO_PARAMS((PLI_BYTE8 *fmt, ...));
XXTERN PLI_INT32 tf_typep PROTO_PARAMS((PLI_INT32 pnum));
XXTERN void tf_unscale_longdelay PROTO_PARAMS((PLI_BYTE8 *cell,
PLI_INT32 delay_lo, PLI_INT32 delay_hi, PLI_INT32 *aof_delay_lo, PLI_INT32
*aof_delay_hi));
XXTERN void tf_unscale_realdelay PROTO_PARAMS((PLI_BYTE8 *cell,
double realdelay, double *aof_realdelay));
XXTERN PLI_INT32 tf_warning PROTO_PARAMS((PLI_BYTE8 *fmt, ...));
XXTERN PLI_INT32 tf_write_save PROTO_PARAMS((PLI_BYTE8 *blockptr,
PLI_INT32 blocklen));

/*---*/
/*----------------------------------- Globals -------------------------------*/
/*---*/

PLI_VEXTERN PLI_DLLESPEC PLI_BYTE8 *veriuser_version_str;
PLI_VEXTERN PLI_DLLESPEC PLI_INT32 (*endofcompile_routines[])();

#undef PLI_EXTERN
#undef PLI_VEXTERN

#ifdef VERIUSER_DEFINED_DLLISPEC
#undef VERIUSER_DEFINED_DLLISPEC
#undef PLI_DLLISPEC
#endif
#ifdef VERIUSER_DEFINED_DLLESPEC
#undef VERIUSER_DEFINED_DLLESPEC
#undef PLI_DLLESPEC
#endif

#ifdef PLI_PROTOTYPES
#undef PLI_PROTOTYPES
#undef PROTO_PARAMS
#undef XXTERN
#undef EETERN

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 811
This is an unapproved IEEE Standards Draft, subject to change.

#endif

#ifdef __cplusplus
}
#endif

#endif /* VERIUSER_H */

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

812 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Annex G

(normative)

vpi_user.h

/***
 * vpi_user.h
 *
 * IEEE 1364-2001 Verilog HDL Programming Language Interface (PLI).
 *
 * This file contains the constant definitions, structure definitions, and
 * routine declarations used by the Verilog PLI procedural interface VPI
 * access routines.
 *
 **/

/***
 * NOTE: the constant values 1 through 299 are reserved for use in this
 * vpi_user.h file.
 **/

#ifndef VPI_USER_H
#define VPI_USER_H

#include <stdarg.h>

#ifdef __cplusplus
extern "C" {
#endif

/*--*/
/*-------------------------- Portability Help ----------------------------*/
/*--*/

/* Sized variables */
#ifndef PLI_TYPES
#define PLI_TYPES
typedef int PLI_INT32;
typedef unsigned int PLI_UINT32;
typedef short PLI_INT16;
typedef unsigned short PLI_UINT16;
typedef char PLI_BYTE8;
typedef unsigned char PLI_UBYTE8;
#endif

/* Use to export a symbol */
#if WIN32
#ifndef PLI_DLLISPEC
#define PLI_DLLISPEC __declspec(dllimport)
#define VPI_USER_DEFINED_DLLISPEC 1
#endif
#else
#ifndef PLI_DLLISPEC
#define PLI_DLLISPEC
#endif
#endif

/* Use to import a symbol */
#if WIN32
#ifndef PLI_DLLESPEC

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 813
This is an unapproved IEEE Standards Draft, subject to change.

#define PLI_DLLESPEC __declspec(dllexport)
#define VPI_USER_DEFINED_DLLESPEC 1
#endif
#else
#ifndef PLI_DLLESPEC
#define PLI_DLLESPEC
#endif
#endif

/* Use to mark a function as external */
#ifndef PLI_EXTERN
#define PLI_EXTERN
#endif

/* Use to mark a variable as external */
#ifndef PLI_VEXTERN
#define PLI_VEXTERN extern
#endif

#ifndef PLI_PROTOTYPES
#define PLI_PROTOTYPES
#define PROTO_PARAMS(params) params
/* object is defined imported by the application */
#define XXTERN PLI_EXTERN PLI_DLLISPEC
/* object is exported by the application */
#define EETERN PLI_EXTERN PLI_DLLESPEC
#endif

/******************************** TYPEDEFS ********************************/

typedef PLI_UINT32 *vpiHandle;

/****************************** OBJECT TYPES ******************************/
#define vpiAlways 1 /* always block */
#define vpiAssignStmt 2 /* quasi-continuous assignment */
#define vpiAssignment 3 /* procedural assignment */
#define vpiBegin 4 /* block statement */
#define vpiCase 5 /* case statement */
#define vpiCaseItem 6 /* case statement item */
#define vpiConstant 7 /* numerical constant or literal string */
#define vpiContAssign 8 /* continuous assignment */
#define vpiDeassign 9 /* deassignment statement */
#define vpiDefParam 10 /* defparam */
#define vpiDelayControl 11 /* delay statement (e.g. #10) */
#define vpiDisable 12 /* named block disable statement */
#define vpiEventControl 13 /* wait on event, e.g. @e */
#define vpiEventStmt 14 /* event trigger, e.g. ->e */
#define vpiFor 15 /* for statement */
#define vpiForce 16 /* force statement */
#define vpiForever 17 /* forever statement */
#define vpiFork 18 /* fork-join block */
#define vpiFuncCall 19 /* HDL function call */
#define vpiFunction 20 /* HDL function */
#define vpiGate 21 /* primitive gate */
#define vpiIf 22 /* if statement */
#define vpiIfElse 23 /* if-else statement */
#define vpiInitial 24 /* initial block */
#define vpiIntegerVar 25 /* integer variable */
#define vpiInterModPath 26 /* intermodule wire delay */
#define vpiIterator 27 /* iterator */
#define vpiIODecl 28 /* input/output declaration */
#define vpiMemory 29 /* behavioral memory */
#define vpiMemoryWord 30 /* single word of memory */

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

814 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

#define vpiModPath 31 /* module path for path delays */
#define vpiModule 32 /* module instance */
#define vpiNamedBegin 33 /* named block statement */
#define vpiNamedEvent 34 /* event variable */
#define vpiNamedFork 35 /* named fork-join block */
#define vpiNet 36 /* scalar or vector net */
#define vpiNetBit 37 /* bit of vector net */
#define vpiNullStmt 38 /* a semicolon. Ie. #10 ; */
#define vpiOperation 39 /* behavioral operation */
#define vpiParamAssign 40 /* module parameter assignment */
#define vpiParameter 41 /* module parameter */
#define vpiPartSelect 42 /* part-select */
#define vpiPathTerm 43 /* terminal of module path */
#define vpiPort 44 /* module port */
#define vpiPortBit 45 /* bit of vector module port */
#define vpiPrimTerm 46 /* primitive terminal */
#define vpiRealVar 47 /* real variable */
#define vpiReg 48 /* scalar or vector reg */
#define vpiRegBit 49 /* bit of vector reg */
#define vpiRelease 50 /* release statement */
#define vpiRepeat 51 /* repeat statement */
#define vpiRepeatControl 52 /* repeat control in an assign stmt */
#define vpiSchedEvent 53 /* vpi_put_value() event */
#define vpiSpecParam 54 /* specparam */
#define vpiSwitch 55 /* transistor switch */
#define vpiSysFuncCall 56 /* system function call */
#define vpiSysTaskCall 57 /* system task call */
#define vpiTableEntry 58 /* UDP state table entry */
#define vpiTask 59 /* HDL task */
#define vpiTaskCall 60 /* HDL task call */
#define vpiTchk 61 /* timing check */
#define vpiTchkTerm 62 /* terminal of timing check */
#define vpiTimeVar 63 /* time variable */
#define vpiTimeQueue 64 /* simulation event queue */
#define vpiUdp 65 /* user-defined primitive */
#define vpiUdpDefn 66 /* UDP definition */
#define vpiUserSystf 67 /* user defined system task or function */
#define vpiVarSelect 68 /* variable array selection */
#define vpiWait 69 /* wait statement */
#define vpiWhile 70 /* while statement */

/****************** object types added with 1364-2001 *********************/
#define vpiAttribute 105 /* attribute of an object */
#define vpiBitSelect 106 /* Bit-select of parameter, var select */
#define vpiCallback 107 /* callback object */
#define vpiDelayTerm 108 /* Delay term which is a load or driver */
#define vpiDelayDevice 109 /* Delay object within a net */
#define vpiFrame 110 /* reentrant task/func frame */
#define vpiGateArray 111 /* gate instance array */
#define vpiModuleArray 112 /* module instance array */
#define vpiPrimitiveArray 113 /* vpiprimitiveArray type */
#define vpiNetArray 114 /* multidimensional net */
#define vpiRange 115 /* range declaration */
#define vpiRegArray 116 /* multidimensional reg */
#define vpiSwitchArray 117 /* switch instance array */
#define vpiUdpArray 118 /* UDP instance array */
#define vpiContAssignBit 128 /* Bit of a vector continuous assignment */
#define vpiNamedEventArray 129 /* multidimensional named event */

/******************************** METHODS *********************************/
/************* methods used to traverse 1 to 1 relationships **************/
#define vpiCondition 71 /* condition expression */
#define vpiDelay 72 /* net or gate delay */
#define vpiElseStmt 73 /* else statement */

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 815
This is an unapproved IEEE Standards Draft, subject to change.

#define vpiForIncStmt 74 /* increment statement in for loop */
#define vpiForInitStmt 75 /* initialization statement in for loop */
#define vpiHighConn 76 /* higher connection to port */
#define vpiLhs 77 /* left-hand side of assignment */
#define vpiIndex 78 /* index of var select, bit-select, etc. */
#define vpiLeftRange 79 /* left range of vector or part-select */
#define vpiLowConn 80 /* lower connection to port */
#define vpiParent 81 /* parent object */
#define vpiRhs 82 /* right-hand side of assignment */
#define vpiRightRange 83 /* right range of vector or part-select */
#define vpiScope 84 /* containing scope object */
#define vpiSysTfCall 85 /* task function call */
#define vpiTchkDataTerm 86 /* timing check data term */
#define vpiTchkNotifier 87 /* timing check notifier */
#define vpiTchkRefTerm 88 /* timing check reference term */

/************ methods used to traverse 1 to many relationships ************/
#define vpiArgument 89 /* argument to (system) task/function */
#define vpiBit 90 /* bit of vector net or port */
#define vpiDriver 91 /* driver for a net */
#define vpiInternalScope 92 /* internal scope in module */
#define vpiLoad 93 /* load on net or reg */
#define vpiModDataPathIn 94 /* data terminal of a module path */
#define vpiModPathIn 95 /* Input terminal of a module path */
#define vpiModPathOut 96 /* output terminal of a module path */
#define vpiOperand 97 /* operand of expression */
#define vpiPortInst 98 /* connected port instance */
#define vpiProcess 99 /* process in module */
#define vpiVariables 100 /* variables in module */
#define vpiUse 101 /* usage */

/***** methods which can traverse 1 to 1, or 1 to many relationships ******/
#define vpiExpr 102 /* connected expression */
#define vpiPrimitive 103 /* primitive (gate, switch, UDP) */
#define vpiStmt 104 /* statement in process or task */

/********************* methods added with 1364-2001 ***********************/
#define vpiActiveTimeFormat 119 /* active $timeformat() system task */
#define vpiInTerm 120 /* To get to a delay device's drivers. */
#define vpiInstanceArray 121 /* vpiInstance arrays */
#define vpiLocalDriver 122 /* local drivers (within a module */
#define vpiLocalLoad 123 /* local loads (within a module */
#define vpiOutTerm 124 /* To get to a delay device's loads. */
#define vpiPorts 125 /* Module port */
#define vpiSimNet 126 /* simulated net after collapsing */
#define vpiTaskFunc 127 /* HDL task or function */

/******************************* PROPERTIES *******************************/
/************************ generic object properties ***********************/
#define vpiUndefined -1 /* undefined property */
#define vpiType 1 /* type of object */
#define vpiName 2 /* local name of object */
#define vpiFullName 3 /* full hierarchical name */
#define vpiSize 4 /* size of gate, net, port, etc. */
#define vpiFile 5 /* File name in which the object is used */
#define vpiLineNo 6 /* line number where the object is used */

/*************************** module properties ****************************/
#define vpiTopModule 7 /* top-level module (boolean) */
#define vpiCellInstance 8 /* cell (boolean) */
#define vpiDefName 9 /* module definition name */
#define vpiProtected 10 /* source protected module (boolean) */
#define vpiTimeUnit 11 /* module time unit */

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

816 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

#define vpiTimePrecision 12 /* module time precision */
#define vpiDefNetType 13 /* default net type */
#define vpiUnconnDrive 14 /* unconnected port drive strength */
#define vpiHighZ 1 /* No default drive given */
#define vpiPull1 2 /* default pull1 drive */
#define vpiPull0 3 /* default pull0 drive */
#define vpiDefFile 15 /* File name where the module is defined */
#define vpiDefLineNo 16 /* line number for module definition */
#define vpiDefDelayMode 47 /* Default delay mode for a module */
#define vpiDelayModeNone 1 /* no delay mode specified */
#define vpiDelayModePath 2 /* path delay mode */
#define vpiDelayModeDistrib 3 /* distributed delay mode */
#define vpiDelayModeUnit 4 /* unit delay mode */
#define vpiDelayModeZero 5 /* zero delay mode */
#define vpiDelayModeMTM 6 /* min:typ:max delay mode */
#define vpiDefDecayTime 48 /* Default decay time for a module */

/************************ port and net properties *************************/
#define vpiScalar 17 /* scalar (boolean) */
#define vpiVector 18 /* vector (boolean) */
#define vpiExplicitName 19 /* port is explicitly named */
#define vpiDirection 20 /* direction of port: */
#define vpiInput 1 /* input */
#define vpiOutput 2 /* output */
#define vpiInout 3 /* inout */
#define vpiMixedIO 4 /* mixed input-output */
#define vpiNoDirection 5 /* no direction */
#define vpiConnByName 21 /* connected by name (boolean) */

#define vpiNetType 22 /* net subtypes: */
#define vpiWire 1 /* wire net */
#define vpiWand 2 /* wire-and net */
#define vpiWor 3 /* wire-or net */
#define vpiTri 4 /* three-state net */
#define vpiTri0 5 /* pull-down net */
#define vpiTri1 6 /* pull-up net */
#define vpiTriReg 7 /* tri state reg net */
#define vpiTriAnd 8 /* three-state wire-and net */
#define vpiTriOr 9 /* three-state wire-or net */
#define vpiSupply1 10 /* supply 1 net */
#define vpiSupply0 11 /* supply zero net */
#define vpiNone 12 /* no default net type (1364-2001) */

#define vpiExplicitScalared 23 /* explicitly scalared (boolean) */
#define vpiExplicitVectored 24 /* explicitly vectored (boolean) */
#define vpiExpanded 25 /* expanded vector net (boolean) */
#define vpiImplicitDecl 26 /* implicitly declared net (boolean) */
#define vpiChargeStrength 27 /* charge decay strength of net */
/* Defined as part of strengths section.
#define vpiLargeCharge 0x10
#define vpiMediumCharge 0x04
#define vpiSmallCharge 0x02
*/
#define vpiArray 28 /* variable array (boolean) */
#define vpiPortIndex 29 /* Port index */

/********************** gate and terminal properties **********************/
#define vpiTermIndex 30 /* Index of a primitive terminal */
#define vpiStrength0 31 /* 0-strength of net or gate */
#define vpiStrength1 32 /* 1-strength of net or gate */
#define vpiPrimType 33 /* prmitive subtypes: */
#define vpiAndPrim 1 /* and gate */
#define vpiNandPrim 2 /* nand gate */
#define vpiNorPrim 3 /* nor gate */

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 817
This is an unapproved IEEE Standards Draft, subject to change.

#define vpiOrPrim 4 /* or gate */
#define vpiXorPrim 5 /* xor gate */
#define vpiXnorPrim 6 /* xnor gate */
#define vpiBufPrim 7 /* buffer */
#define vpiNotPrim 8 /* not gate */
#define vpiBufif0Prim 9 /* zero-enabled buffer */
#define vpiBufif1Prim 10 /* one-enabled buffer */
#define vpiNotif0Prim 11 /* zero-enabled not gate */
#define vpiNotif1Prim 12 /* one-enabled not gate */
#define vpiNmosPrim 13 /* nmos switch */
#define vpiPmosPrim 14 /* pmos switch */
#define vpiCmosPrim 15 /* cmos switch */
#define vpiRnmosPrim 16 /* resistive nmos switch */
#define vpiRpmosPrim 17 /* resistive pmos switch */
#define vpiRcmosPrim 18 /* resistive cmos switch */
#define vpiRtranPrim 19 /* resistive bidirectional */
#define vpiRtranif0Prim 20 /* zero-enable resistive bidirectional */
#define vpiRtranif1Prim 21 /* one-enable resistive bidirectional */
#define vpiTranPrim 22 /* bidirectional */
#define vpiTranif0Prim 23 /* zero-enabled bidirectional */
#define vpiTranif1Prim 24 /* one-enabled bidirectional */
#define vpiPullupPrim 25 /* pullup */
#define vpiPulldownPrim 26 /* pulldown */
#define vpiSeqPrim 27 /* sequential UDP */
#define vpiCombPrim 28 /* combinational UDP */

/************** path, path terminal, timing check properties **************/
#define vpiPolarity 34 /* polarity of module path... */
#define vpiDataPolarity 35 /* ...or data path: */
#define vpiPositive 1 /* positive */
#define vpiNegative 2 /* negative */
#define vpiUnknown 3 /* unknown (unspecified) */

#define vpiEdge 36 /* edge type of module path: */
#define vpiNoEdge 0x00000000 /* no edge */
#define vpiEdge01 0x00000001 /* 0 -> 1 */
#define vpiEdge10 0x00000002 /* 1 -> 0 */
#define vpiEdge0x 0x00000004 /* 0 -> x */
#define vpiEdgex1 0x00000008 /* x -> 1 */
#define vpiEdge1x 0x00000010 /* 1 -> x */
#define vpiEdgex0 0x00000020 /* x -> 0 */
#define vpiPosedge (vpiEdgex1 | vpiEdge01 | vpiEdge0x)
#define vpiNegedge (vpiEdgex0 | vpiEdge10 | vpiEdge1x)
#define vpiAnyEdge (vpiPosedge | vpiNegedge)

#define vpiPathType 37 /* path delay connection subtypes: */
#define vpiPathFull 1 /* (a *> b) */
#define vpiPathParallel 2 /* (a => b) */

#define vpiTchkType 38 /* timing check subtypes: */
#define vpiSetup 1 /* $setup */
#define vpiHold 2 /* $hold */
#define vpiPeriod 3 /* $period */
#define vpiWidth 4 /* $width */
#define vpiSkew 5 /* $skew */
#define vpiRecovery 6 /* $recovery */
#define vpiNoChange 7 /* $nochange */
#define vpiSetupHold 8 /* $setuphold */
#define vpiFullskew 9 /* $fullskew -- added for 1364-2001 */
#define vpiRecrem 10 /* $recrem -- added for 1364-2001 */

#define vpiRemoval 11 /* $removal -- added for 1364-2001 */
#define vpiTimeskew 12 /* $timeskew -- added for 1364-2001 */

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

818 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

/************************* expression properties **************************/
#define vpiOpType 39 /* operation subtypes: */
#define vpiMinusOp 1 /* unary minus */
#define vpiPlusOp 2 /* unary plus */
#define vpiNotOp 3 /* unary not */
#define vpiBitNegOp 4 /* bitwise negation */
#define vpiUnaryAndOp 5 /* bitwise reduction and */
#define vpiUnaryNandOp 6 /* bitwise reduction nand */
#define vpiUnaryOrOp 7 /* bitwise reduction or */
#define vpiUnaryNorOp 8 /* bitwise reduction nor */
#define vpiUnaryXorOp 9 /* bitwise reduction xor */
#define vpiUnaryXNorOp 10 /* bitwise reduction xnor */
#define vpiSubOp 11 /* binary subtraction */
#define vpiDivOp 12 /* binary division */
#define vpiModOp 13 /* binary modulus */
#define vpiEqOp 14 /* binary equality */
#define vpiNeqOp 15 /* binary inequality */
#define vpiCaseEqOp 16 /* case (x and z) equality */
#define vpiCaseNeqOp 17 /* case inequality */
#define vpiGtOp 18 /* binary greater than */
#define vpiGeOp 19 /* binary greater than or equal */
#define vpiLtOp 20 /* binary less than */
#define vpiLeOp 21 /* binary less than or equal */
#define vpiLShiftOp 22 /* binary left shift */
#define vpiRShiftOp 23 /* binary right shift */
#define vpiAddOp 24 /* binary addition */
#define vpiMultOp 25 /* binary multiplication */
#define vpiLogAndOp 26 /* binary logical and */
#define vpiLogOrOp 27 /* binary logical or */
#define vpiBitAndOp 28 /* binary bitwise and */
#define vpiBitOrOp 29 /* binary bitwise or */
#define vpiBitXorOp 30 /* binary bitwise xor */
#define vpiBitXNorOp 31 /* binary bitwise xnor */
#define vpiBitXnorOp vpiBitXNorOp /* added with 1364-2001 */
#define vpiConditionOp 32 /* ternary conditional */
#define vpiConcatOp 33 /* n-ary concatenation */
#define vpiMultiConcatOp 34 /* repeated concatenation */
#define vpiEventOrOp 35 /* event or */
#define vpiNullOp 36 /* null operation */
#define vpiListOp 37 /* list of expressions */
#define vpiMinTypMaxOp 38 /* min:typ:max: delay expression */
#define vpiPosedgeOp 39 /* posedge */
#define vpiNegedgeOp 40 /* negedge */
#define vpiArithLShiftOp 41 /* arithmetic left shift (1364-2001) */
#define vpiArithRShiftOp 42 /* arithmetic right shift (1364-2001) */
#define vpiPowerOp 43 /* arithmetic power op (1364-2001) */

#define vpiConstType 40 /* constant subtypes: */
#define vpiDecConst 1 /* decimal integer */
#define vpiRealConst 2 /* real */
#define vpiBinaryConst 3 /* binary integer */
#define vpiOctConst 4 /* octal integer */
#define vpiHexConst 5 /* hexadecimal integer */
#define vpiStringConst 6 /* string literal */
#define vpiIntConst 7 /* HDL integer constant (1364-2001) */

#define vpiBlocking 41 /* blocking assignment (boolean) */
#define vpiCaseType 42 /* case statement subtypes: */
#define vpiCaseExact 1 /* exact match */
#define vpiCaseX 2 /* ignore X's */

#define vpiCaseZ 3 /* ignore Z's */
#define vpiNetDeclAssign 43 /* assign part of decl (boolean) */

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 819
This is an unapproved IEEE Standards Draft, subject to change.

/************** task/function properties **************/
#define vpiFuncType 44 /* HDL function and system function type */
#define vpiIntFunc 1 /* returns integer */
#define vpiRealFunc 2 /* returns real */
#define vpiTimeFunc 3 /* returns time */
#define vpiSizedFunc 4 /* returns an arbitrary size */
#define vpiSizedSignedFunc 5 /* returns sized signed value */
/* alias 1364-1995 system function subtypes to 1364-2001 function subtypes */
#define vpiSysFuncType vpiFuncType
#define vpiSysFuncInt vpiIntFunc
#define vpiSysFuncReal vpiRealFunc
#define vpiSysFuncTime vpiTimeFunc
#define vpiSysFuncSized vpiSizedFunc

#define vpiUserDefn 45 /* user defined system task/func (boolean) */
#define vpiScheduled 46 /* object still scheduled (boolean) */

/*********************** properties added with 1364-2001 *******************/
#define vpiActive 49 /* reentrant task/func frame is active */
#define vpiAutomatic 50 /* task/func obj is automatic */
#define vpiCell 51 /* configuration cell */
#define vpiConfig 52 /* configuration config file */
#define vpiConstantSelect 53 /* (boolean) bit-select or part-select indices
 are constant expressions */
#define vpiDecompile 54 /* decompile the object */
#define vpiDefAttribute 55 /* Attribute defined for the obj */
#define vpiDelayType 56 /* delay subtype */
#define vpiModPathDelay 1 /* module path delay */
#define vpiInterModPathDelay 2 /* intermodule path delay */
#define vpiMIPDelay 3 /* module input port delay */
#define vpiIteratorType 57 /* object type of an iterator */
#define vpiLibrary 58 /* configuration library */
#define vpiMultiArray 59 /* Object is a multidimensional array */
#define vpiOffset 60 /* offset from LSB */
#define vpiResolvedNetType 61 /* net subtype after resolution, returns
 same subtypes as vpiNetType */
#define vpiSaveRestartID 62 /* unique ID for save/restart data */
#define vpiSaveRestartLocation 63 /* name of save/restart data file */
#define vpiValid 64 /* reentrant task/func frame is valid */
#define vpiSigned 65 /* TRUE for vpiIODecl and any object in
 the expression class if the object
 has the signed attribute */
#define vpiLocalParam 70 /* TRUE when a param is declared as a
 localparam */
#define vpiModPathHasIfNone 71 /* Mod path has an ifnone statement */

/************* vpi_control() constants (added with 1364-2001) *************/
#define vpiStop 66 /* execute simulator's $stop */
#define vpiFinish 67 /* execute simulator's $finish */
#define vpiReset 68 /* execute simulator's $reset */
#define vpiSetInteractiveScope 69 /* set simulator's interactive scope */

/************************** I/O related defines ***************************/
#define VPI_MCD_STDOUT 0x00000001

/************************** STRUCTURE DEFINITIONS *************************/

/***************************** time structure *****************************/
typedef struct t_vpi_time
{
 PLI_INT32 type; /* [vpiScaledRealTime, vpiSimTime,
 vpiSuppressTime] */
 PLI_UINT32 high, low; /* for vpiSimTime */
 double real; /* for vpiScaledRealTime */

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

820 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

} s_vpi_time, *p_vpi_time;

/* time types */
#define vpiScaledRealTime 1
#define vpiSimTime 2
#define vpiSuppressTime 3

/**************************** delay structures ****************************/
typedef struct t_vpi_delay
{
 struct t_vpi_time *da; /* pointer to user allocated array of
 delay values */
 PLI_INT32 no_of_delays; /* number of delays */
 PLI_INT32 time_type; /* [vpiScaledRealTime, vpiSimTime,
 vpiSuppressTime] */
 PLI_INT32 mtm_flag; /* true for mtm values */
 PLI_INT32 append_flag; /* true for append */
 PLI_INT32 pulsere_flag; /* true for pulsere values */
} s_vpi_delay, *p_vpi_delay;

/**************************** value structures ****************************/
/* vector value */
typedef struct t_vpi_vecval
{
 /* following fields are repeated enough times to contain vector */
 PLI_INT32 aval, bval; /* bit encoding: ab: 00=0, 10=1, 11=X, 01=Z */
} s_vpi_vecval, *p_vpi_vecval;

/* strength (scalar) value */
typedef struct t_vpi_strengthval
{
 PLI_INT32 logic; /* vpi[0,1,X,Z] */
 PLI_INT32 s0, s1; /* refer to strength coding below */
} s_vpi_strengthval, *p_vpi_strengthval;

/* strength values */
#define vpiSupplyDrive 0x80
#define vpiStrongDrive 0x40
#define vpiPullDrive 0x20
#define vpiWeakDrive 0x08
#define vpiLargeCharge 0x10
#define vpiMediumCharge 0x04
#define vpiSmallCharge 0x02
#define vpiHiZ 0x01

/* generic value */
typedef struct t_vpi_value
{
 PLI_INT32 format; /* vpi[[Bin,Oct,Dec,Hex]Str,Scalar,Int,Real,String,
 Vector,Strength,Suppress,Time,ObjType]Val */
 union
 {
 PLI_BYTE8 *str; /* string value */
 PLI_INT32 scalar; /* vpi[0,1,X,Z] */
 PLI_INT32 integer; /* integer value */
 double real; /* real value */
 struct t_vpi_time *time; /* time value */
 struct t_vpi_vecval *vector; /* vector value */
 struct t_vpi_strengthval *strength; /* strength value */
 PLI_BYTE8 *misc; /* ...other */
 } value;
} s_vpi_value, *p_vpi_value;
/* value formats */
#define vpiBinStrVal 1

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 821
This is an unapproved IEEE Standards Draft, subject to change.

#define vpiOctStrVal 2
#define vpiDecStrVal 3
#define vpiHexStrVal 4
#define vpiScalarVal 5
#define vpiIntVal 6
#define vpiRealVal 7
#define vpiStringVal 8
#define vpiVectorVal 9
#define vpiStrengthVal 10
#define vpiTimeVal 11
#define vpiObjTypeVal 12
#define vpiSuppressVal 13

/* delay modes */
#define vpiNoDelay 1
#define vpiInertialDelay 2
#define vpiTransportDelay 3
#define vpiPureTransportDelay 4

/* force and release flags */
#define vpiForceFlag 5
#define vpiReleaseFlag 6

/* scheduled event cancel flag */
#define vpiCancelEvent 7

/* bit mask for the flags argument to vpi_put_value() */
#define vpiReturnEvent 0x1000

/* scalar values */
#define vpi0 0
#define vpi1 1
#define vpiZ 2
#define vpiX 3
#define vpiH 4
#define vpiL 5
#define vpiDontCare 6
/*
#define vpiNoChange 7 Defined under vpiTchkType, but
 can be used here.
*/

/********************* system task/function structure *********************/
typedef struct t_vpi_systf_data
{
 PLI_INT32 type; /* vpiSysTask, vpiSysFunc */
 PLI_INT32 sysfunctype; /* vpiSysTask, vpi[Int,Real,Time,Sized,
 SizedSigned]Func */
 PLI_BYTE8 *tfname; /* first character must be `$' */
 PLI_INT32 (*calltf)(PLI_BYTE8 *);
 PLI_INT32 (*compiletf)(PLI_BYTE8 *);
 PLI_INT32 (*sizetf)(PLI_BYTE8 *); /* for sized function
 callbacks only */
 PLI_BYTE8 *user_data;
} s_vpi_systf_data, *p_vpi_systf_data;

#define vpiSysTask 1
#define vpiSysFunc 2
/* the subtypes are defined under the vpiFuncType property */

/***************** Verilog execution information structure ****************/
typedef struct t_vpi_vlog_info
{
 PLI_INT32 argc;

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

822 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

 PLI_BYTE8 **argv;
 PLI_BYTE8 *product;
 PLI_BYTE8 *version;
} s_vpi_vlog_info, *p_vpi_vlog_info;

/******************** PLI error information structure *********************/
typedef struct t_vpi_error_info
{
 PLI_INT32 state; /* vpi[Compile,PLI,Run] */
 PLI_INT32 level; /* vpi[Notice,Warning,Error,System,Internal] */
 PLI_BYTE8 *message;
 PLI_BYTE8 *product;
 PLI_BYTE8 *code;
 PLI_BYTE8 *file;
 PLI_INT32 line;
} s_vpi_error_info, *p_vpi_error_info;

/* error types */
#define vpiCompile 1
#define vpiPLI 2
#define vpiRun 3

#define vpiNotice 1
#define vpiWarning 2
#define vpiError 3
#define vpiSystem 4
#define vpiInternal 5

/************************** callback structures ***************************/
/* normal callback structure */
typedef struct t_cb_data
{
 PLI_INT32 reason; /* callback reason */
 PLI_INT32 (*cb_rtn)(struct t_cb_data *); /* call routine */
 vpiHandle obj; /* trigger object */
 p_vpi_time time; /* callback time */
 p_vpi_value value; /* trigger object value */
 PLI_INT32 index; /* index of the memory word or
 var select that changed */
 PLI_BYTE8 *user_data;
} s_cb_data, *p_cb_data;

/**************************** CALLBACK REASONS ****************************/
/*************************** Simulation related ***************************/
#define cbValueChange 1
#define cbStmt 2
#define cbForce 3
#define cbRelease 4

/****************************** Time related ******************************/
#define cbAtStartOfSimTime 5
#define cbReadWriteSynch 6
#define cbReadOnlySynch 7
#define cbNextSimTime 8
#define cbAfterDelay 9

/***************************** Action related *****************************/
#define cbEndOfCompile 10
#define cbStartOfSimulation 11
#define cbEndOfSimulation 12
#define cbError 13
#define cbTchkViolation 14
#define cbStartOfSave 15

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 823
This is an unapproved IEEE Standards Draft, subject to change.

#define cbEndOfSave 16
#define cbStartOfRestart 17
#define cbEndOfRestart 18
#define cbStartOfReset 19
#define cbEndOfReset 20
#define cbEnterInteractive 21
#define cbExitInteractive 22
#define cbInteractiveScopeChange 23
#define cbUnresolvedSystf 24

/************************** Added with 1364-2001 **************************/
#define cbAssign 25
#define cbDeassign 26
#define cbDisable 27
#define cbPLIError 28
#define cbSignal 29

/************************* FUNCTION DECLARATIONS **************************/

/* callback related */
XXTERN vpiHandle vpi_register_cb PROTO_PARAMS((p_cb_data cb_data_p));
XXTERN PLI_INT32 vpi_remove_cb PROTO_PARAMS((vpiHandle cb_obj));
XXTERN void vpi_get_cb_info PROTO_PARAMS((vpiHandle object,
 p_cb_data cb_data_p));
XXTERN vpiHandle vpi_register_systf PROTO_PARAMS((p_vpi_systf_data
 systf_data_p));
XXTERN void vpi_get_systf_info PROTO_PARAMS((vpiHandle object,
 p_vpi_systf_data
 systf_data_p));

/* for obtaining handles */
XXTERN vpiHandle vpi_handle_by_name PROTO_PARAMS((PLI_BYTE8 *name,
 vpiHandle scope));
XXTERN vpiHandle vpi_handle_by_index PROTO_PARAMS((vpiHandle object,
 PLI_INT32 indx));

/* for traversing relationships */
XXTERN vpiHandle vpi_handle PROTO_PARAMS((PLI_INT32 type,
 vpiHandle refHandle));
XXTERN vpiHandle vpi_handle_multi PROTO_PARAMS((PLI_INT32 type,
 vpiHandle refHandle1,
 vpiHandle refHandle2,
 ...));
XXTERN vpiHandle vpi_iterate PROTO_PARAMS((PLI_INT32 type,
 vpiHandle refHandle));
XXTERN vpiHandle vpi_scan PROTO_PARAMS((vpiHandle iterator));

/* for processing properties */
XXTERN PLI_INT32 vpi_get PROTO_PARAMS((PLI_INT32 property,
 vpiHandle object));
XXTERN PLI_BYTE8 *vpi_get_str PROTO_PARAMS((PLI_INT32 property,
 vpiHandle object));

/* delay processing */
XXTERN void vpi_get_delays PROTO_PARAMS((vpiHandle object,
 p_vpi_delay delay_p));
XXTERN void vpi_put_delays PROTO_PARAMS((vpiHandle object,
 p_vpi_delay delay_p));

/* value processing */
XXTERN void vpi_get_value PROTO_PARAMS((vpiHandle expr,
 p_vpi_value value_p));
XXTERN vpiHandle vpi_put_value PROTO_PARAMS((vpiHandle object,
 p_vpi_value value_p,

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

824 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

 p_vpi_time time_p,
 PLI_INT32 flags));

/* time processing */
XXTERN void vpi_get_time PROTO_PARAMS((vpiHandle object,
 p_vpi_time time_p));

/* I/O routines */
XXTERN PLI_UINT32 vpi_mcd_open PROTO_PARAMS((PLI_BYTE8 *fileName));
XXTERN PLI_UINT32 vpi_mcd_close PROTO_PARAMS((PLI_UINT32 mcd));
XXTERN PLI_BYTE8 *vpi_mcd_name PROTO_PARAMS((PLI_UINT32 cd));
XXTERN PLI_INT32 vpi_mcd_printf PROTO_PARAMS((PLI_UINT32 mcd,
 PLI_BYTE8 *format,
 ...));
XXTERN PLI_INT32 vpi_printf PROTO_PARAMS((PLI_BYTE8 *format,
 ...));

/* utility routines */
XXTERN PLI_INT32 vpi_compare_objects PROTO_PARAMS((vpiHandle object1,
 vpiHandle object2));
XXTERN PLI_INT32 vpi_chk_error PROTO_PARAMS((p_vpi_error_info
 error_info_p));
XXTERN PLI_INT32 vpi_free_object PROTO_PARAMS((vpiHandle object));
XXTERN PLI_INT32 vpi_get_vlog_info PROTO_PARAMS((p_vpi_vlog_info
 vlog_info_p));

/* routines added with 1364-2001 */
XXTERN PLI_INT32 vpi_get_data PROTO_PARAMS((PLI_INT32 id,
 PLI_BYTE8 *dataLoc,
 PLI_INT32 numOfBytes));
XXTERN PLI_INT32 vpi_put_data PROTO_PARAMS((PLI_INT32 id,
 PLI_BYTE8 *dataLoc,
 PLI_INT32 numOfBytes));
XXTERN void *vpi_get_userdata PROTO_PARAMS((vpiHandle obj));
XXTERN PLI_INT32 vpi_put_userdata PROTO_PARAMS((vpiHandle obj,
 void *userdata));
XXTERN PLI_INT32 vpi_vprintf PROTO_PARAMS((PLI_BYTE8 *format,
 va_list ap));
XXTERN PLI_INT32 vpi_mcd_vprintf PROTO_PARAMS((PLI_UINT32 mcd,
 PLI_BYTE8 *format,
 va_list ap));
XXTERN PLI_INT32 vpi_flush PROTO_PARAMS((void));
XXTERN PLI_INT32 vpi_mcd_flush PROTO_PARAMS((PLI_UINT32 mcd));
XXTERN PLI_INT32 vpi_control PROTO_PARAMS((PLI_INT32 operation,
 ...));
XXTERN vpiHandle vpi_handle_by_multi_index PROTO_PARAMS((vpiHandle obj,
 PLI_INT32 num_index,
 PLI_INT32 *index_array));

/**************************** GLOBAL VARIABLES ****************************/
PLI_VEXTERN PLI_DLLESPEC void (*vlog_startup_routines[])();
 /* array of function pointers, last pointer should be null */

#undef PLI_EXTERN
#undef PLI_VEXTERN

#ifdef VPI_USER_DEFINED_DLLISPEC
#undef VPI_USER_DEFINED_DLLISPEC
#undef PLI_DLLISPEC
#endif
#ifdef VPI_USER_DEFINED_DLLESPEC
#undef VPI_USER_DEFINED_DLLESPEC

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 825
This is an unapproved IEEE Standards Draft, subject to change.

#undef PLI_DLLESPEC
#endif

#ifdef PLI_PROTOTYPES
#undef PLI_PROTOTYPES
#undef PROTO_PARAMS
#undef XXTERN
#undef EETERN
#endif

#ifdef __cplusplus
}
#endif

#endif /* VPI_USER_H */

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

826 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Annex H

(informative)

Bibliography

[B1] IEEE Std 754-1985 (Reaff 1990), IEEE Standard for Binary Floating-Point

Arithmetic (ANSI).2

[B2] IEEE Std 1497-2001, IEEE Standard for Standard Delay Format (SDF) for the Elec-

tronic Design Process.

2IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway,

NJ 08855-1331, USA.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 827
This is an unapproved IEEE Standards Draft, subject to change.

Annex I

(informative)

Change History

Table 218—

Date Issue Section #s BNF Details (Added change bars unless otherwise stated)

2002-11-06 Created Annex I. Turned on Automatic Change Bars. Added

"Draft" to name. Change number to P1364-2003/D1.

5

144

3.5

2002-11-07 8 4.1.7

10 7.1.6

2002-11-10 Turned off Smart Spaces. Added Last Modification Date to header.

11

177A

12.1.3.4 Started

2002-11-11 11 12.1.3.4, Example 8 Deleted old code on p.180 which wasn’t deleted in 2001b. Returned

font size to 10pt. Fixed indenting. Shame it doesn’t fit on one page.

With squeezing, it might work. Saved such a version in p179.fm.

2002-11-14 15A 19.4 Delete 2nd "the". Already fixed in 2001b. No change bar.

18 4.4.1 (Table 29) Add >>> <<<. Already fixed in 2001b.

19 4.1.14, para. 1 Changed "two" to "one".

2002-11-17 21 A.9.3 x Deleted "memory_identifier" from BNF.

2002-11-18 23 15.1 (Syntax 15-1)

15.2.2 (Syntax 15-4)

A.7.5.1

x Deleted space in $hold_timing_check.

2002-11-20 24 3.11.3 (Syntax 3-5)

14.6.1 (Syntax 14-7,

examples)

A.2.4

x Change 2nd $ to Keyword character format (bold). No change bars.

2002-11-21 25 2.8.2 (Syntax 2-8)

12.1.2 (Syntax 12-2)

A.4.1

x Inserted space in ".port identifier".

2002-11-26 26 14.3 (Syntax 14-6)

A.7.5

x Add comma in list_of_path_delay_expressions after 6th expression.

Already fixed in 2001b. Just added change bars.

2002-11-27 27 2.7.4, para. 3, bullet 1 Fixed xref from Clause 19 to 18.

2002-12-01 29 2.5 (Syntax 2-1)

A.8.7

x Changed 6 []’s to non-bold, in 2 places.

30 15.1 (Syntax 15-2)

15.4 (Syntax 15-15)

A.7.5.3

x In edge_control_specifier BNF, changed outer square brackets to

bold, inner square brackets to curly brackets, non-bold.

2002-12-02 31 12.4 (Syntax 12-7)

A.9.4

x Change inner square brackets around unsigned_number to bold in

simple_hierarchical_branch and escaped_hierarchical_branch.

2002-12-04 32 12.4 (Syntax 12-7)

A.Note.2

x Delete "and arrayed_reference" from the footnotes.

2002-12-05 36 9.7.3 Changed xref 9.7.1 to xref 9.7.2, changed text 9.7.2 to xref.

2002-12-09 39 12.3.3 Changed “ored” to “tied”. Already fixed in 2001b.

40 4.4.3 Changed comment, moved $display to separate line.

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

828 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

2002-12-10 41 17.2.3 Deleted line "length=".

2002-12-11 42 17.2.3 Fixed grammar errors. Changed keywords to bold.

2002-12-12 43 3.11.3 (Syntax 3-5) x Fixed specparam_declaration xref.

43 13.2.1 (Syntax 13-2) x Deleted escaped_hierarchical_identifier and footnote.

44 4.4.3 Changed 96 to ’h96, added "to ’h16", moved comments left to fit on

one line, changed ’ha to ’hA, %x to %h.

Turned off smart quotes.

2002-12-16 45 4.5 In Example, fixed regA result, added regB.

2002-12-18 49 4.4.3 Fixed example output.

2002-12-19 50 19.5 Edits.

2002-12-22 51 12.2 Typos.

2002-12-23 79 3.5 Change "wire" to "default net type".

5 3.5 Changed 3rd bullet wording slightly to be same as others.

2002-12-24 125 3.5 Added sentence to 3rd bullet, moved sentence from 2nd bullet to

end.

2002-12-25 126 passim "non blocking" changed to "nonblocking" throughout. Fixed in

2001b. NO change bars.

147 9.5 Added text in 1st para. after 1st example.

2002-12-26 155 2.8.2 (Syntax 12-4)

12.1 (Syntax 12-1)

A.1.3

x Removed brackets around list_of_ports in module_declaration

BNF.

2002-12-29 171 19.4 Deleted redundant paragraph "Although the names".

Changed char. formats of compiler directives from ’code’ to ’key-

word’.

2003-01-01 passim Changed, e.g., "one dimensional" to "one-dimensional".

2003-01-13 15.1 Change "are" to "is".

2003-01-15 12 12.1 (Syntax 12-1)

A.1.5

A.2.3

A.2.4

A.9.3

x

x

x

x

x

Changed parameter_override to list_of_defparam_assignments

Changed parameter_override to list_of_defparam_assignments

Added list_of_defparam_assignments

Added defparam_assignment

Added hierarchical_parameter_identifier

28 A.8.2

A.9.3

x

x

Delete genvar_function_call

Delete genvar_function_identifier

Master pages Change "P1364-2003" to P1364-2004"

2003-01-19 53 A.8.1 x Deleted net_concatenation, net_concatenation_value,

variable_concatenation, variable_concatenation_value

53 9.3 (Syntax 9-3)

A.8.5

x Replaced definition of net_lvalue

53 9.2.1 (Syntax 9-1)

9.2.2 (Syntax 9-2)

9.3 (Syntax 9-3)

A.8.5

x Replaced definition of variable_lvalue

2003-01-20 56 12.3.11

12.4

Changed ’signed’ keyword to bold. No change bar.

Changed ’automatic’ keyword to bold. No change bar.

2003-01-21 59 17.9.3 Fixed chi_square function code.

2003-01-22 60 17.9.3 Changed "1364-2000" to "1364-2001" in code header.

Table 218—

Date Issue Section #s BNF Details (Added change bars unless otherwise stated)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 829
This is an unapproved IEEE Standards Draft, subject to change.

94 19.2 (Syntax 19-1) x Added tri1 to list of default net types.

97 12.1 In para. 2, changed "used used" to "used". Changed ";" to ",".

104 3.2.2 In NOTE, changed ";" to ",".

118 12.3.4 In Example, changed "output signed reg" to "output reg signed".

Prettyified example (e.g., comment alignments).

2003-01-23 122 19.4 (Example 2) Indented line, changed "nest_two" to "second_nest" twice.

124 17.2.4.3 Moved sentence "If an invalid conversion character..." to new para.

2003-01-26 121

159

Syntax 2-1, 2-2

Table 29

Syntax 12-7

Syntax 15-2, 15-15

Table 63, 64

Changed Table and Syntax Box footnote numbering scheme from

Custom to Alphabetic. No change bars.

2003-01-27 131 Introduction Changed Registered symbol (R in circle) to Times font. No change

bars.

152 12.2.1

12.2.2.2

Changed "it’s" to "its".

180 14.3.2 Changed apostrophe in "s ’ x" and "x ’ s" to "->".

207 17.9.3 code header

26.6.9 footnote

Annex E header

Annex F header

Annex G

Changed "1364-2000" to "1364-2001".

223 9.5

17.10

Changed "is same" to "is the same".

Changed "the starting" to "their starting".

2003-01-29 63

174

3.2.1 (Syntax 3-1)

A.2.2.3

x Changed BNF of delay3, delay2, delay_value

2003-02-03 9.7.3

10.3.3

25.6

26.3.2

4

22.3.1

27.6

27.33

Deleted xref format "ASection", which had only 1 null use.

Changed 1 use of xref format "Section", from 10.3.3 to 10.3.1, to

$paranum, and deleted format "Section".

Changed 1 use of xref format "Section n", from 25.6 to 24.6, to

$paranum, and deleted format "Section n".

Changed 1 use of xref format "SectionOnly" from 26.3.2 to Annex

G, to $paranum, and deleted format "SectionOnly".

Changed 1 use of xref format "seeSection" from 4 to 10.3.5, to

$paranum, and deleted format "seeSection".

Changed 3 uses of xref format "AnnexNum" from 22.3.1,27.6,27.33

to Annexes E,G,G, to $paranum, and deleted format "AnnexNum".

2003-02-19 Deleted unused IEEE template xref formats: Bib/Ref, glossary,

Heading & Page, Page, See Heading & Page, Table & Page

Added new xref formats: Annex, Clause, Subclause, Syntax

Changed some uses of xref format SectionNum to SubClause

286B 26.6.25 Corrected "vpilParent" to "vpiParent".

310 26.3.3 Changed "Clause 19" xref to "19.7".

2003-03-13 143 passim Fixed most references to "Section x". Changed to "Clause x" or

"x.y" as needed. Found some references to "x" that should be

"Clause x". Found some mentions that were not hyperlinked.

Still need to fix 3 remaining uses of xref format "SectionNum".

Still need to fix uses of text "Clause x" which are not hyperlinked.

Change bars off except in one case where xref was wrong and cor-

rected.

Table 218—

Date Issue Section #s BNF Details (Added change bars unless otherwise stated)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 830
This is an unapproved IEEE Standards Draft, subject to change.

1,2,3 Started changing non-hypertext mentions of "Clause x" to hypertext

xrefs. Got through 3.9.2. No CB.

2003-03-16 4-20 More of the above. Got through start of Clause 20. No CB.

Turned xrefs bold underlined blue. No CB.

34 17.2.3 Misc. editorial changes. CB.

2003-03-19 64 Syntax 9-3

A.6.2

A.6.3

x Moved variable_assignment from A.6.3 to A.6.2. No CB.

20-H Finished changing all non-hypertext "Clause x" to xrefs, except in

1.4. No CB.

Changed copyright date to 2003. No CB.

2003-03-23 65 10.2.1 (Syntax 10-1)

A.2.7

x Changed "statement" to "statement_or_null" in task_declaration.

CB.

2003-03-24 67 9.7.3 (Syntax 9-10)

A.6.5

x Change ’event_trigger’ to hierarchical_event_identifier "{[expres-

sion]}". CB.

142 2.5.1 Changed xref from "Table 8-1" to "Table 40". CB.

277 3.9

3.9.1

Changed xref from "Table 17" to "Table 10 and Table 11". CB.

Changed xref from "Table 4-9" to "Table 10". CB.

310 3.9.2

6.2

17.2.4.3

Changed xref from "Clause 17" to "17.8". CB.

Changed xref from "Clause 9" to "9.9". CB.

Changed xref from "Figure 27-8" to "Figure 179". CB.

2003-03-26 22.5.7

22.5.10

26.6

Fixed paragraph formats.No CB.

1.4 In clause list, replaced title text with hyperlink to Clause #. No CB.

239 1.4 Reversed "veriuser.h" and "vpi_user.h". CB.

20 A.2.8

2.8.2 (Syntax 2-7)

9.8.1 (Syntax 9-13)

9.8.2 (Syntax 9-14)

10.2.1 (Syntax 10-1)

10.3.1 (Syntax 10-3)

x Changed "block_item_declaration" and related syntaxes. CB.

Fixed many unresolved xrefs. No CB.

2003-03-27 3 Fixed remaining unresolved xrefs in Clause 3. No CB.

Deleted xref format TableNumOnly by changing its 2 uses to Table.

25 Changed all 25.x aiH2Top(1.1) para formats to H2Top(1.1). No CB.

Added "H2Top(1.1)" to para. catalog.

70 4.4.1 (Table 29) Deleted "&& ||" from row 5 and added them to a new row 6. CB.

89 2.8.1 (Example 1) Changed 2nd example to (* full_case=1 *) (* parallel_case=1 *)

2003-03-30 23,27 Changed all 23.x,27.x "aiH2Top(1.1)" para formats to

"H2Top(1.1)". Deleted "aiH2Top(1.1" from para. catalog. No CB.

4,5 Fixed remaining unresolved xrefs in Clauses 4,5. No CB.

75 6 (Table 30)

9.2(para 2, last bullet)

Changed last table lines to "Concat or nested concat of any of the

above". CB.

Change "concatenation" to "concatenation or nested concatenation"

CB.

2003-03-31 76 4.1.14 Changed "non-zero" to "positive". Improved examples. CB.

Change "concatenations" to "replications". CB.

Table 218—

Date Issue Section #s BNF Details (Added change bars unless otherwise stated)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 831
This is an unapproved IEEE Standards Draft, subject to change.

26,27 Added "H3Top(1.1.1)" to para. catalog. Changed all 26.6.x, 27.x.x

"H3,1.1.1" formats to "H3Top(1.1.1)," with "Start Anywhere".

Deleted "aiH3Top(1.1.1)" from catalog. No CB.

6-12 Fixed unresolved xrefs in 6-12. No CB.

143 26,27 Changed last references to "Section 26.6.x". Deleted xref format

"SectionNum". No CB.

2003-04-01 Fixed more unresolved xrefs. No CB.

2003-04-03 Updated ALL remaining unresolved xrefs. No CB.

Added para format BNFCapBody for Syntax box titles to catalog.

No CB.

310 2.8.2 Changed ref. to "Syntax 2-11" to "Syntax 2-9". CB.

19 Converted and deleted xref formats ’$paranumonly’ and ’section #

only’. No CB.

109 10.3.5 In 2nd constraint, deleted "System functions shall not be invoked."

Redundant. CB.

115 9.8 Changed "grouping two or more statements" to "grouping state-

ments". CB.

Fixed some xrefs,fonts, runon lines, pp. 151-200. No CB.

2003-04-06 322 14.5 Change xref from "Fig 40" to "Fig 39". CB.

Fixed some xrefs,fonts, runon lines, pp. 201-250. No CB.

Deleted xref format "section number". No CB.

Deleted para formats A1FigTitle, AFigTitle, ai2BNFCapBody,

ai2BodyText not in use. No CB.

2003-04-07 78 Change "bit select" to "bit-select", etc. up to 27.2. No CB.

2003-04-08 78 Finished #78. No CB.

Converted all xrefs of format "ParaNum", and deleted it from xref

format catalog. No CB.

Converted uses of and deleted para. formats ai2*-ai6*. No CB.

2003-04-10 310 17.2.4.2 Changed "see below" to "see 17.2.7". CB.

310 17.6.1-3 Changed 3 references "Table 79" to "Table 81". CB.

310 22.8.2 At end of para 1, changed reference "Table 115" to "Table 116". CB

310 23.7 In last para., changed "acc_replace_delays" to

"acc_append_delays". CB.

310 23.18 In para. 1, changed reference "Figure 84" to "Figure 77". CB.

310 23.24 In last para., changed "acc_fetch_paramtype()" to

"acc_fetch_paramval()". CB.

310 23.33 In para. 2, changed reference "Figure 82" to "Figure 93". CB.

185,

310

23.36 In para. beginning "If the format field for acc_fetch_value()",

changed reference "Figure 96" to "Figure 97". CB.

185 23.21 Changed xref "Table 141" to "Table 145". CB.

186 23.26

23.33

In Table 150, changed "s" to "us" for -4, -5, -6. CB.

In Table 155, changed "s" to "us" for -4, -5, -6. CB.

2003-04-13 185 23.22 Changed xref "Table 141" to "Table 146". CB.

185 23.34 Changed xref "Table 143" to "Table 156". CB.

185 23.48 Changed xref "Table 141" to "Table 164". CB.

Table 218—

Date Issue Section #s BNF Details (Added change bars unless otherwise stated)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 832
This is an unapproved IEEE Standards Draft, subject to change.

328 23.42 Changed "acc_next_datapath()" to "acc_handle_datapath()". CB.

186 25.26

25.27

In Table 190, changed "s" to "us" for -4, -5, -6. CB.

In Table 191, changed "s" to "us" for -4, -5, -6. CB.

271 26.6.1, NOTE 3 Changed "Clause 19" to "19.7". CB.

251 27.37 Deleted "stdout". No CB.

Revised page headers and footers. No CB.

2003-04-14 127 9.7.5 Added to para. 4. CB.

Added Examples 5, 6. CB.

142 2.5.1 Change "state table" to plural.

187 23.27 (Figure 89) Added , after "%s %s %s". No CB.

188 23.28 (Figure 90) Deleted : after \n. No CB.

253 26.6.6 (Note 19)

26.6.7 (Note 12)

Delete one "in the". No CB.

Same.

277 3.9 In para. 3, changed "list" to "a list". No CB.

In para. 9, bullet 2, added . at end of line. No CB.

277 3.9.1 In bullets 1,2 change posedge,negedge,real to keyword font.No CB.

149 2.7.4 In para. 4, changed "Clause 17" to "Clause 17 and Clause 18". CB.

166 1.4 Added "Lexical conventions" to Clause 2. CB.

173 1.4 Fixed para. "Clause 21". No CB.

173 3.1

7.10.1

7.10.2

Fixed typos. No CB.

173 Changed Clause headings to Helvetica 14pt. No CB.

176 12.1.3.2 In example, changed "SIZE+1" to "SIZE". CB.

Changed "B1[i].N1[i]" to "B1[i].N1". CB.

196 8.6 (Sytnax 8-2) x Deleted "[attribute_instance]". CB.

128 10.3.5 Changed clogb2 function. NOT FINAL version. CB.

262 13.1 Fixed formatting of example at beginning. CB.

2003-04-28 85 A.6.5 x Add "procedural_timing_control". CB.

Change "procedural_timing_control_statement". CB.

85 9.7 (Syntax 9-8) x Delete "delay_or_event_control", "event_expression". CB.

Add "procedural_timing_control",

"procedural_timing_control_statement". CB.

2003-04-30 87 17.2.8 Correct description of $readmem, cases where it counts upwards,

not in direction of right-hand address. CB.

2003-05-01 92 17.10.1, 17.10.2 Improved wording of 1st para of 17.10.2. CB. A few minor edits.

2003-05-04 101 17.10.1, 17.10.2 Improved wording of 1st para of 17.10.1. Changed "register" to

"non-real variable". CB. A few minor edits.

2003-05-15 128 10.3.5 corrections to example. CB.

114 2.8.2

3.11.1

9.8.1-2

10.2-3

12.1

A.1.5

A.2.1.1

A.2.8

x Deleted ; from end of BNF of local_/parameter_declaration. CB.

Table 218—

Date Issue Section #s BNF Details (Added change bars unless otherwise stated)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 833
This is an unapproved IEEE Standards Draft, subject to change.

2003-05-16 343 22.9.4 Moved code right. No CB.

335 23.24 Changed acc_fetch_paramtype to acc_fetch_paramval. CB.

334 12.6 (Example 2) Deleted "// redundant assignments ..."

116 2.5.1

2.7.5

19

116, Parts 1-3: Changed ’single quote’ to ’apostrophe (ASCII

0x27)’, ’accent grave’ to ’grave accent (ASCII 0x60)’, etc. CB.

Part 5 not yet done.

119 2.6.3 (Table 1)

17.1.1.1 (Table 66)

Clarified /ddd. CB.

2003-05-20

thru 05-22

Fixed run-on lines. Mostly no CB.

2003-05-26 177 12.1.3.4 (Example 8) Fixes to example. Did not yet add commment on "read_mem".

Table 218—

Date Issue Section #s BNF Details (Added change bars unless otherwise stated)

DRAFT STANDARD VERILOG® HARDWARE DESCRIPTION LANGUAGE IEEE P1364-2005/D2, 5/26/03

Copyright © 2003 IEEE. All rights reserved. 834
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 1

Symbols

!

compared to ‘==0’ 47

logical negation operator 40, 47

!=

logical inequality operator 40, 46

!==

case inequality operator 41, 46

""

null string 57

$ 361, 364, 428

$async$and$array 302

$async$and$plane 302

$async$nand$array 302

$async$nand$plane 302

$async$nor$array 302

$async$nor$plane 302

$async$or$array 302

$async$or$plane 302

$bitstoreal 189, 310

$countdrivers 786–787

$display 278–285

compared to $monitor 285, 286

compared to $write 278

escape sequences 278

format specifications 279–281

size of displayed data 281–282

$displayb 278

$displayh 278

$displayo 278

$dist_chi_square 312

$dist_erlang 312

$dist_exponential 312

$dist_normal 312

$dist_poisson 312

$dist_t 312

$dist_uniform 312

$dumpall 327, 336

$dumpfile 324

$dumpflush 328

$dumplimit 327

$dumpoff 327, 336, 337, 343

$dumpon 327

$dumpports 339

rules to use 340

$dumpportsall 341

$dumpportsflush 342

$dumpportslimit 341

$dumpportsoff 340

$dumpportson 340

$dumpvars 325

$fclose 286–289

$fdisplay 288–289

$fdisplayb 288

$fdisplayf 288

$fdisplayh 288

$ferror 290, 294

$fflush 294

$fgetc 290

$finish 301, 593

$fmonitor 288–289

$fmonitorb 288

$fmonitorf 288

$fmonitorh 288

$fopen 286–289

$fopen() 583

$fscanf 290

$fseek 290, 294

$fstrobe 288–289

$fstrobebb 288

$fstrobef 288

$fstrobeh 288

$ftell 294

$fullskew 252

$fwrite 288–289

$fwriteb 288

$fwritef 288

$fwriteh 288

$getpattern 787

$hold 242

$incsave 790–791

$input 788

$itor 310

$key 788

$list 789

$log 789

$monitor 286

compared to $display 286

$monitorb 286

$monitorh 286

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 2

$monitoro 286

$monitoroff 286

$monitoron 286

$nochange 256

$nokey 788

$nolog 789

$period 255

$printtimescale 297–298

$q_add 307

$q_exam 307

$q_full 307

$q_initialize 306

$q_remove 307

$random 311

$readmemb 295–296

and loading logic array personality 303

$readmemh 295–296

and loading logic array personality 303

$realtime 309

$realtobits 189, 310

$recovery 246

$recrem 247

$removal 245

$reset 789

$reset_count 789

$reset_value 789

$restart 790–791

$rewind 294

$rtoi 310

$save 790–791

$scale 791

$scope 791

$sdf_annotate system task 296

$setup 241

$setuphold 243

$sformat 289

$showscopes 791

$showvars 792

$signed 62

$skew 249

$sreadmemb 792

$sreadmemh 792

$sscanf 290

$stime 309

$stop 301, 594

$strobe 285

compared to $display 285

$strobeb 285

$strobeh 285

$strobeo 285

$swrite 289

$swriteb 289

$swriteh 289

$swriteo 289

$sync$and$array 302

$sync$and$plane 302

$sync$nand$array 302

$sync$nand$plane 302

$sync$nor$array 302

$sync$nor$plane 302

$sync$or$array 302

$sync$or$plane 302

$test$plusargs 321

$time 32, 308–309

$timeformat 298–301

$timeskew 250

$ungetc 290

$unsigned 62

$vcdclose 342

$width 254–255

$write 278–285

compared to $display 278

escape sequences 278

format specifications 279–281

size of displayed data 281–282

$writeb 278

$writeh 278

$writeo 278

%

in format specifications 278, 282

modulus operator 40

&

bit-wise AND operator 41

reduction AND operator 41

&&

logical AND operator 40, 47

(??)

in state table 110

(01)

in state table 110

(0x)

in state table 110

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 3

(1x)

in state table 110

(vw)

in state table 110

(x1)

in state table 110

*

arithmetic multiplication operator 40

in state table 110

** 44

,,

in null expressions 278

/

arithmetic division operator 40

<

relational less-than operator 40, 46

<<

left shift operator 49

logical left shift operator 41

<<<

arithmetic left shift operator 41

<=

relational less-than-or-equal operator 40,

46

=

in assignment statement 69

==

logical equality operator 40, 46

===

case equality operator 41, 46

>

relational greater-than operator 40, 46

>=

relational greater-than-or-equal operator

40, 46

>>

logical right shift operator 41

right shift operator 49

>>>

arithmetic right shift operator 41

?

equivalent to z in literal number values 8,

133

in state table 110, 113

?:

conditional operator 41

@

for addressing memory 295

\

backslash character 12

for escape sequences in strings 278

\"

as " character 12

\ddd

specify character as octal digits 12

\t

tab character 12

^

bit-wise exclusive OR operator 41

reduction XOR operator 41

^~

bit-wise equivalence operator 41

reduction XNOR operator 41

`

in compiler directives 350

`celldefine 350, 521

`default_decay_time 793

`default_nettype 350, 351

`default_trireg_strength 793

`define 351

and text macro substitutions 353

`delay_mode_distributed 794

`delay_mode_path 794

`delay_mode_unit 794

`delay_mode_zero 794

`else 353

`elsif 353

`endcelldefine 350, 521

`endif 354

`ifdef 353

`ifndef 353

`include 357

`nounconnected_drive 360

`resetall 357

`timescale 358, 610, 611

`unconnected_drive 360

`undef 353

{{}}

replication operator 40

{}

concatenation operator 40, 51

|

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 4

bit-wise inclusive OR operator 41

reduction OR operator 41

||

logical OR operator 40, 47

~

bit-wise negation operator 41

~&

reduction NAND operator 41

~^

bit-wise equivalence operator 41

reduction XNOR operator 41

~|

reduction NOR operator 41

Numerics

0

for minimizing bit lengths of expressions

282

in state table 110

logic 0 283

logic zero 20

01 transition 113

1

in state table 110

logic 1 283

logic one 20

A

acc_append_delays() 388, 404, 414

acc_append_pulsere() 408, 414

acc_close() 369, 400, 410, 414, 514

acc_collect() 411, 478, 524, 547

acc_compare_handles() 413

acc_configure() 414

acc_count() 423, 524, 547

acc_error_flag 387, 464, 466, 467

acc_fetch_argc() 424

acc_fetch_argv() 425

acc_fetch_attribute() 414, 427

acc_fetch_attribute_int() 414, 431

acc_fetch_attribute_str() 414, 432

acc_fetch_defname() 433

acc_fetch_delay_mode() 434

acc_fetch_delays() 388, 414, 436

acc_fetch_direction() 440

acc_fetch_edge() 441

acc_fetch_fullname() 414, 443

acc_fetch_fulltype() 445

acc_fetch_index() 448

acc_fetch_itfarg() 464

acc_fetch_itfarg_int() 466

acc_fetch_itfarg_str() 467

acc_fetch_location() 450

acc_fetch_name() 414, 452

acc_fetch_paramtype() 454

acc_fetch_paramval() 455

acc_fetch_polarity() 457

acc_fetch_precision() 458

acc_fetch_pulsere() 414, 459

acc_fetch_range() 462

acc_fetch_size() 463

acc_fetch_tfarg() 464

acc_fetch_tfarg_int() 466

acc_fetch_tfarg_str() 467

acc_fetch_timescale_info() 468

acc_fetch_type() 470

acc_fetch_type_str() 472

acc_fetch_value() 473

acc_free() 411, 478

acc_handle_by_name() 479

acc_handle_calling_mod_m() 481

acc_handle_condition() 482

acc_handle_conn() 483

acc_handle_datapath() 484

acc_handle_hiconn() 485

acc_handle_interactive_scope() 487

acc_handle_itfarg() 511

acc_handle_loconn() 488

acc_handle_modpath() 414, 489

acc_handle_notifier() 491

acc_handle_object() 492

acc_handle_parent() 494

acc_handle_path() 495

acc_handle_pathin() 496

acc_handle_pathout() 497

acc_handle_port() 498

acc_handle_scope() 500

acc_handle_simulated_net() 501

acc_handle_tchk() 414, 503

acc_handle_tchkarg1() 507

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 5

acc_handle_tchkarg2() 509

acc_handle_terminal() 510

acc_handle_tfarg() 511

acc_handle_tfinst() 513

acc_initialize() 369, 400, 410, 414, 514

acc_next() 515

acc_next_bit() 519

acc_next_cell() 521

acc_next_cell_load() 522

acc_next_child() 524, 547

acc_next_driver() 525

acc_next_hiconn() 526

acc_next_input() 528, 555

acc_next_load() 522, 530

acc_next_loconn() 532

acc_next_modpath() 533

acc_next_net() 534

acc_next_output() 535, 555

acc_next_parameter() 537

acc_next_port() 538

acc_next_portout() 540

acc_next_primitive() 541

acc_next_scope() 542

acc_next_specparam() 543

acc_next_tchk() 544

acc_next_terminal() 546

acc_next_topmod() 423, 524, 547

acc_object_in_typelist() 548

acc_object_of_type() 550

acc_product_type() 552

acc_product_version() 554

acc_release_object() 555

acc_replace_delays() 388, 414, 556

acc_replace_pulsere() 414, 560

acc_reset_buffer() 563

acc_set_interactive_scope() 564

acc_set_pulsere() 565

acc_set_scope() 414, 567

acc_set_value() 569

acc_user.h file 369

acc_vcl_add() 397, 574

acc_vcl_delete() 397, 576

acc_version() 577

accAndGate 385

accAssignFlag 573

accBinStrVal 474, 570

accBitSelectPort 384

accBufGate 385

accBufif0Gate 385

accBufif1Gate 385

accCellInstance 383

accCmosGate 385

accCollapsedNet 550

accCombPrim 385

accConcatPort 384

accConstant 383

accDataPath 383

accDeassignFlag 573

accDecStrVal 474, 570

accDefaultAttr0 414, 427

accDelayModeDistrib 434

accDelayModeMTM 434

accDelayModeNone 434

accDelayModePath 434

accDelayModeUnit 434

accDelayModeZero 434

accDisplayErrors 387, 414

accDisplayWarnings 387, 414

accEdge01 441, 503

accEdge0x 441, 503

accEdge10 441, 503

accEdge1x 441, 503

accEdgex0 441, 503

accEdgex1 441, 503

accEnableArgs 414, 503, 567

access routines

accessible objects 375

error handling 387

exception values 388

history 361

listed by category

fetch routines 370

handle routines 371

miscellaneous routines 374

modify routines 374

next routines 372

VCL routines 375

listed by functional groups

routines that operate on bits of a port

378

routines that operate on inter-module

paths 379

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 6

routines that operate on module in-

stances 377

routines that operate on module or

data paths 378

routines that operate on module ports

377

routines that operate on named events

381

routines that operate on nets 380

routines that operate on parameters

382

routines that operate on primitive in-

stances 379

routines that operate on primitive ter-

minals 380

routines that operate on registers 381

routines that operate on task argu-

ments 383

routines that operate on timing checks

382

routines that operate on top-level

modules 379

routines that operate on variables 381

warning messages 387

accExpandedVector 550

accFaultSimulator 552

accForceFlag 573

accFunction 383

accHexStrVal 474, 570

accHold 386, 503

accInertialDelay 571

accInout 440

accInoutTerminal 386

accInput 440

accInputTerminal 386

accIntegerParam 384, 385

accIntegerVar 383

accIntermodPath 386

accIntVal 474, 570

accMapToMipd 414

accMinTypMaxDelays 390, 405, 414, 437,

557

accMixedIo 440

accModPath 383

accModPathHasIfnone 550

accModPathhasIfnone 482

accModule 383

accModuleInstance 383

accNamedBeginStat 386

accNamedEvent 383

accNamedForkStat 386

accNandGate 385

accNegative 457

accNegedge 441, 503

accNet 384

accNetBit 384

accNmosGate 385

accNochange 386, 503

accNoDelay 571

accNoedge 441, 503

accNorGate 385

accNotGate 385

accNotif0Gate 385

accNotif1Gate 385

accOctStrVal 474, 570

accOperator 384

accOrGate 385

accOther 552

accOutput 440

accOutputTerminal 386

accParameter 384

accPartSelect 384

accPartSelectPort 384

accPathDelayCount 390, 414, 437, 459, 561

accPathDelimStr 414, 444, 453

accPathInput 384

accPathOutput 384

accPathTerminal 384

accPeriod 386, 503

accPmosGate 385

accPort 384

accPortBit 384

accPosedge 441, 503

accPositive 457

accPrimitive 385

accPulldownGate 385

accPullupGate 385

accPureTransportDelay 571

accRcmosGate 385

accRealParam 384, 385

accRealTime 572

accRealVal 474, 570

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 7

accRealVar 385

accRecovery 386, 503

accReg 385

accRegBit 385

accReleaseFlag 573

accRnmosGate 385

accRpmosGate 385

accRtranGate 385

accRtranif0Gate 385

accRtranif1Gate 385

accScalar 550

accScalarPort 384

accScalarVal 474, 570

accScope 550

accSeqPrim 385

accSetup 386, 503

accSetuphold 386

accSimTime 572

accSimulator 552

accSkew 386, 503

accSpecparam 385

accStatement 386

accStringParam 384, 385

accStringVal 474, 570

accSupply0 384

accSupply1 384

accSystemFunction 386

accSystemRealFunction 386

accSystemTask 386

accTask 386

accTchk 386

accTchkTerminal 386

accTerminal 386

accTime 572

accTimeVar 386

accTimingAnalyzer 552

accToHiZDelay 390, 414

accTopModule 383

accTranGate 385

accTranif0Gate 385

accTranif1Gate 385

accTransportDelay 571

accTri 384

accTri0 384

accTri1 384

accTriand 384

accTrior 384

accTrireg 384

accUnexpandedVector 550

accUnknown 457

accurate simulation

requirements 261

accUserFunction 386

accUserRealFunction 386

accUserTask 386

accVector 550

accVectorPort 384

accVectorVal 474, 570

accWand 384

accWidth 386, 503

accWire 384

accWirePath 386

accWor 384

accXnorGate 385

accXorGate 385

addressing memory 295–296

always

and activity flow 118

ambiguous strength 90–101

and gate 81–82

arguments

data 366

paramvc 367

reason 366

system task/function 363, 511

arithmetic operators 40, 44

- 44

% 44

* 44

** 44

+ 44

/ 44

and unknown logic values 44

arrays 33

element 33

format 303

index 33

word 33

assign 67, 572

assign procedural continuous assignment

statement 125

assignmenst

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 8

steps for evaluating 63

assignment ??–73

continuous 69–73, 119

left hand side 69

of delays to module paths 222–224

procedural 119–127

procedural versus continuous 119

right hand side 69

variable declaration 73

assignments

scheduling implications 66

associating PLI routines to a name 365

asynchronous arrays 302–306

attribute names 427

attributes 14

B

b

binary number format 8

in state table 110

backannotation 269

backslash character 12

base format

binary 8

decimal 8

hexadecimal 8

octal 8

basic configuration elements 200

begin-end block statement 128, 146

behavioral modeling ??–151

bidirectional pass gate 86

binary display format 8

and high impedance state 282

and unknown logic value 282

Binary operators 6

binary operators 42

{} 51

precedence 42

binding instances 199

bit-select

of vector net or register 52

out of bounds 52, 53, 54

references of real numbers 32

bit-wise operators 47–48

AND 41

equivalence 41

exclusive OR 41

inclusive OR 41

negation 41

blank port connection 169

block comment 6

block statement 146–149

fork-join 146

naming of 148

parallel 146

sequential 146

start and finish times 148–149

timing for embedded blocks 148

blocking assignment statement 67

process 67

blocking assignments 119

blocking procedural assignment 119

buf gate 82–83

bufif gate 83–84

C

calltf routines 365, 754

capacitive networks 27–30

capacitive state 26

case

item expressions 132

case equality operator 41

case inequality operator 41

case statement 130–133

compared to if-else-if statement 132

constant expression 133

with don’t-care 133

casex 133

casez 133

cbAfterDelay 750

cbAssign 746

cbAtStartOfSimTime 750

cbDeassign 746

cbDisable 746

cbEndOfCompile 751

cbEndOfRestart 751

cbEndOfSave 751

cbEndOfSimulation 751

cbEnterInteractive 751

cbError 751

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 9

cbExitInteractive 751

cbForce 746

cbInteractiveScopeChange 751

cbNextSimTime 750

cbPLIError 751

cbReadOnlySynch 750

cbReadWriteSynch 750

cbRelease 746

cbSignal 751

cbStartOfRestart 751

cbStartOfSave 751

cbStartOfSimulation 751

cbStmt 746

cbTchkViolation 751

cbUnresolvedSystf 751

cbValueChange 746

cell 199, 521, 522

multiple 202

CELL declaration 269

DELAY 269

LABEL 269

TIMINGCHECK 269

cell load 522

characters

specified as octal digits 12

charge decay 30, 105

charge decay process 105

charge decay time 105

delay specification 105

charge storage

strength 24

charge storage strength 89

checktf routines 364

classes of PLI routines

calltf 365, 754

checktf 364

compiletf 754

consumer 365

misctf 365

sizetf 364

clause

cell 204

using 208

default 203

using 207

instance 203

using 208

liblist 204

use 205

cmos 84, 86

cmos gate 86–87

collapsed net 501, 550

combinational UDPs 107, 111

compared to level-sensitive sequential

112

input and output fields in state table 109

combined signal strengths 89–101

combined signal values 89–101

command line considerations 206

command line options 585

comments 6

compare

string operation 56

Compiler directives 14

compiletf routines 754

concatenation

and unsized numbers 51

of names 193

of operands 52

operator 40, 51

string operation 56

concurrency

of activity flow 118

condition

deterministic 265

non-deterministic 265

conditional compilation 353

conditional expression 215

conditional operator 41, 50–51

and ambiguous results 50

modeling three-state output busses 51

conditional operator ?: 42

conditional statement 127–130

conditioned event 265–266

versus unconditioned event 266

config 199

configuration parameters 414

accDefaultAttr0 414, 427

accDisplayErrors 414

accDisplayWarnings 414

accEnableArgs 414

accMapToMipd 414

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

10

accMinTypMaxDelays 414

accPathDelayCount 414

accPathDelimStr 414

configurations 199, 202

hierarchical 205

conflicts 25, 26

connecting ports

by name 188–189

by position with ordered list 187

rules 190–191

connection

difference between full and parallel 220

full 219–221

parallel 219–221

constant expression 40

constant function 161

constant numbers 6

consumer routine 365, 397

context-determined expression 59

continuous assignment 67, 69–73

and connecting ports 190

and driving strength 89, 284

and net variables 119

and wire nets 25

driving strength of 72

explicit declaration 70

implicit declaration 70

versus procedural assignment 73

control string 291

conversion 10, 32

copy

string operation 56

counting number of drivers 787

D

d

decimal number format 8

data argument 366

data path 484, 528, 535

data types 20–39

deassign 67, 572

deassign procedural statement 125

decimal display format 8

and high impedance state 282

and unknown logic value 282

compatibility with $monitor 282

decimal notation 10

declaring

events 138

multiple module paths in a single state-

ment 220–221

parameters in specify blocks 37–38

default

in case statement 131

in if-else-if statements 129

default statement 200

defparam 36, 181–182

delay

calculating for high impedance (z) transi-

tions 103

calculating for unknown logic value (x)

transitions 103

control 136, 137

default 103

distributed 211–226

fall 103

falling 104

for continuous assignment 72

gate 103–104

minimum:typical:maximum values 104

module path 211–226

net 103–104

propagation 78, 103

rise 103, 104

rules for delays controling the assignment

72

specify one value 103

specify three values 103

specify two values 103

trireg charge decay 105

turn-off 104

delay selection 225

delay specification 78

delays

inertial 571, 641, 645, 647, 742

pure transport 571, 641, 645, 647, 742

transport 571, 641, 645, 647, 742

delimiter 428

describing simple module paths 213–214

design 200

design statement 203

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

11

determinism in simulation execution 66

diagnostic messages

from $stop and $finish 301

disable

named blocks 163

tasks 163

use of 163

displaying information 278–285

displaying library binding information 209

don’t-care bits

in case statements 133

double quote character 12

drive strength specification 77

driven state 26

driving strength 89

compared to charge storage strength 284

keywords 73

E

e_limit 408, 459, 560, 565

edge control specifiers 258

edge transitions 258

edge-sensitive paths 214–218

edge-sensitive state-dependent paths 217

edge-sensitive UDPs 112

compared to level-sensitive UDPs 112

element

of array 33

else 128

embedding modules 166, 168

enable 141

enabling tasks 152–154

end

sequential block 146

endconfig 199

endgenerate 170

endspecify 38, 211

equality operators 46–47

!= 46

!== 46

== 46

=== 46

and ambiguous results 47

and operands of different sizes 47

precedence 47

ERR_ERROR 615

ERR_INTERNAL 615

ERR_MESSAGE 615

ERR_SYSTEM 615

ERR_WARNING 615

escape sequences 278

escaped identifiers 12

espresso format 304

event

active 64

control 136, 138

evaluation 64

explicit 136

expression 136

future 65

implicit 136

inactive 64

level sensitive control 141

monitor 65

named 64, 138–139

non blocking assign update 65

OR construct 139

queue 64

update 64

event control

repeat 142–145

event or 41

event queue 64

scheduling an event 64

event simulation 64

event_value_change 398

exception values 388

exit simulator 301

expanded object 24

expanded vectors 519, 551

expansion

of vector nets 24

explicit event 136

explicit zero delay 65

expression

context-determined 59

scalar 40

expressions ??–61

bit lengths 59–61

constant 40

self-determined 59

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

12

steps for evaluating 62

F

f

in state table 110

fall delay 103, 104

file descriptor 288

file inclusion 357

file output 583

file path resolution 201

file positioning 294

finish time

in parallel block statements 148

in sequential block statements 148

flushing output 294

for loop 134

force 67, 126, 572

precedence over assign 126

forever loop 134

fork-join block statement 146

fork-join construct 144

format specifications 279–281

ASCII character 279

b or B 279

binary 279

c or C 279

d or D 279

decimal 279

h or H 279

hexadecimal 279

hierarchical name 280

library binding 279

m or M 280

net signal strength 280, 283–284

o or O 279

octal 279

s or S 280

string 280, 285

t or T 280, 281

time format 280

timescales 281

u or U 280

v or V 280

z or Z 280

formats

array 303

of logic array personality 303–306

plane 304

formatting data to a string 289

frames 686

full connection 219–220

fullname 443, 726

fulltype 383, 445

function

call 160

constant

calls 161

functions 68, 158–161

and scope 197

as structured procedures 149

definition 150

purpose 152

returning a value 159

rules 160

G

gate level modeling ??–107

gate type specification 77

gates

and 81–82

bidirectional pass 86

delay specifications 86

buf 82–83

bufif 83–84

cmos 86–87

delay specification 86

compared to continuous assignments 75

connection list 79

delay 103–104

MOS 84–85

nand 81–82

nor 81–82

not 82–83

notif 83–84

notif0 83–84

notif1 83–84

or 81–82

pulldown 87

pullup 87

rules for instance connections 79

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

13

terminal list 79

xnor 81–82

xor 81–82

generate 170

generate case construct 178

generate instantiations 170

generate-conditional construct 177

generated identifiers 13

generate-loop 173

genvar 173

glitch control, see pulse control

H

H

logic 1 or high impedance state in

strength format 283

h

hexadecimal number format 8

handles

handle data type 368

vpiHandle data type 661

hexadecimal display format 8

and high impedance state 282

and unknown logic value 282

Hi

high impedance in strength format 283

hiconn definition 485

hierarchical config

using 208

hierarchical configurations 205

hierarchical name 443

hierarchical path name 192

hierarchy

level 192

name referencing 192–198, 280

of modules 166

scope 192

scope rules for naming 197–198

structures 166–198

top level names 192

high impedance state

and numbers 8

and trireg nets 26

and UDPs 116

display formats 282–284

effect in different bases 8

strength display format 283

symbolic representation 20

highz0 77

highz1 77

I

I/O error status 294

identifiers 12

escaped 12

keywords 13

if-else statement

omitting else from nested if 128

purpose 127

If-else-if 128

if-else-if statement

compared to case statement 132

ifnone 482, 550

ifnone condition 218

implicit

declarations 25, 350

event 136

implicit bidirectional connections 68

implicit continuous assignment statements 68

implicit conversion 10, 32

implicit event 138

include command 202

incremental restart 791

incremental save 790

index

of array 33

of memory 33

inertial delays 571, 641, 645, 647, 742

initial 150

and activity flow 118

for specifying waveforms 150

initial statements

in UDPs 113–115

initializing access routines 369

instance statement 200

instantiation

of modules 166–170

integer constants 7

integer_value_change 398

integers 31

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

14

division 44

interactive scope 487

inter-module paths 495

intra-assignment timing controls 142–145

invocation options 585

io_mcdprintf() 581, 583

io_printf() 581, 584

K

keywords 13

L

L

logic 0 or high impedance state in

strength format 283

La

large capacitor in strength format 283

large 24, 26

left-hand index 78

level-sensitive

event control 141

paths 215–219

sequential UDPs 112

versus combinational UDP 112

level-sensitive UDPs

compared to edge-sensitive UDPs 112

lexical conventions 6–14

lexical token

comment 6

definition of 6

number 6

operator 6

types 6

white space 6

liblist clause 200

libraries 200

library map

library declaration 200

library notation 199

load 522, 530

loading memory data from a file 295

loading timing data from an SDF file 296

localparam 36

loconn definition 488

logic array

personality declaration and loading 303

logic array personality 303–306

declaration 303

formats 303–306

loading 303

logic gates

and 81–82

bidirectional pass 86

buf 82–83

bufif 83–84

cmos 86–87

compared to continuous assignments 75

delay 103–104

MOS 84–85

nand 81–82

nor 81–82

not 82–83

notif 83–84

or 81–82

pulldown 87

pullup 87

xnor 81–82

xor 81–82

logic one 20

logic planes 303

logic strength modeling 88–102

logic zero 20

logic_value_change 398

logical operators 47

! 47

&& 47

|| 47

AND 40

and ambiguous results 47

and unknown logic value 47

equality 40

inequality 40

negation 40

OR 40

precedence 47

looping statement 134–136

for loop 134

forever loop 134

repeat loop 134

while loop 134

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

15

lsb (least significant bit) 23

M

mapping source files to libraries 202

mc_scan_plusargs() 585

Me

medium capacitor in strength format 283

medium 24, 26

memory 33

addressing 54

assigning values to 33

index 33

memval structure 623

minimum:typical:maximum values

delay 104

for module path delays 223, 224

format 57–59

minus sign(-)

arithmetic subtraction operator 40

in state table 110

misctf routines 365

mixing path and distributed delays 226

modeling

asynchronous clear/preset on an edge-

triggered D flip-flop 125

logic strength 88–102

module 166–169

and user-defined primitives(UDPs) 107

definition 166–167

hierarchy 166

instance parameter value assignment

182–183

instance parameter value assignment by

ordered list 182

instantiation 168–170

overriding parameter values 180–184

parameter assignment by name 183

parameter dependencies 184

port 169

terminal 169

top-level 168

module cell 521, 522

module parameter 35

dependencies 184

overriding values 180–184

passing to tasks 154–155

module path 489, 496, 497, 528, 533, 535

definition 212

delay 222–226

destination 211, 213, 220

polarity 221–222

simple 213

source 211, 213, 220

module path names 428

module path restrictions 213

modulus operator 40

definition 44

monitor flag 286

monitoring

continuous 286

strobed 285

MOS gate 84–85

nmos 85

pmos 85

rnmos 85

rpmos 85

MOS strength handling 102

msb (most significant bit) 23

mtm_flag 710, 739

multi channel descriptor 287

multi-channel descriptor 288

multiple drivers

at same strength level 99

driving the same net 26

inside a module 227

outside a module 228

multiple library mapping files 202

multiple module path delays

assigning in one statement 220–221

multi-way decisions

case statement 130

if-else-if statement 129

N

n

in state table 110

name 364, 452, 726

name space 38

block name space 38

definitions 38

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

16

module name space 38

port name space 39

specify block name space 39

name spaces 38

named blocks

and hierarchical names 192

and scope 197

purpose 148

named events 64, 138–139

used with event expressions 138

named objects

with acc_fetch_fullname() 443

with acc_fetch_name() 452

with acc_handle_object() 492

names

of hierarchical paths 192–198

nand gate 81–82

negative numbers 8

negedge 138, 214, 258

net and register bit addressing 54

net arrays 33

net delay 72

net type resolution rule 191

net type table 191

net types 25

nets 20–31

delay 103–104

initialization 25

trireg strength 89

types of 25–31

wired logic 99

new line character 12, 279

newline character 12

nmos 84–85

node

in hierarchical name tree 193

non blocking assignment statement 67

non blocking procedural assignment 121–

124

evaluating assignments 122

multiple assignments 123

non-determinism in simulation execution 66

nor gate 81–82

not gate 82–83

notif gate 83–84

notif0 84

notif1 84

notifier 259–261

in edge sensitive UDP 259–261

notifiers

user-defined responses to timing viola-

tions 259

null

expression 278

numbers 6

base format 8

size specification 8

O

o

octal number format 8

object

full name 443

fulltype 445

fulltypes, list of all 383

name 452

type 470

types, list of all 383

objects

supported by acc_next() 515

supported by acc_object_in_typelist()

548

supported by acc_object_of_type() 550

supported by VCL 397, 574

octal display format 8

on/off control

of monitoring tasks 286

one-line comment 6

opening and closing files 286

operands 52–57

bit-select 52

concatenation 52

definition 40

function call 52

part-select 52

strings 55–57

operator

event OR 52

operators 40–52

- 40

! 40, 47

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

17

!= 40, 46

!== 41, 46

% 40

& 41

&& 40, 47

* 40

** 40

*> 213–221

+ 40

/ 40

< 40, 46

<< 41, 49

<<< 41, 49

<= 40, 46

= 69

== 40, 46

=== 41, 46

=> 213–221

> 40, 46

>= 40, 46

>> 41, 49

>>> 41, 49

?: 41

^ 41

^~ 41

{{}} 40

{} 40, 51

| 41

|| 40, 47

~ 41

~& 41

~^ 41

~| 41

and real numbers 32

arithmetic 40, 44

binary 6, 42

bit-wise 47–48

bit-wise AND 41

bit-wise equivalence 41

bit-wise exclusive OR 41

bit-wise inclusive OR 41

bit-wise negation 41

case equality 41

case inequality 41

concatenation 40, 51

conditional 6, 41, 50–51

definition 6

equality 46–47

event or 41

left shift

arithmetic 41

logical 41

logical 47

logical AND 40

logical equality 40

logical inequality 40

logical negation 40

logical OR 40

modulus 40

reduction 48–49

reduction AND 41, 48

reduction NAND 41, 48

reduction NOR 41, 48

reduction OR 41, 48

reduction XNOR 41, 48

reduction XOR 41, 48

relational 40, 46

replication 40

right shift

arithmetic 41

logical 41

shift 49

unary 6

unary reduction 48

or gate 81–82

output

to files 286–289

overloading system task/function names 362

overriding module parameter values 180–184

assigning values in-line within module

instances 182–183

defparam 181

compared to assignmesions 183

P

p

in state table 110

parallel block 147

parallel block statement

finish time 148

start time 148

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

18

parallel connection 219–220

parameter attribute name 427

Parameter Value Change flags, see PVC flags

parameters 34

paramvc argument 367

parentheses

and changing operator precedence 43

part-select

of vector net or register 52

references of real numbers 32

path delay, see module path

path delimiter 428

path names 444

PATHPULSE$ specparam 229

personality

memory 302

of logic array 303–306

PLA devices

array logic types 303

array types 302–306

list of system tasks 302

logic array personality declaration 303

logic array personality formats 303–306

logic array personality loading 303

plane

format 304

in programmable logic arrays 303

PLI history 361

PLI interface mechanism 362

PLI memory restrictions 363

plus sign(+)

arithmetic addition operator 40

pmos 84–85

polarity 221–222

negative 222

positive 221

unknown 221

port 184–192

connecting

by name 188–189

by position with ordered list 187

rules for 190–191

connecting module instance ports by

name 188

connecting module instance ports by or-

dered list 187

declaration 185

definition 184

module 169

port connections 68

port expression 188

posedge 138, 214, 258

power operator 44

power supplies

modeled by supply nets 31

precedence

binary operators 42

equality operators 47

logical operators 47

relational operators 46

precompiling using a separate compilation

tool 206

primitive instance identifier 78

printing, see text output

probabilistic distribution functions 311–312

$dist_chi_square 312

$dist_erlang 312

$dist_exponential 312

$dist_normal 312

$dist_poisson 312

$dist_t 312

$dist_uniform 312

procedural assignment 119–127

and integers 32

and time variables 32

blocking 119

non blocking 121–124

versus continuous assignment 73

procedural assignments

blocking assignment 119

procedural continuous assignment 67, 572

procedural continuous assignments 125–127

assign 125–126

deassign 125–126

force 126

precedence 126

release 126

procedural force 572

procedural statements

in behavioral models 118

procedural timing controls 136–145

delay control 137

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

19

event control 136

fork-join block 147

intra-assignment timing controls 142–

145

procedure

always construct 149

function 149

initial construct 149

task 149

process 64

programmable logic arrays

list of system tasks 302

logic types 303

personality

declaration 303

formats 303–306

loading 303

types 302–306

propagation delay

for gates and nets 103

Pu

pull drive in strength format 283

pull 26

pull0 77, 360

pull1 77, 360

pulldown 77

pulldown source 87

pullup 77

pullup source 87

pulse

negative

detection 232

pulse control 408, 459, 560, 565, 710, 739

detailed capabilities 231

pulse filtering

on-event versus on-detect 231

pulse limit value 229

global control of 230

SDF annotation 230

specify block control 229

pulsere_flag 710, 739

pure transport delays 571, 641, 645, 647, 742

PVC flags 591, 606, 618, 651

Q

qualified paths 214–218

edge-sensitive 214–218

level-sensitive 215–221

queue management 306–308

$q_add 306, 307

$q_exam 306, 307

$q_full 306, 307

$q_initialize 306

$q_remove 306, 307

status parameters 308

queueing models 306

R

r

in state table 110

race condition 144

race conditions 66

random access memory(RAM)

modeled by register arrays 33

random number generators

probabilistic distribution functions 311

range specification 78

rcmos 84, 86

reading a character at a time 290

reading a line at a time 290

reading binary data 293

reading formatted data 290

read-only memory(ROM)

modeled by register arrays 33

real constant numbers 10

real declarations 32

real number constants 32

real numbers 31

and operators 32

conversion to integers 10, 32

format specifications used with 280

in port connections 189

operators with real number operands 41–

42

real variable data types 32

real_value_change 398

realtime

variables 31

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

20

realtime declarations 32

reason argument 366

reason constants 366, 367

reason_disable 367

reason_endofcompile 366

reason_endofreset 367

reason_finish 366

reason_force 367

reason_interactive 367

reason_paramdrc 367

reason_paramvc 366, 587, 588

reason_reactivate 581, 634, 635, 636

reason_reactiviate 366

reason_release 367

reason_reset 367

reason_restart 367

reason_rosynch 366, 581, 604, 631

reason_save 367

reason_scope 367

reason_startofsave 367

reason_synch 366, 580, 631, 650

recursive, see frames 686

reducing pessimism 132

reduction operators 48–49

& 41

~& 41

inclusive OR 41

unary AND 41

unary NAND 41

unary NOR 41

XNOR 41

XOR 41

reentrant, see frames 686

reg arrays 33

reg declaration 22

registers

and level-sensitive sequential UDPs 112

notifier 259

used in procedural assignments 73

regs 31

reject_limit 408, 459, 560, 565

relational operators 40, 46

< 46

<= 46

> 46

>= 46

precedence 46

release 67, 126, 572

repeat event control 142–145

repeat loop 134

replication

operator 40

resistive devices

modeled with tri0 and tri1 nets 30

restrictions on data types

in continuous assignments 69, 190

in procedural assignments 69, 73, 119

when connecting ports 190

right-hand index 78

rise delay 103, 104

rnmos 84–85

rpmos 84–85

rtran 86

rtranif0 86

rtranif1 86

rules

for delays controling the assignment 72

for describing module paths 221

for expression bit lengths 59

for expression types 62

for instance connections 79

net type resolution 191

to use the $dumpports 340

S

s

in string display format 285

s_acc_time structure 572

s_acc_value structure 474

s_acc_vecval structure 475, 570

s_location data structure 450

s_setval_delay structure 571

s_setval_value structure 569

s_strengths structure 399

s_strengthval structure 622

s_tfexprinfo structure 598

s_tfnodeinfo structure 620

s_timescale_info structure 468

s_vc_record structure 398

s_vecval structure 598, 622

s_vpi_delay structure 709

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

21

s_vpi_time structure 709

scalared 24

scalars

compared to vectors 23

scalar nets and driving strength of contin-

uous assignment 72

scheduling semantics 64

scientific notation 10

scope 500, 542

and hierarchical names 193

rules 197–198

SDF

INTERCONNECT construct 273

interconnect delay annotation 273

multiple annotations 274

pulse limit annotation 275

to Verilog delay value mapping 276

SDF annotation

down-hierarchy annotation 274

hierarchically overlapping annotations

274

NETDELAY construct 273

of interconnect delays 273

of specparams 272

PATHPULSE 275

PATHPULSEPERCENT 275

PORT construct 273

up-hierarchy annotations 274

SDF annotator 269

SDF constructs

mapping to Verilog 269

SDF delay constructs

mapping to Verilog declarations 269

SDF files

backannotation 269

SDF timing check constructs

mapping to Verilog 271

seed 312

self-determined expression 59

sequential block 118

sequential block statement 146–147

finish time 148

start time 148

sequential UDP initialization 113–115

sequential UDPs

input and output fields in state table 110

set of values (0, 1, x, z) 20

shift operators 41, 49

<< 49

<<< 49

>> 49

>>> 49

short-circuiting 43

showcancelled behavior 232

signed expressions 62

handling ’X’ and ’Z’ 63

signed integers 8

signed value 45

simple decimal number 8

simple state-dependent paths 216

simulated net 501, 550, 551

simulating module path delays

when driving wired logic 227–228

simulation

going back with incremental restart 791

simulation cycle 65

simulation reference model 65

simulation time 64

single-pass use-model

elaboration-time compiling 206

precompiling 206

size constant 8

size of displayed data 281–282

sized numbers 8

sizetf routines 364

Sm

small capacitor in strength format 283

small 24, 26

source

pulldown 87

pullup 87

specify 38, 211

specify block ??–236

specify block system tasks

$hold 242

$period 255

$recovery 246

$setuphold 243

$skew 249

$timeskew 250

$width 254–255

specify parameters 37–38

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

22

as run time constant in specify block 212

specifying the time unit of delays entered in-

teractively 298

specifying transition delays on module paths

223–224

x transitions 224–225

specparam 37–38, 272

specparam attribute name 427

sregister_value_change 398

St

strong drive in strength format 283

standard output 287

start time

in parallel block statements 148

in sequential block statements 148

state dependent path delays 215–221

stochastic analysis 311–312

probabilistic distribution functions 311–

312

queue management 306–308

stop 301

strength 77–78

ambiguous 90–101

classifications 90

and MOS gates 102

and scalar net variables 20

charge storage 89

driving 89

gates that accept specifications 77

of combined signals 89–101

on trireg nets 26

range of possible values 91

reduction by non-resistive devices 102

reduction by resistive devices 102

reduction table 102

scale of strengths 89

specification 88

supply net 102

tri0 102

tri1 102

trireg 102

strength display format 283–284

high impedance 283

large capacitor 283

logic value 0,1,H,L,X,Z 283

medium capacitor 283

pull drive 283

small capacitor 283

strong drive 283

supply drive 283

weak drive 283

strength_value_change 398

strengths 24

of net types 102

string buffer 563

string handling 394

strings 10–12, 55–57, ??–279

definition 10

display format 280, 285

in vector variables 56

manipulation 11

operations 56

padding 11

special characters 11

value padding 56–57

variable declaration 11

strobed monitoring 285

strong 26

strong0 77

strong1 77

structured procedure 149–151

always construct 149

function 149

initial construct 149

task 149

Su

supply drive in strength format 283

supply 26

supply net strength 102

supply nets 31

supply0 77

supply1 77

switch processing 67

switches

MOS 84–85

synchronous arrays 302–306

system functions 277–312

system task/function arguments 363

system task/function name 364

system task/functions 513

system tasks 277–312

for continuous monitoring 286

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

23

for displaying information 278–285

for interrupting the simulator 301

for processing stimulus patterns faster

787

for showing number of drivers 787

for writing formatted output to files 286–

289

generating a checkpoint in the value

change dump file 327

limiting the size of the value change

dump file 327

reading the value change dump file dur-

ing a simulation 328

resuming the dump into the value change

dump file 326–327

showing the timescale of a module 297–

298

specifying how %t reports time informa-

tion 298–301

specifying the name of the value change

dump file 324

specifying the variables to be dumped in

the value change dump file 325

stopping the dump into the value change

dump file 326–327

System tasks and functions 13

system tasks and functions 277–312

T

t

timescale format 281

tab character 12

task enabling statement 154

task/function arguments 363, 511

task/function name 364

task/function routines

history 361

tasks 68, ??–161

and hierarchical names 192

and scope 197

as structured procedures 149

definition 150

disabling within a nested chain 163

enabling 152–154

passing parameters 154–155

purpose 152

text macro substitutions 351–353

and `define 351

definition 351

redefinition 353

with arguments 351

text output

io_mcdprintf() 583

io_printf() 584

tf_error() 595

tf_message() 615

tf_text() 652

tf_warning() 656

vpi_mcd_close() 729

vpi_mcd_name() 731

vpi_mcd_open() 732

vpi_mcd_printf() 733

vpi_printf() 735

tf_add_long() 586

tf_asynchoff() 580, 587

tf_asynchon() 580, 588, 591, 606, 618, 651

tf_clearalldelays() 581, 589

tf_compare_long() 590

tf_copypvc_flag() 580, 588, 591

tf_divide_long() 592

tf_dofinish() 581, 593

tf_dostop() 581, 594

tf_error() 581, 595, 616

tf_evaluatep() 578, 596

tf_exprinfo() 578, 596, 597, 625

tf_getcstringp() 579, 600

tf_getinstance() 581, 601

tf_getlongp() 578, 602

tf_getlongtime() 580, 603

tf_getnextlongtime() 604

tf_getp() 578, 605

tf_getpchange() 580, 588, 606

tf_getrealp() 578, 607

tf_getrealtime() 608

tf_gettime() 580, 609

tf_gettimeprecision() 580, 610

tf_gettimeunit() 580, 611

tf_getworkarea() 581, 612, 637

tf_iasynchoff() 587

tf_iasynchon() 588, 591, 606, 618, 651

tf_iclearalldelays() 589

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

24

tf_icopypvc_flag() 591

tf_ievaluatep() 596

tf_iexprinfo() 596, 597, 625

tf_igetcstringp() 600

tf_igetlongp() 602

tf_igetlongtime() 603

tf_igetp() 605

tf_igetpchange() 606

tf_igetrealp() 607

tf_igetrealtime() 608

tf_igettime() 609

tf_igettimeprecision() 610

tf_igettimeunit() 611

tf_igetworkarea() 612, 637

tf_imipname() 617

tf_imovepvc_flag() 618

tf_inodeinfo() 620

tf_integer_node 621

tf_inump() 624

tf_ipropagatep() 625

tf_iputlongp() 626

tf_iputp() 627

tf_iputrealp() 628

tf_irosynchronize() 631

tf_isetdelay() 589, 634

tf_isetlongdelay() 635

tf_isetrealdelay() 636

tf_isetworkarea() 612, 637

tf_isizep() 638

tf_ispname() 639

tf_istrdelputp() 640

tf_istrgetp() 642

tf_istrlongdelputp() 644

tf_istrrealdelputp() 646

tf_isynchronize() 650

tf_itestpvc_flag() 651

tf_itypep() 653

tf_long_to_real() 613

tf_longtime_tostr() 614

tf_memory_node 621

tf_message() 581, 615, 652

tf_mipname() 581, 617

tf_movepvc_flag() 580, 588, 606, 618

tf_multiply_long() 619

tf_netscalar_node 621

tf_netvector_node 621

tf_nodeinfo() 579, 620

tf_null_node 621

tf_nullparam 598, 653

tf_nump() 578, 624

tf_propagatep() 578, 625

tf_putlongp() 578, 626

tf_putp() 578, 627

tf_putrealp() 578, 628

tf_read_restart() 629

tf_readonly 598, 653

tf_readonlyreal 598, 653

tf_readwrite 598, 653

tf_readwritereal 598, 653

tf_real_node 621

tf_real_to_long() 630

tf_reg_node 621

tf_rosynchronize() 580, 631

tf_rwbitselect 598

tf_rwmemselect 598

tf_rwpartselect 598

tf_scale_longdelay() 632

tf_scale_realdelay() 580, 633

tf_setdelay() 581, 589, 634

tf_setlongdelay() 635

tf_setrealdelay() 636

tf_setworkarea() 581, 612, 637

tf_sizep() 638

tf_spname() 581, 639

tf_strdelputp() 578, 640

tf_strgetp() 578, 642

tf_strgettime() 580, 643

tf_string 598, 653

tf_strlongdelputp() 578, 644

tf_strrealdelputp() 578, 646

tf_subtract_long() 648

tf_synchrnize() 65

tf_synchronize() 580, 631, 650

tf_testpvc_flag() 580, 588, 651

tf_text() 581, 616, 652

tf_time_node 621

tf_typep() 578, 653

tf_unscale_longdelay() 580, 654

tf_unscale_realdelay() 580, 655

tf_warning() 581, 616, 656

tf_write_save() 629, 657

tfargs 363

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

25

time

arithmetic operations performed on time

variables 32

variables 31

time precision 359

time unit 359

time_value_change 398

timing checks ??–266, 503, 507, 509

$hold 242

$period 255

$recovery 246

$recrem 247

$removal 245

$setup 241

$setuphold 243

$skew 249

$timeskew 250

$width 254–255

negative 267

conditions 263

notifiers 265

using a stability window 240

vector signals 266

timing checks for clock and control signals

248

top-level module 168

tran 86

tranif0 86

tranif1 86

transistors 86

transitions

01 113

unspecified 112

transport delays 571, 641, 645, 647, 742

tree structure

of hierarchical names 192

tri nets 25

tri0 30

net type 102

tri1 30

net type 102

triand 26

trior 26

trireg

and charge storage strength 89

turn-off delay 104

type 383, 470

types of nets

supply nets 31

tri nets ??–25, 25–??

tri0 102

tri0 nets 30

tri1 102

tri1 nets 30

triand 26

trior 26

trireg 102

trireg nets 26, 284

wire 25

wired AND 26

wired logic 99

wired nets 26

wired OR 26

U

UDP port declarations 109

UDPs ??–117

- in state table 110

(??) in state table 110

(01) in state table 110

(0x) in state table 110

(1x) in state table 110

(vw) in state table 110

(x1) in state table 110

* in state table 110

? in state table 110

0 in state table 110

1 in state table 110

b in state table 110

combinational UDPs 111

definition 107–109

edge-sensitive UDPs 112

f in state table 110

instances 115–116

level-sensitive dominance 117

level-sensitive sequential UDPs 112

mixing level- and edge-sensitive descrip-

tions 116–117

n in state table 110

p in state table 110

ports 109

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

26

r in state table 110

state table 109

summary of symbols in state table 110

x in state table 110

unary arithmetic operators 44

unary operators 6

! 47

<< 49

>> 49

unconnected port 169

undescore character 9

unexpanded object 24

unexpanded vectors 551

unknown logic value

and numbers 8

display formats 282–284

effect in different bases 8

in state table 110, 113

symbolic representation 20

unsigned integers 8

unsigned number 8

unsigned value 45

unspecified transitions 112

upwards name referencing 195–198

User defined system tasks and functions 658

user-defined primitives (UDPs) 107

user-defined system task/function name 364

user-defined system task/function name

overloading 362

user-defined system task/function names 361

user-defined system task/function types 362

user-defined system task/functions 513

using VCL access routines 396

V

value change dump file ??–338

creating 324–328

creating the extended file 339

extended VCD node information 345

format 329–338

formats of variable values 331–332

general rules for extended VCD system

tasks 343

generating a checkpoint 327, 341

keyword commands

$comment 332

$date 333

$dumpall 336

$dumpoff 336, 337, 343

$enddefinitions 333

$scope 333

$timescale 334

$upscope 334

$var 335

$version 334

limiting the size 327

limiting the size of the dump file 341

reading the dump file during simulation

342

reading the value change dump file dur-

ing a simulation 328

resuming the dump 326–327

rules to conflicts 348

specifying the dumpfile name and the

ports to be dumped 339

specifying the name 324

specifying the variables to be dumped

325

stopping and resuming the dump 340

stopping the dump 326–327

value changes 347

Value Change Link, see VCL

value set (0, 1, x, z) 20

values

of combined signals 89–101

variables 22–23

VCD file

extended 343

VCL 574, 576

vcl_verilog 576

vcl_verilog_logic 397, 575

vcl_verilog_strength 397, 575

vcl0 399

vcl1 399

vclHighZ 399

vclLarge 399

vclMedium 399

vclPull 399

vclSmall 399

vclStrong 399

vclSupply 399

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

27

vclWeak 399

vclX 399

vclx 399

vclz 399

vector_value_change 398

vectored 24

vectors 23

and vector net expansion 24

expanded 519, 551

unexpanded 551

vlog_startup_routines array 755

VPI data model diagrams

active time format 696

assignments 692

attributes 697

case statement 694

continuous assignments 688

delay controls 692

delay terminals 687

event controls 692

expressions 690

expressions, simple 689

for loops 693

forever loops 693

frames 686

function calls 685

functions 684

if statement 694

instance arrays 670

inter-module paths 683

IO declarations 671

iterator 698

memories 678

module paths 683

modules 669

named events 679, 691

net drivers and loads 687

nets 673

object range 679

parameters 680

path term 683

ports 672

primitives 681

procedural assign statement 695

procedural blocks 691

procedural deassign statement 695

procedural disable statement 695

procedural force statement 695

procedural release statement 695

process 691

reg drivers and loads 687

regs 675

repeat controls 692

repeat loops 693

scopes 671

simple expressions 689

specparams 680

statements 691

task calls 685

tasks 684

timing check 684

UDPs 682

variables 677

wait control 693

while loops 693

VPI routines

callback overview 658

error handling 659

history 361

key to data model diagrams 665

lsited by functional groups 663

object access overview 659

object classifications 660

object types 662

traversing expressions 659

vpi_chk_error() 700

vpi_compare_objects() 701

vpi_control() 702

vpi_flush() 703

vpi_free_object() 704

vpi_get() 705

vpi_get_cb_info() 706

vpi_get_data() 707

vpi_get_delays() 709

vpi_get_str() 712

vpi_get_systf_info() 713

vpi_get_time() 714

vpi_get_userdata() 715

vpi_get_value() 716

vpi_get_vlog_info() 722

vpi_handle() 723

vpi_handle_by_index() 724

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

28

vpi_handle_by_multi_index() 725

vpi_handle_by_name() 726

vpi_handle_multi() 727

vpi_iterate() 728

vpi_mcd_close() 729

vpi_mcd_flush() 730

vpi_mcd_name() 731

vpi_mcd_open() 732

vpi_mcd_printf() 733

vpi_mcd_vprintf() 734

vpi_printf() 735

vpi_put_data() 736

vpi_put_delays() 738

vpi_put_userdata() 741

vpi_put_value() 742

vpi_register_cb() 65, 745

vpi_register_systf() 753

vpi_remove_cb() 757

vpi_scan() 758

vpi_vprintf() 759

vpiCancelEvent 742, 743

vpiFile 662

vpiForceFlag 742

vpiHandle 661

vpiInertialDelay 742

vpiInterModPath 727

vpiIntFunc 754

vpiIterator 728

vpiLineNo 662

vpiMultiArray 725

vpiNoDelay 742

vpiPureTransportDelay 742

vpiRealFunc 754

vpiReleaseFlag 742

vpiReturnEvent 742

vpiScaledRealTime 744

vpiSchedEvent 742

vpiScheduled 743

vpiSizedFunc 754

vpiSizedSignedFunc 754

vpiSysFunction 754

vpiSysTask 754

vpiTimeFunc 754

vpiTimeUnit 705

vpiTransportDelay 742

vpiType 662

vregister_value_change 398

W

wait statement

as level-sensitive event control 141

to advance simulation time 136

wand 26

We

weak drive in strength format 283

weak 26

weak0 77

weak1 77

while loop 134

white space 6

wired AND configurations 26

wired logic nets

wand 99

wired-AND configurations 26

wired-OR configurations 26

wor 99

wired-OR configurations 26

wires 25

wor 26

word

of array 33

writing formatted output to files 286–289

writing to files 583

X

X

as display format for unknown logic val-

ue 282

unknown logic value in strength format

283

x

as display format for unknown logic val-

ue 282

in state table 110

unknown logic value 20

xnor gate 81–82

xor gate 81–82

IEEE
DRAFT STANDARD FOR VERILOG® HARDWARE DESCRIPTION LANGUAGE P1364-2005/D2

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

29

Z

Z

as display format for high impedance

state 282

high impedance state in strength format

283

z

as display format for high impedance

state 282

high impedance state 20

	1. Overview
	1.1 Objectives of this standard
	1.2 Conventions used in this standard
	1.3 Syntactic description
	1.4 Contents of this standard
	1.5 Header file listings
	1.6 Examples
	1.7 Prerequisites

	2. Lexical conventions
	2.1 Lexical tokens
	2.2 White space
	2.3 Comments
	2.4 Operators
	2.5 Numbers
	2.5.1 Integer constants
	2.5.2 Real constants
	2.5.3 Conversion

	2.6 Strings
	2.6.1 String variable declaration
	2.6.2 String manipulation
	2.6.3 Special characters in strings

	2.7 Identifiers, keywords, and system names
	2.7.1 Escaped identifiers
	2.7.2 Generated identifiers
	2.7.3 Keywords
	2.7.4 System tasks and functions
	2.7.5 Compiler directives

	2.8 Attributes
	2.8.1 Examples
	2.8.2 Syntax

	3. Data types
	3.1 Value set
	3.2 Nets and variables
	3.2.1 Net declarations
	3.2.2 Variable declarations

	3.3 Vectors
	3.3.1 Specifying vectors
	3.3.2 Vector net accessibility

	3.4 Strengths
	3.4.1 Charge strength
	3.4.2 Drive strength

	3.5 Implicit declarations
	3.6 Net initialization
	3.7 Net types
	3.7.1 Wire and tri nets
	3.7.2 Wired nets
	3.7.3 Trireg net
	3.7.4 Tri0 and tri1 nets
	3.7.5 Supply nets

	3.8 regs
	3.9 Integers, reals, times, and realtimes
	3.9.1 Operators and real numbers
	3.9.2 Conversion

	3.10 Arrays
	3.10.1 Net arrays
	3.10.2 reg and variable arrays
	3.10.3 Memories

	3.11 Parameters
	3.11.1 Module parameters
	3.11.2 Local parameters - localparam
	3.11.3 Specify parameters

	3.12 Name spaces

	4. Expressions
	4.1 Operators
	4.1.1 Operators with real operands
	4.1.2 Binary operator precedence
	4.1.3 Using integer numbers in expressions
	4.1.4 Expression evaluation order
	4.1.5 Arithmetic operators
	4.1.6 Arithmetic expressions with regs and integers
	4.1.7 Relational operators
	4.1.8 Equality operators
	4.1.9 Logical operators
	4.1.10 Bit-wise operators
	4.1.11 Reduction operators
	4.1.12 Shift operators
	4.1.13 Conditional operator
	4.1.14 Concatenations
	4.1.15 Event or

	4.2 Operands
	4.2.1 Vector bit-select and part-select addressing
	4.2.2 Array and memory addressing
	4.2.3 Strings

	4.3 Minimum, typical, and maximum delay expressions
	4.4 Expression bit lengths
	4.4.1 Rules for expression bit lengths
	4.4.2 An example of an expression bit-length problem
	4.4.3 Example of self-determined expressions

	4.5 Signed expressions
	4.5.1 Rules for expression types
	4.5.2 Steps for evaluating an expression
	4.5.3 Steps for evaluating an assignment
	4.5.4 Handling X and Z in signed expressions

	5. Scheduling semantics
	5.1 Execution of a model
	5.2 Event simulation
	5.3 The stratified event queue
	5.4 The Verilog simulation reference model
	5.4.1 Determinism
	5.4.2 Nondeterminism

	5.5 Race conditions
	5.6 Scheduling implication of assignments
	5.6.1 Continuous assignment
	5.6.2 Procedural continuous assignment
	5.6.3 Blocking assignment
	5.6.4 Nonblocking assignment
	5.6.5 Switch (transistor) processing
	5.6.6 Port connections
	5.6.7 Functions and tasks

	6. Assignments
	6.1 Continuous assignments
	6.1.1 The net declaration assignment
	6.1.2 The continuous assignment statement
	6.1.3 Delays
	6.1.4 Strength

	6.2 Procedural assignments
	6.2.1 Variable declaration assignment
	6.2.2 Variable declaration syntax

	7. Gate and switch level modeling
	7.1 Gate and switch declaration syntax
	7.1.1 The gate type specification
	7.1.2 The drive strength specification
	7.1.3 The delay specification
	7.1.4 The primitive instance identifier
	7.1.5 The range specification
	7.1.6 Primitive instance connection list

	7.2 and, nand, nor, or, xor, and xnor gates
	7.3 buf and not gates
	7.4 bufif1, bufif0, notif1, and notif0 gates
	7.5 MOS switches
	7.6 Bidirectional pass switches
	7.7 CMOS switches
	7.8 pullup and pulldown sources
	7.9 Logic strength modeling
	7.10 Strengths and values of combined signals
	7.10.1 Combined signals of unambiguous strength
	7.10.2 Ambiguous strengths: sources and combinations
	7.10.3 Ambiguous strength signals and unambiguous signals
	7.10.4 Wired logic net types

	7.11 Strength reduction by nonresistive devices
	7.12 Strength reduction by resistive devices
	7.13 Strengths of net types
	7.13.1 tri0 and tri1 net strengths
	7.13.2 trireg strength
	7.13.3 supply0 and supply1 net strengths

	7.14 Gate and net delays
	7.14.1 min:typ:max delays
	7.14.2 trireg net charge decay

	8. User-defined primitives (UDPs)
	8.1 UDP definition
	8.1.1 UDP header
	8.1.2 UDP port declarations
	8.1.3 Sequential UDP initial statement
	8.1.4 UDP state table
	8.1.5 Z values in UDP
	8.1.6 Summary of symbols

	8.2 Combinational UDPs
	8.3 Level-sensitive sequential UDPs
	8.4 Edge-sensitive sequential UDPs
	8.5 Sequential UDP initialization
	8.6 UDP instances
	8.7 Mixing level-sensitive and edge-sensitive descriptions
	8.8 Level-sensitive dominance

	9. Behavioral modeling
	9.1 Behavioral model overview
	9.2 Procedural assignments
	9.2.1 Blocking procedural assignments
	9.2.2 The nonblocking procedural assignment

	9.3 Procedural continuous assignments
	9.3.1 The assign and deassign procedural statements
	9.3.2 The force and release procedural statements

	9.4 Conditional statement
	9.4.1 If-else-if construct

	9.5 Case statement
	9.5.1 Case statement with don’t-cares
	9.5.2 Constant expression in case statement

	9.6 Looping statements
	9.7 Procedural timing controls
	9.7.1 Delay control
	9.7.2 Event control
	9.7.3 Named events
	9.7.4 Event or operator
	9.7.5 Implicit event_expression list
	9.7.6 Level�sensitive event control
	9.7.7 Intra-assignment timing controls

	9.8 Block statements
	9.8.1 Sequential blocks
	9.8.2 Parallel blocks
	9.8.3 Block names
	9.8.4 Start and finish times

	9.9 Structured procedures
	9.9.1 Initial construct
	9.9.2 Always construct

	10. Tasks and functions
	10.1 Distinctions between tasks and functions
	10.2 Tasks and task enabling
	10.2.1 Task declarations
	10.2.2 Task enabling and argument passing
	10.2.3 Task memory usage and concurrent activation

	10.3 Functions and function calling
	10.3.1 Function declarations
	10.3.2 Returning a value from a function
	10.3.3 Calling a function
	10.3.4 Function rules
	10.3.5 Use of constant functions

	11. Disabling of named blocks and tasks
	12. Hierarchical structures
	12.1 Modules
	12.1.1 Top�level modules
	12.1.2 Module instantiation
	12.1.3 Generated instantiation

	12.2 Overriding module parameter values
	12.2.1 defparam statement
	12.2.2 Module instance parameter value assignment
	12.2.3 Parameter dependence

	12.3 Ports
	12.3.1 Port definition
	12.3.2 List of ports
	12.3.3 Port declarations
	12.3.4 List of ports declarations
	12.3.5 Connecting module instance ports by ordered list
	12.3.6 Connecting module instance ports by name
	12.3.7 Real numbers in port connections
	12.3.8 Connecting dissimilar ports
	12.3.9 Port connection rules
	12.3.10 Net types resulting from dissimilar port connections
	12.3.11 Connecting signed values via ports

	12.4 Hierarchical names
	12.5 Upwards name referencing
	12.6 Scope rules

	13. Configuring the contents of a design
	13.1 Introduction
	13.1.1 Library notation
	13.1.2 Basic configuration elements

	13.2 Libraries
	13.2.1 Specifying libraries - the library map file
	13.2.2 Using multiple library mapping files
	13.2.3 Mapping source files to libraries

	13.3 Configurations
	13.3.1 Basic configuration syntax
	13.3.2 Hierarchical configurations

	13.4 Using libraries and configs
	13.4.1 Precompiling in a single-pass use-model
	13.4.2 Elaboration-time compiling in a single-pass use-model
	13.4.3 Precompiling using a separate compilation tool
	13.4.4 Command line considerations

	13.5 Configuration examples
	13.5.1 Default configuration from library map file
	13.5.2 Using the default clause
	13.5.3 Using the cell clause
	13.5.4 Using the instance clause
	13.5.5 Using a hierarchical config

	13.6 Displaying library binding information
	13.7 Library mapping examples
	13.7.1 Using the command line to control library searching
	13.7.2 File path specification examples
	13.7.3 Resolving multiple path specifications

	14. Specify blocks
	14.1 Specify block declaration
	14.2 Module path declarations
	14.2.1 Module path restrictions
	14.2.2 Simple module paths
	14.2.3 Edge-sensitive paths
	14.2.4 State-dependent paths
	14.2.5 Full connection and parallel connection paths
	14.2.6 Declaring multiple module paths in a single statement
	14.2.7 Module path polarity

	14.3 Assigning delays to module paths
	14.3.1 Specifying transition delays on module paths
	14.3.2 Specifying x transition delays
	14.3.3 Delay selection

	14.4 Mixing module path delays and distributed delays
	14.5 Driving wired logic
	14.6 Detailed control of pulse filtering behavior
	14.6.1 Specify block control of pulse limit values
	14.6.2 Global control of pulse limit values
	14.6.3 SDF annotation of pulse limit values
	14.6.4 Detailed pulse control capabilities

	15. Timing checks
	15.1 Overview
	15.2 Timing checks using a stability window
	15.2.1 $setup
	15.2.2 $hold
	15.2.3 $setuphold
	15.2.4 $removal
	15.2.5 $recovery
	15.2.6 $recrem

	15.3 Timing checks for clock and control signals
	15.3.1 $skew
	15.3.2 $timeskew
	15.3.3 $fullskew
	15.3.4 $width
	15.3.5 $period
	15.3.6 $nochange

	15.4 Edge-control specifiers
	15.5 Notifiers: user-defined responses to timing violations
	15.5.1 Requirements for accurate simulation
	15.5.2 Conditions in negative timing checks
	15.5.3 Notifiers in negative timing checks
	15.5.4 Option behavior

	15.6 Enabling timing checks with conditioned events
	15.7 Vector signals in timing checks
	15.8 Negative timing checks

	16. Backannotation using the Standard Delay Format (SDF)
	16.1 The SDF annotator
	16.2 Mapping of SDF constructs to Verilog
	16.2.1 Mapping of SDF delay constructs to Verilog declarations
	16.2.2 Mapping of SDF timing check constructs to Verilog
	16.2.3 SDF annotation of specparams
	16.2.4 SDF annotation of interconnect delays

	16.3 Multiple annotations
	16.4 Multiple SDF files
	16.5 Pulse limit annotation
	16.6 SDF to Verilog delay value mapping

	17. System tasks and functions
	17.1 Display system tasks
	17.1.1 The display and write tasks
	17.1.2 Strobed monitoring
	17.1.3 Continuous monitoring

	17.2 File input-output system tasks and functions
	17.2.1 Opening and closing files
	17.2.2 File output system tasks
	17.2.3 Formatting data to a string
	17.2.4 Reading data from a file
	17.2.5 File positioning
	17.2.6 Flushing output
	17.2.7 I/O error status
	17.2.8 Loading memory data from a file
	17.2.9 Loading timing data from an SDF file

	17.3 Timescale system tasks
	17.3.1 $printtimescale
	17.3.2 $timeformat

	17.4 Simulation control system tasks
	17.4.1 $finish
	17.4.2 $stop

	17.5 PLA modeling system tasks
	17.5.1 Array types
	17.5.2 Array logic types
	17.5.3 Logic array personality declaration and loading
	17.5.4 Logic array personality formats

	17.6 Stochastic analysis tasks
	17.6.1 $q_initialize
	17.6.2 $q_add
	17.6.3 $q_remove
	17.6.4 $q_full
	17.6.5 $q_exam
	17.6.6 Status codes

	17.7 Simulation time system functions
	17.7.1 $time
	17.7.2 $stime
	17.7.3 $realtime

	17.8 Conversion functions
	17.9 Probabilistic distribution functions
	17.9.1 $random function
	17.9.2 $dist_ functions
	17.9.3 Algorithm for probabilistic distribution functions

	17.10 Command line input
	17.10.1 $test$plusargs (string)
	17.10.2 $value$plusargs (user_string, variable)

	18. Value change dump (VCD) files
	18.1 Creating the four state value change dump file
	18.1.1 Specifying the name of the dump file ($dumpfile)
	18.1.2 Specifying the variables to be dumped ($dumpvars)
	18.1.3 Stopping and resuming the dump ($dumpoff/$dumpon)
	18.1.4 Generating a checkpoint ($dumpall)
	18.1.5 Limiting the size of the dump file ($dumplimit)
	18.1.6 Reading the dump file during simulation ($dumpflush)

	18.2 Format of the four state VCD file
	18.2.1 Syntax of the four state VCD file
	18.2.2 Formats of variable values
	18.2.3 Description of keyword commands
	18.2.4 Four state VCD file format example

	18.3 Creating the extended value change dump file
	18.3.1 Specifying the dumpfile name and the ports to be dumped ($dumpports)
	18.3.2 Stopping and resuming the dump ($dumpportsoff/$dumpportson)
	18.3.3 Generating a checkpoint ($dumpportsall)
	18.3.4 Limiting the size of the dump file ($dumpportslimit)
	18.3.5 Reading the dump file during simulation ($dumpportsflush)
	18.3.6 Description of keyword commands
	18.3.7 General rules for extended VCD system tasks

	18.4 Format of the extended VCD file
	18.4.1 Syntax of the extended VCD file
	18.4.2 Extended VCD node information
	18.4.3 Value changes
	18.4.4 Extended VCD file format example

	19. Compiler directives
	19.1 `celldefine and `endcelldefine
	19.2 `default_nettype
	19.3 `define and `undef
	19.3.1 `define
	19.3.2 `undef

	19.4 `ifdef, `else, `elsif, `endif, `ifndef
	19.5 `include
	19.6 `resetall
	19.7 `line
	19.8 `timescale
	19.9 `unconnected_drive and `nounconnected_drive

	20. PLI overview
	20.1 PLI purpose and history (informative)
	20.2 User-defined system task or function names
	20.3 User-defined system task or function types
	20.4 Overriding built-in system task and function names
	20.5 User-supplied PLI applications
	20.6 PLI interface mechanism
	20.7 User-defined system task and function arguments
	20.8 PLI include files
	20.9 PLI Memory Restrictions

	21. PLI TF and ACC interface mechanism
	21.1 User-supplied PLI applications
	21.1.1 The sizetf class of PLI applications
	21.1.2 The checktf class of PLI applications
	21.1.3 The calltf class of PLI applications
	21.1.4 The misctf class of PLI applications
	21.1.5 The consumer class of PLI applications

	21.2 Associating PLI applications to a class and system task/function name
	21.3 PLI application arguments
	21.3.1 The data C argument
	21.3.2 The reason C argument
	21.3.3 The paramvc C argument

	22. Using ACC routines
	22.1 ACC routine definition
	22.2 The handle data type
	22.3 Using ACC routines
	22.3.1 Header files
	22.3.2 Initializing ACC routines
	22.3.3 Exiting ACC routines

	22.4 List of ACC routines by major category
	22.4.1 Fetch routines
	22.4.2 Handle routines
	22.4.3 Next routines
	22.4.4 Modify routines
	22.4.5 Miscellaneous routines
	22.4.6 VCL routines

	22.5 Accessible objects
	22.5.1 ACC routines that operate on module instances
	22.5.2 ACC routines that operate on module ports
	22.5.3 ACC routines that operate on bits of a port
	22.5.4 ACC routines that operate on module paths or data paths
	22.5.5 ACC routines that operate on intermodule paths
	22.5.6 ACC routines that operate on top-level modules
	22.5.7 ACC routines that operate on primitive instances
	22.5.8 ACC routines that operate on primitive terminals
	22.5.9 ACC routines that operate on nets
	22.5.10 ACC routines that operate on reg types
	22.5.11 ACC routines that operate on integer, real, and time variables
	22.5.12 ACC routines that operate on named events
	22.5.13 ACC routines that operate on parameters and specparams
	22.5.14 ACC routines that operate on timing checks
	22.5.15 ACC routines that operate on timing check terminals
	22.5.16 ACC routines that operate on user-defined system task/function arguments

	22.6 ACC routine types and fulltypes
	22.7 Error handling
	22.7.1 Suppressing error messages
	22.7.2 Enabling warnings
	22.7.3 Testing for errors
	22.7.4 Example
	22.7.5 Exception values

	22.8 Reading and writing delay values
	22.8.1 Number of delays for Verilog HDL objects
	22.8.2 ACC routine configuration
	22.8.3 Determining the number of arguments for ACC delay routines

	22.9 String handling
	22.9.1 ACC routines share an internal string buffer
	22.9.2 String buffer reset
	22.9.3 Preserving string values
	22.9.4 Example of preserving string values

	22.10 Using VCL ACC routines
	22.10.1 VCL objects
	22.10.2 The VCL record definition
	22.10.3 Effects of acc_initialize() and acc_close() on VCL consumer routines
	22.10.4 An example of using VCL ACC routines

	23. ACC routine definitions
	23.1 acc_append_delays()
	23.2 acc_append_pulsere()
	23.3 acc_close()
	23.4 acc_collect()
	23.5 acc_compare_handles()
	23.6 acc_configure()
	23.7 acc_count()
	23.8 acc_fetch_argc()
	23.9 acc_fetch_argv()
	23.10 acc_fetch_attribute()
	23.11 acc_fetch_attribute_int()
	23.12 acc_fetch_attribute_str()
	23.13 acc_fetch_defname()
	23.14 acc_fetch_delay_mode()
	23.15 acc_fetch_delays()
	23.16 acc_fetch_direction()
	23.17 acc_fetch_edge()
	23.18 acc_fetch_fullname()
	23.19 acc_fetch_fulltype()
	23.20 acc_fetch_index()
	23.21 acc_fetch_location()
	23.22 acc_fetch_name()
	23.23 acc_fetch_paramtype()
	23.24 acc_fetch_paramval()
	23.25 acc_fetch_polarity()
	23.26 acc_fetch_precision()
	23.27 acc_fetch_pulsere()
	23.28 acc_fetch_range()
	23.29 acc_fetch_size()
	23.30 acc_fetch_tfarg(), acc_fetch_itfarg()
	23.31 acc_fetch_tfarg_int(), acc_fetch_itfarg_int()
	23.32 acc_fetch_tfarg_str(), acc_fetch_itfarg_str()
	23.33 acc_fetch_timescale_info()
	23.34 acc_fetch_type()
	23.35 acc_fetch_type_str()
	23.36 acc_fetch_value()
	23.37 acc_free()
	23.38 acc_handle_by_name()
	23.39 acc_handle_calling_mod_m
	23.40 acc_handle_condition()
	23.41 acc_handle_conn()
	23.42 acc_handle_datapath()
	23.43 acc_handle_hiconn()
	23.44 acc_handle_interactive_scope()
	23.45 acc_handle_loconn()
	23.46 acc_handle_modpath()
	23.47 acc_handle_notifier()
	23.48 acc_handle_object()
	23.49 acc_handle_parent()
	23.50 acc_handle_path()
	23.51 acc_handle_pathin()
	23.52 acc_handle_pathout()
	23.53 acc_handle_port()
	23.54 acc_handle_scope()
	23.55 acc_handle_simulated_net()
	23.56 acc_handle_tchk()
	23.57 acc_handle_tchkarg1()
	23.58 acc_handle_tchkarg2()
	23.59 acc_handle_terminal()
	23.60 acc_handle_tfarg(), acc_handle_itfarg()
	23.61 acc_handle_tfinst()
	23.62 acc_initialize()
	23.63 acc_next()
	23.64 acc_next_bit()
	23.65 acc_next_cell()
	23.66 acc_next_cell_load()
	23.67 acc_next_child()
	23.68 acc_next_driver()
	23.69 acc_next_hiconn()
	23.70 acc_next_input()
	23.71 acc_next_load()
	23.72 acc_next_loconn()
	23.73 acc_next_modpath()
	23.74 acc_next_net()
	23.75 acc_next_output()
	23.76 acc_next_parameter()
	23.77 acc_next_port()
	23.78 acc_next_portout()
	23.79 acc_next_primitive()
	23.80 acc_next_scope()
	23.81 acc_next_specparam()
	23.82 acc_next_tchk()
	23.83 acc_next_terminal()
	23.84 acc_next_topmod()
	23.85 acc_object_in_typelist()
	23.86 acc_object_of_type()
	23.87 acc_product_type()
	23.88 acc_product_version()
	23.89 acc_release_object()
	23.90 acc_replace_delays()
	23.91 acc_replace_pulsere()
	23.92 acc_reset_buffer()
	23.93 acc_set_interactive_scope()
	23.94 acc_set_pulsere()
	23.95 acc_set_scope()
	23.96 acc_set_value()
	23.97 acc_vcl_add()
	23.98 acc_vcl_delete()
	23.99 acc_version()

	24. Using TF routines
	24.1 TF routine definition
	24.2 TF routine system task/function arguments
	24.3 Reading and writing system task/function argument values
	24.3.1 Reading and writing 2-state parameter argument values
	24.3.2 Reading and writing 4-state values
	24.3.3 Reading and writing strength values
	24.3.4 Reading and writing to memories
	24.3.5 Reading and writing string values
	24.3.6 Writing return values of user-defined functions
	24.3.7 Writing the correct C data types

	24.4 Value change detection
	24.5 Simulation time
	24.6 Simulation synchronization
	24.7 Instances of user-defined tasks or functions
	24.8 Module and scope instance names
	24.9 Saving information from one system TF call to the next
	24.10 Displaying output messages
	24.11 Stopping and finishing

	25. TF routine definitions
	25.1 io_mcdprintf()
	25.2 io_printf()
	25.3 mc_scan_plusargs()
	25.4 tf_add_long()
	25.5 tf_asynchoff(), tf_iasynchoff()
	25.6 tf_asynchon(), tf_iasynchon()
	25.7 tf_clearalldelays(), tf_iclearalldelays()
	25.8 tf_compare_long()
	25.9 tf_copypvc_flag(), tf_icopypvc_flag()
	25.10 tf_divide_long()
	25.11 tf_dofinish()
	25.12 tf_dostop()
	25.13 tf_error()
	25.14 tf_evaluatep(), tf_ievaluatep()
	25.15 tf_exprinfo(), tf_iexprinfo()
	25.16 tf_getcstringp(), tf_igetcstringp()
	25.17 tf_getinstance()
	25.18 tf_getlongp(), tf_igetlongp()
	25.19 tf_getlongtime(), tf_igetlongtime()
	25.20 tf_getnextlongtime()
	25.21 tf_getp(), tf_igetp()
	25.22 tf_getpchange(), tf_igetpchange()
	25.23 tf_getrealp(), tf_igetrealp()
	25.24 tf_getrealtime(), tf_igetrealtime()
	25.25 tf_gettime(), tf_igettime()
	25.26 tf_gettimeprecision(), tf_igettimeprecision()
	25.27 tf_gettimeunit(), tf_igettimeunit()
	25.28 tf_getworkarea(), tf_igetworkarea()
	25.29 tf_long_to_real()
	25.30 tf_longtime_tostr()
	25.31 tf_message()
	25.32 tf_mipname(), tf_imipname()
	25.33 tf_movepvc_flag(), tf_imovepvc_flag()
	25.34 tf_multiply_long()
	25.35 tf_nodeinfo(), tf_inodeinfo()
	25.36 tf_nump(), tf_inump()
	25.37 tf_propagatep(), tf_ipropagatep()
	25.38 tf_putlongp(), tf_iputlongp()
	25.39 tf_putp(), tf_iputp()
	25.40 tf_putrealp(), tf_iputrealp()
	25.41 tf_read_restart()
	25.42 tf_real_to_long()
	25.43 tf_rosynchronize(), tf_irosynchronize()
	25.44 tf_scale_longdelay()
	25.45 tf_scale_realdelay()
	25.46 tf_setdelay(), tf_isetdelay()
	25.47 tf_setlongdelay(), tf_isetlongdelay()
	25.48 tf_setrealdelay(), tf_isetrealdelay()
	25.49 tf_setworkarea(), tf_isetworkarea()
	25.50 tf_sizep(), tf_isizep()
	25.51 tf_spname(), tf_ispname()
	25.52 tf_strdelputp(), tf_istrdelputp()
	25.53 tf_strgetp(), tf_istrgetp()
	25.54 tf_strgettime()
	25.55 tf_strlongdelputp(), tf_istrlongdelputp()
	25.56 tf_strrealdelputp(), tf_istrrealdelputp()
	25.57 tf_subtract_long()
	25.58 tf_synchronize(), tf_isynchronize()
	25.59 tf_testpvc_flag(), tf_itestpvc_flag()
	25.60 tf_text()
	25.61 tf_typep(), tf_itypep()
	25.62 tf_unscale_longdelay()
	25.63 tf_unscale_realdelay()
	25.64 tf_warning()
	25.65 tf_write_save()

	26. Using VPI routines
	26.1 VPI system tasks and functions
	26.2 The VPI interface
	26.2.1 VPI callbacks
	26.2.2 VPI access to Verilog HDL objects and simulation objects
	26.2.3 Error handling
	26.2.4 Function availability
	26.2.5 Traversing expressions

	26.3 VPI object classifications
	26.3.1 Accessing object relationships and properties
	26.3.2 Object type properties
	26.3.3 Object file and line properties
	26.3.4 Delays and values

	26.4 List of VPI routines by functional category
	26.5 Key to data model diagrams
	26.5.1 Diagram key for objects and classes
	26.5.2 Diagram key for accessing properties
	26.5.3 Diagram key for traversing relationships

	26.6 Object data model diagrams
	26.6.1 Module
	26.6.2 Instance arrays
	26.6.3 Scope
	26.6.4 IO declaration
	26.6.5 Ports
	26.6.6 Nets and net arrays
	26.6.7 Regs and reg arrays
	26.6.8 Variables
	26.6.9 Memory
	26.6.10 Object range
	26.6.11 Named event
	26.6.12 Parameter, specparam
	26.6.13 Primitive, prim term
	26.6.14 UDP
	26.6.15 Module path, path term
	26.6.16 Intermodule path
	26.6.17 Timing check
	26.6.18 Task, function declaration
	26.6.19 Task and function call
	26.6.20 Frames
	26.6.21 Delay terminals
	26.6.22 Net drivers and loads
	26.6.23 Reg drivers and loads
	26.6.24 Continuous assignment
	26.6.25 Simple expressions
	26.6.26 Expressions
	26.6.27 Process, block, statement, event statement
	26.6.28 Assignment
	26.6.29 Delay control
	26.6.30 Event control
	26.6.31 Repeat control
	26.6.32 While, repeat, wait
	26.6.33 For
	26.6.34 Forever
	26.6.35 If, if-else
	26.6.36 Case
	26.6.37 Assign statement, deassign, force, release
	26.6.38 Disable
	26.6.39 Callback
	26.6.40 Time queue
	26.6.41 Active time format
	26.6.42 Attributes
	26.6.43 Iterator

	27. VPI routine definitions
	27.1 vpi_chk_error()
	27.2 vpi_compare_objects()
	27.3 vpi_control()
	27.4 vpi_flush()
	27.5 vpi_free_object()
	27.6 vpi_get()
	27.7 vpi_get_cb_info()
	27.8 vpi_get_data()
	27.9 vpi_get_delays()
	27.10 vpi_get_str()
	27.11 vpi_get_systf_info()
	27.12 vpi_get_time()
	27.13 vpi_get_userdata()
	27.14 vpi_get_value()
	27.15 vpi_get_vlog_info()
	27.16 vpi_handle()
	27.17 vpi_handle_by_index()
	27.18 vpi_handle_by_multi_index()
	27.19 vpi_handle_by_name()
	27.20 vpi_handle_multi()
	27.21 vpi_iterate()
	27.22 vpi_mcd_close()�
	27.23 vpi_mcd_flush()
	27.24 vpi_mcd_name()�
	27.25 vpi_mcd_open()�
	27.26 vpi_mcd_printf()�
	27.27 vpi_mcd_vprintf()
	27.28 vpi_printf()
	27.29 vpi_put_data()
	27.30 vpi_put_delays()
	27.31 vpi_put_userdata()
	27.32 vpi_put_value()
	27.33 vpi_register_cb()
	27.33.1 Simulation-event-related callbacks
	27.33.2 Simulation-time-related callbacks
	27.33.3 Simulator action and feature related callbacks

	27.34 vpi_register_systf()
	27.34.1 System task and function callbacks
	27.34.2 Initializing VPI system task/function callbacks
	27.34.3 Registering multiple system tasks and functions

	27.35 vpi_remove_cb()
	27.36 vpi_scan()
	27.37 vpi_vprintf()

	Annex A
	Formal syntax definition
	A.1 Source text
	A.1.1 Library source text
	A.1.2 Configuration source text
	A.1.3 Module and primitive source text
	A.1.4 Module parameters and ports
	A.1.5 Module items

	A.2 Declarations
	A.2.1 Declaration types
	A.2.2 Declaration data types
	A.2.3 Declaration lists
	A.2.4 Declaration assignments
	A.2.5 Declaration ranges
	A.2.6 Function declarations
	A.2.7 Task declarations
	A.2.8 Block item declarations

	A.3 Primitive instances
	A.3.1 Primitive instantiation and instances
	A.3.2 Primitive strengths
	A.3.3 Primitive terminals
	A.3.4 Primitive gate and switch types

	A.4 Module and generated instantiation
	A.4.1 Module instantiation
	A.4.2 Generated instantiation

	A.5 UDP declaration and instantiation
	A.5.1 UDP declaration
	A.5.2 UDP ports
	A.5.3 UDP body
	A.5.4 UDP instantiation

	A.6 Behavioral statements
	A.6.1 Continuous assignment statements
	A.6.2 Procedural blocks and assignments
	A.6.3 Parallel and sequential blocks
	A.6.4 Statements
	A.6.5 Timing control statements
	A.6.6 Conditional statements
	A.6.7 Case statements
	A.6.8 Looping statements
	A.6.9 Task enable statements

	A.7 Specify section
	A.7.1 Specify block declaration
	A.7.2 Specify path declarations
	A.7.3 Specify block terminals
	A.7.4 Specify path delays
	A.7.5 System timing checks

	A.8 Expressions
	A.8.1 Concatenations
	A.8.2 Function calls
	A.8.3 Expressions
	A.8.4 Primaries
	A.8.5 Expression left-side values
	A.8.6 Operators
	A.8.7 Numbers
	A.8.8 Strings

	A.9 General
	A.9.1 Attributes
	A.9.2 Comments
	A.9.3 Identifiers
	A.9.4 Identifier branches
	A.9.5 White space

	Annex B
	List of keywords
	Annex C
	System tasks and functions
	C.1 $countdrivers
	C.2 $getpattern
	C.3 $input
	C.4 $key and $nokey
	C.5 $list
	C.6 $log and $nolog
	C.7 $reset, $reset_count, and $reset_value
	C.8 $save, $restart, and $incsave
	C.9 $scale
	C.10 $scope
	C.11 $showscopes
	C.12 $showvars
	C.13 $sreadmemb and $sreadmemh

	Annex D
	Compiler directives
	D.1 `default_decay_time
	D.2 `default_trireg_strength
	D.3 `delay_mode_distributed
	D.4 `delay_mode_path
	D.5 `delay_mode_unit
	D.6 `delay_mode_zero

	Annex E
	acc_user.h
	Annex F
	veriuser.h
	Annex G
	vpi_user.h
	Annex H
	Bibliography
	Annex I
	Change History
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

